An Accuracy Assessment of Snow Depth Measurements in Agro-Forested Environments by UAV Lidar
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Data Acquisition
2.2.1. Lidar System
2.2.2. Ground Control Points (GCPs)
2.2.3. Ground Validation Surveys
2.3. Data Processing
2.3.1. GNSS Data Processing
- (1)
- First survey: PPP of the base, then PPK of the reference post, drone, and GCPs;
- (2)
- Second survey: PPK of the reference post, calculate the coordinates of the new base using the positional shift of the reference post relative to the first survey, PPK of the drone, and GCPs using the corrected base coordinates.
2.3.2. Raw Lidar Data Processing
2.3.3. Boresight Calibration
2.3.4. Strip Alignment
2.3.5. Bare Surface Points Classification
2.3.6. Snow Depth Maps
2.4. Data Analysis
3. Results
3.1. Accuracy Assessment of Lidar Point Cloud
3.1.1. Absolute Accuracy of Lidar Data
3.1.2. Relative Accuracy of Lidar Data
3.2. Accuracy Assessment of Snow Depth Maps
3.2.1. Lidar-Derived Snow Depth Maps
3.2.2. Snow Depth Validation
4. Discussion
4.1. Comparison of Lidar Point Cloud Accuracy to Previous Studies
4.2. Sources of Uncertainty in Lidar-Derived Snow Depths
4.2.1. Sainte-Marthe Snow Depths
4.2.2. Montmorency Snow Depths
4.3. Comparison of Lidar Snow Depth Accuracy to Previous Studies
4.4. Use of GCPs in UAV Lidar
4.5. Use of Strip Alignment for UAV Lidar
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barnett, T.P.; Adam, J.C.; Lettenmaier, D.P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 2005, 438, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Clark, M.; Hendrikx, J.; Slater, A.; Kavetski, D.; Anderson, B.; Cullen, N.J.; Kerr, T.; Hreinsson, E.; Woods, R. Representing spatial variability of snow water equivalent in hydrologic and land surface models: A review. Water Resour. Res. 2011, 47, W07539. [Google Scholar] [CrossRef] [Green Version]
- Sturm, M.; Goldstein, M.A.; Parr, C. Water and life from snow: A trillion dollar science question. Water Resour. Res. 2017, 53, 3534–3544. [Google Scholar] [CrossRef]
- NSIDC. State of the Cryosphere. Available online: https://nsidc.org/cryosphere/sotc/ (accessed on 20 October 2020).
- Aygün, O.; Kinnard, C.; Campeau, S. Impacts of climate change on the hydrology of northern midlatitude cold regions. Prog. Phys. Geogr. Earth Environ. 2020, 44, 338–375. [Google Scholar] [CrossRef]
- Deems, J.S.; Painter, T.H.; Finnegan, D.C. Lidar measurement of snow depth: A review. J. Glaciol. 2013, 59, 467–479. [Google Scholar] [CrossRef] [Green Version]
- Dong, C. Remote sensing, hydrological modeling and in situ observations in snow cover research: A review. J. Hydrol. 2018, 561, 573–583. [Google Scholar] [CrossRef]
- Tsai, Y.-L.S.; Dietz, A.; Oppelt, N.; Kuenzer, C. Remote sensing of snow cover using spaceborne SAR: A review. Remote Sens. 2019, 11, 1456. [Google Scholar] [CrossRef] [Green Version]
- Hopkinson, C.; Pomeroy, J.; Debeer, C.; Ellis, C.; Anderson, A. Relationships between snowpack depth and primary lidar point cloud derivatives in a mountainous environment. In Proceedings of the Remote Sensing and Hydrology, Jackson Hole, WY, USA, 27–30 September 2010. [Google Scholar]
- Hopkinson, C.; Sitar, M.; Chasmer, L.; Treitz, P. Mapping snowpack depth beneath forest canopies using airborne lidar. Photogramm. Eng. Remote Sens. 2004, 70, 323–330. [Google Scholar] [CrossRef] [Green Version]
- Harpold, A.A.; Guo, Q.; Molotch, N.; Brooks, P.D.; Bales, R.; Fernandez-Diaz, J.C.; Musselman, K.N.; Swetnam, T.L. Lidar-derived snowpack data sets from mixed conifer forests across the Western United States. Water Resour. Res. 2014, 50, 2749–2755. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Z.; Kirchner, P.B.; Bales, R.C. Topographic and vegetation effects on snow accumulation in the southern Sierra Nevada: A statistical summary from lidar data. Cryosphere 2016, 10, 257–269. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Z.; Ma, Q.; Qian, K.; Bales, R.C. Canopy effects on snow accumulation: Observations from lidar, canonical-view photos, and continuous ground measurements from sensor networks. Remote Sens. 2018, 10, 1769. [Google Scholar] [CrossRef] [Green Version]
- Currier, W.R.; Lundquist, J.D. Snow depth variability at the forest edge in multiple climates in the western United States. Water Resour. Res. 2018, 54, 8756–8773. [Google Scholar] [CrossRef]
- Mazzotti, G.; Currier, W.; Deems, J.S.; Pflug, J.M.; Lundquist, J.D.; Jonas, T. Revisiting snow cover variability and canopy structure within forest stands: Insights from airborne lidar data. Water Resour. Res. 2019, 55, 6198–6216. [Google Scholar] [CrossRef]
- Harder, P.; Pomeroy, J.; Helgason, W. Improving sub-canopy snow depth mapping with unmanned aerial vehicles: Lidar versus structure-from-motion techniques. Cryosphere 2020, 14, 1919–1935. [Google Scholar] [CrossRef]
- Jacobs, J.M.; Hunsaker, A.G.; Sullivan, F.B.; Palace, M.; Burakowski, E.A.; Herrick, C.; Cho, E. Snow depth mapping with unpiloted aerial system lidar observations: A case study in Durham, New Hampshire, United States. Cryosphere 2021, 15, 1485–1500. [Google Scholar] [CrossRef]
- Morsdorf, F.; Kötz, B.; Meier, E.; Itten, K.I.; Allgöwer, B. Estimation of LAI and fractional cover from small footprint airborne laser scanning data based on gap fraction. Remote Sens. Environ. 2006, 104, 50–61. [Google Scholar] [CrossRef]
- Painter, T.; Berisford, D.; Boardman, J.; Bormann, K.J.; Deems, J.; Gehrke, F.; Hedrick, A.; Joyce, M.; Laidlaw, R.; Marks, D.; et al. The Airborne Snow Observatory: Fusion of scanning lidar, imaging spectrometer, and physically-based modeling for mapping snow water equivalent and snow albedo. Remote Sens. Environ. 2016, 184, 139–152. [Google Scholar] [CrossRef] [Green Version]
- Broxton, P.D.; Harpold, A.A.; Biederman, J.A.; Troch, P.A.; Molotch, N.P.; Brooks, P.D. Quantifying the effects of vegetation structure on snow accumulation and ablation in mixed-conifer forests. Ecohydrology 2015, 8, 1073–1094. [Google Scholar] [CrossRef]
- Glira, P.; Pfeifer, N.; Mandlburger, G. Rigorous strip adjustment of UAV-based laserscanning data including time-dependent correction of trajectory errors. Photogramm. Eng. Remote Sens. 2016, 82, 945–954. [Google Scholar] [CrossRef] [Green Version]
- Pajares, G. Overview and current status of remote sensing applications based on Unmanned Aerial Vehicles (UAVs). Photogramm. Eng. Remote Sens. 2015, 81, 281–329. [Google Scholar] [CrossRef] [Green Version]
- Michele, C.; Avanzi, F.; Passoni, D.; Barzaghi, R.; Pinto, L.; Dosso, P.; Ghezzi, A.; Gianatti, R.; Vedova, G.D. Using a fixed-wing UAS to map snow depth distribution: An evaluation at peak accumulation. Cryosphere 2016, 10, 511–522. [Google Scholar] [CrossRef] [Green Version]
- Hopkinson, C.; Collins, T.; Anderson, A.; Pomeroy, J.; Spooner, I. Spatial snow depth assessment using lidar transect samples and public GIS data layers in the Elbow River watershed, Alberta. Can. Water Resour. J. 2012, 37, 69–87. [Google Scholar] [CrossRef]
- Deems, J.S.; Fassnacht, S.R.; Elder, K.J. Fractal distribution of snow depth from lidar data. J. Hydrometeorol. 2006, 7, 285–297. [Google Scholar] [CrossRef]
- Trujillo, E.; Ramírez, J.A.; Elder, K.J. Topographic, meteorologic, and canopy controls on the scaling characteristics of the spatial distribution of snow depth fields. Water Resour. Res. 2007, 43, W07409. [Google Scholar] [CrossRef]
- Kirchner, P.B.; Bales, R.C.; Molotch, N.P.; Flanagan, J.; Guo, Q. Lidar measurement of seasonal snow accumulation along an elevation gradient in the southern Sierra Nevada, California. Hydrol. Earth Syst. Sci. 2014, 18, 4261–4275. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Tan, J.; Liu, H. Rigorous boresight self-calibration of mobile and UAV LiDAR scanning systems by strip adjustment. Remote Sens. 2019, 11, 442. [Google Scholar] [CrossRef] [Green Version]
- Gatziolis, D.; Andersen, H.-E. A Guide to Lidar Data Acquisition and Processing for the Forests of the Pacific Northwest; United States Department of Agriculture: Portland, OR, USA, 2008.
- Pilarska, M.; Ostrowski, W.; Bakula, K.; Górski, K.; Kurczynski, Z. The potential of light laser scanners developed for unmanned aerial vehicles-The review and accuracy. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 42, 87–95. [Google Scholar] [CrossRef] [Green Version]
- Geodetics, I. Geo-MMS User Manual (Document 20160 Rev B); Geodetics, Inc.: San Diego, CA, USA, 2019. [Google Scholar]
- Zhang, X.; Gao, R.; Sun, Q.; Cheng, J. An automated rectification method for unmanned aerial vehicle LiDAR point cloud data based on laser intensity. Remote Sens. 2019, 11, 811. [Google Scholar] [CrossRef] [Green Version]
- Ravi, R.; Shamseldin, T.; Elbahnasawy, M.; Lin, Y.-J.; Habib, A. Bias impact analysis and calibration of UAV-based mobile LiDAR system with spinning multi-beam laser scanner. Appl. Sci. 2018, 8, 297. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira Junior, E.M.; Dos Santos, D.R. Rigorous calibration of UAV-based LiDAR systems with refinement of the boresight angles using a point-to-plane approach. Sensors 2019, 19, 5224. [Google Scholar] [CrossRef] [Green Version]
- Glira, P.; Pfeifer, N.; Briese, C.; Ressl, C. A correspondence framework for ALS strip adjustments based on variants of the ICP algorithm. J. Photogramm. Remote Sens. Geoinf. Sci. 2015, 4, 275–289. [Google Scholar] [CrossRef]
- Kumari, P.; Carter, W.E.; Shrestha, R.L. Adjustment of systematic errors in ALS data through surface matching. Adv. Space Res. 2011, 47, 1851–1864. [Google Scholar] [CrossRef]
- Chen, Z.; Li, J.; Yang, B. A strip adjustment method of UAV-borne lidar point cloud based on DEM features for mountainous area. Sensors 2021, 21, 2782. [Google Scholar] [CrossRef]
- Hyyppä, H.; Hyyppä, J.; Kaartinen, H.; Kaasalainen, S.; Honkavaara, E.; Rönnholm, P. Factors affecting the quality of DTM generation in forested areas. In Proceedings of the ISPRS Workshop Laser Scanning 2005, Enschede, The Netherlands, 12–14 September 2005; pp. 85–90. [Google Scholar]
- Wallace, L.O.; Lucieer, A.; Watson, C.S. Assessing the feasibility of UAV-based lidar for high resolution forest change detection. In Proceedings of the ISPRS Congress, Melbourne, Australia, 25 August–1 September 2012; pp. 499–504. [Google Scholar]
- Evans, J.S.; Hudak, A.T. A multiscale curvature algorithm for classifying discrete return LiDAR in forested environments. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1029–1038. [Google Scholar] [CrossRef]
- Yilmaz, C.S.; Yilmaz, V.; Güngör, O. Investigating the performances of commercial and non-commercial software for ground filtering of UAV-based point clouds. Int. J. Remote Sens. 2018, 39, 5016–5042. [Google Scholar] [CrossRef]
- Aygün, O.; Kinnard, C.; Campeau, S.; Krogh, S.A. Shifting hydrological processes in a Canadian agroforested catchment due to a warmer and wetter climate. Water 2020, 12, 739. [Google Scholar] [CrossRef] [Green Version]
- Jobin, B.; Latendresse, C.; Baril, A.; Maisonneuve, C.; Boutin, C.; Côté, D. A half-century analysis of landscape dynamics in southern Québec, Canada. Environ. Monit. Assess. 2014, 186, 2215–2229. [Google Scholar] [CrossRef]
- Paquotte, A.; Baraer, M. Hydrological behavior of an ice-layered snowpack in a non-mountainous environment. Hydrol. Processes 2021, 36, e14433. [Google Scholar] [CrossRef]
- Royer, A.; Roy, A.; Jutras, S.; Langlois, A. Review article: Performance assessment of radiation-based field sensors for monitoring the water equivalent of snow cover (SWE). Cryosphere 2021, 15, 5079–5098. [Google Scholar] [CrossRef]
- Environment and Climate Change Canada. Canadian Climate Normals 1981–2010, Edited. Available online: https://climate.weather.gc.ca/ (accessed on 10 August 2020).
- VelodyneLiDAR. VLP-16 User Manual; Velodyne LiDAR, Inc.: San Jose, CA, USA, 2018. [Google Scholar]
- Geodetics, I. Geo-iNAV®,Geo-RelNAV®,Geo-PNT®,Geo-Pointer™,Geo-hNAV™,Geo-MMS™ and Geo-RR™ Commercial User Manual (Document 20134 Rev X); Geodetics, Inc.: San Diego, CA, USA, 2018. [Google Scholar]
- SPH-Engineering. UgCS Desktop Application Version 3.2 (113) User Manual; SPH Engineering: Baložu Pilsēta, Latvia, 2019. [Google Scholar]
- Sturm, M.; Holmgren, J. An automatic snow depth probe for field validation campaigns. Water Resour. Res. 2018, 54, 9695–9701. [Google Scholar] [CrossRef]
- Valbuena, R.; Mauro, F.; Rodriguez-Solano, R.; Manzanera, J.A. Accuracy and precision of GPS receivers under forest canopies in a mountainous environment. Span. J. Agric. Res. 2010, 8, 1047–1057. [Google Scholar] [CrossRef]
- Effigis. EZSurv User Manual; Effigis: Montreal, QC, Canada, 2019. [Google Scholar]
- Ministry of Energy and Natural Resources. Geodetic Network Map. Available online: https://geodesie.portailcartographique.gouv.qc.ca/ (accessed on 5 February 2019).
- Geodetics, I. LiDARTool™ User Manual (Document 20149 Rev I); Geodetics, Inc.: San Diego, CA, USA, 2019. [Google Scholar]
- GreenValley-International. LiDAR360 User Guide; GreenValley International, Ltd.: Berkeley, CA, USA, 2020. [Google Scholar]
- Bayesmap Solutions. BayesStripAlign 2.1 Software Manual; BayesMap Solutions, LLC.: Mountain View, CA, USA, 2020. [Google Scholar]
- Blue Marble Geographics. Global Mapper; Blue Marble Geographics: Hallowell, ME, USA, 2020. [Google Scholar]
- Evans, J.; Hudak, A.T.; Faux, R.; Smith, A.M.S. Discrete return lidar in natural resources: Recommendations for project planning, data processing, and deliverables. Remote Sens. 2009, 1, 776–794. [Google Scholar] [CrossRef] [Green Version]
- Proulx, H.; Jacobs, J.M.; Burakowski, E.A.; Cho, E.; Hunsaker, A.G.; Sullivan, F.B.; Palace, M.; Wagner, C. Comparison of in-situ snow depth measurements and impacts on validation of unpiloted aerial system lidar over a mixed-use temperate forest landscape. Cryosphere Discuss 2022, 2022, 1–20. [Google Scholar] [CrossRef]
- Broxton, P.; Leeuwen, W.J.V.; Biederman, J. Improving snow water equivalent maps with machine learning of snow survey and lidar measurements. Water Resour. Res. 2019, 55, 3739–3757. [Google Scholar] [CrossRef]
- Tinkham, W.T.; Smith, A.M.S.; Marshall, H.; Link, T.; Falkowski, M.; Winstral, A. Quantifying spatial distribution of snow depth errors from lidar using random forest. Remote Sens. Environ. 2014, 141, 105–115. [Google Scholar] [CrossRef]
- Csanyi, N.; Toth, C.K. Improvement of lidar data accuracy using lidar-specific ground targets. Photogramm. Eng. Remote Sens. 2007, 73, 385–396. [Google Scholar] [CrossRef] [Green Version]
- Hyyppä, E.; Hyyppä, J.; Hakala, T.; Kukko, A.; Wulder, M.A.; White, J.C.; Pyörälä, J.; Yu, X.; Wang, Y.; Virtanen, J.-P.; et al. Under-canopy UAV laser scanning for accurate forest field measurements. ISPRS J. Photogramm. Remote Sens. 2020, 164, 41–60. [Google Scholar] [CrossRef]
Sainte-Marthe | Saint-Maurice | Montmorency | |
---|---|---|---|
Elevation range, m | 70–78 | 46–50 | 670–700 |
MAAT, °C | 6.0 | 4.7 | 0.5 |
Total precipitation, mm | 1000 | 1063 | 1600 |
Snowfall/Total Precipitation, % | 15 | 16 | 40 |
Winter season | November–March | November–March | October–April |
Lidar extent, km2 | 0.22 | 0.25 | 0.12 |
Snow-off flight date | 11 May 2020 | 02 May 2020 | 13 June 2019 |
Snow-on flight date | 12 March 2020 | 11 March 2020 | 29 March 2019 |
Average snow depth, m | 0.32 | 0.60 | 1.40 |
Number of manual measurements | 56 | - a | 43 |
Flying speed | 3 m/s |
Flight altitude | 40 m AGL |
Lidar RPM | 1200 |
Field of view | 145° |
Distance between parallel flight lines | 64 m |
Ground overlap | 20% |
Point density | 603 points/m2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dharmadasa, V.; Kinnard, C.; Baraër, M. An Accuracy Assessment of Snow Depth Measurements in Agro-Forested Environments by UAV Lidar. Remote Sens. 2022, 14, 1649. https://doi.org/10.3390/rs14071649
Dharmadasa V, Kinnard C, Baraër M. An Accuracy Assessment of Snow Depth Measurements in Agro-Forested Environments by UAV Lidar. Remote Sensing. 2022; 14(7):1649. https://doi.org/10.3390/rs14071649
Chicago/Turabian StyleDharmadasa, Vasana, Christophe Kinnard, and Michel Baraër. 2022. "An Accuracy Assessment of Snow Depth Measurements in Agro-Forested Environments by UAV Lidar" Remote Sensing 14, no. 7: 1649. https://doi.org/10.3390/rs14071649
APA StyleDharmadasa, V., Kinnard, C., & Baraër, M. (2022). An Accuracy Assessment of Snow Depth Measurements in Agro-Forested Environments by UAV Lidar. Remote Sensing, 14(7), 1649. https://doi.org/10.3390/rs14071649