An Exponential Filter Model-Based Root-Zone Soil Moisture Estimation Methodology from Multiple Datasets
Abstract
:1. Introduction
2. Data and Methodology
2.1. Study Area
2.2. In Situ SM Data
2.3. Satellite/Reanalysis SM Datasets
2.4. Methodology
3. Results
3.1. Exponential Filter Model Calibration and Validation
3.1.1. Distribution of Optimum T Parameter
3.1.2. Overall Performances
3.2. Evaluation on ERA5-Derived RZSM against In Situ Observations
3.2.1. Spatial Comparison between Observed and ERA5-Derived SM
3.2.2. Temporal Comparison among Different Agricultural Zoning Areas
3.2.3. Quantitative Comparison against Ground Observation Sites
3.3. Evaluation of Root-Zone SM Estimated from SMAP L3 Surface SM
3.3.1. Temporal Comparison between Observed and SMAP L3-Derived RZSM
3.3.2. Accuracy Evaluation Using Ground Observation Sites
3.3.3. Seasonality of Estimated RZSMs
4. Discussion
5. Conclusions
- The calibrated optimum parameter T showed an increasing trend from the eastern humid areas (1–3 days) to the western semi-humid areas (4–10 days), which is in line with the mechanism of local runoff generation, verifying the physical mechanism of the EF model to some extent;
- The applicability of the calibration approach using ERA5 SSM and RZSM dataset was demonstrated: (1) EF model in all calculating girds showed high NSE ( 0.82, 0.78), and low RE (: ~10% m3/m3) and RMSE (~0.08 m3/m3) both in calibration and validation period; (2) EF-simulated RZSM could capture the temporal-spatial and seasonal variations of RZSM by comparison with the in situ observed RZSM series among different agricultural zonings, as presented by the large CC (all >0.7), low bias (|bias| < 0.08 m3/m3) and RMSE (all <0.08 m3/m3), as well as the high NSE (0.37~0.61) between the simulated and observed RZSM series;
- 3.
- The SMAP L3-derived RZSM by the EF model presented good performances on capturing the temporal RZSM changes over all agricultural areas. Moreover, the quantitative evaluation at each observed site also proved the good estimation accuracy of SMAP-derived RZSM. SMAP L3-derived RZSM even outperformed the interpolated SMAP L4-provided RZSM in some specific areas;
- 4.
- The fast-updating SMAP L3 SSM product facilitated the proposed estimation scheme a desirable alternative for estimating RZSM with short data latency and high computational efficiency. Such estimation scheme presents a distinct advantage in agricultural water management under the modern smart agriculture initiative.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Brocca, L.; Morbidelli, R.; Melone, F.; Moramarco, T. Soil moisture spatial variability in experimental areas of central Italy. J. Hydrol. 2007, 333, 356–373. [Google Scholar] [CrossRef]
- Corradini, C. Soil moisture in the development of hydrological processes and its determination at different spatial scales. J. Hydrol. 2014, 516, 1–5. [Google Scholar] [CrossRef]
- De Rosnay, P.; Balsamo, G.; Albergel, C.; Muñoz-Sabater, J.; Isaksen, L. Initialisation of Land Surface Variables for Numerical Weather Prediction. Surv. Geophys. 2014, 35, 607–621. [Google Scholar] [CrossRef]
- Bindlish, R.; Crow, W.T.; Jackson, T.J. Role of Passive Microwave Remote Sensing in Improving Flood Forecasts. IEEE Geosci. Remote Sens. Lett. 2009, 6, 112–116. [Google Scholar] [CrossRef]
- Koster, R.D.; Mahanama, S.P.P.; Livneh, B.; Lettenmaier, D.P.; Reichle, R.H. Skill in streamflow forecasts derived from large-scale estimates of soil moisture and snow. Nat. Geosci. 2010, 3, 613–616. [Google Scholar] [CrossRef]
- Enenkel, M.; Steiner, C.; Mistelbauer, T.; Dorigo, W.; Wagner, W.; See, L.; Atzberger, C.; Schneider, S.; Rogenhofer, E. A Combined Satellite-Derived Drought Indicator to Support Humanitarian Aid Organizations. Remote Sens. 2016, 8, 340. [Google Scholar] [CrossRef] [Green Version]
- Tavakol, A.; Rahmani, V.; Quiring, S.M.; Kumar, S.V. Evaluation analysis of NASA SMAP L3 and L4 and SPoRT-LIS soil moisture data in the United States. Remote Sens. Environ. 2019, 229, 234–246. [Google Scholar] [CrossRef]
- El Hajj, M.; Baghdadi, N.; Zribi, M.; Belaud, G.; Cheviron, B.; Courault, D.; Charron, F. Soil moisture retrieval over irrigated grassland using X-band SAR data. Remote Sens. Environ. 2016, 176, 202–218. [Google Scholar] [CrossRef] [Green Version]
- Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, A.J. Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Sci. Rev. 2010, 99, 125–161. [Google Scholar] [CrossRef]
- Romano, N. Soil moisture at local scale: Measurements and simulations. J. Hydrol. 2014, 516, 6–20. [Google Scholar] [CrossRef]
- Brocca, L.; Ciabatta, L.; Massari, C.; Camici, S.; Tarpanelli, A. Soil Moisture for Hydrological Applications: Open Questions and New Opportunities. Water 2017, 9, 140. [Google Scholar] [CrossRef]
- Raza, A.; Friedel, J.K.; Moghaddam, A.; Ardakani, M.R.; Loiskandl, W.; Himmelbauer, M.; Bodner, G. Modeling growth of different Lucerne cultivars and their effect on soil water dynamics. Agric. Water Manag. 2013, 119, 100–110. [Google Scholar] [CrossRef]
- Chakrabarti, S.; Bongiovanni, T.; Judge, J.; Zotarelli, L.; Bayer, C. Assimilation of smos soil moisture for quantifying drought impacts on crop yield in agricultural regions. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 7, 3867–3879. [Google Scholar] [CrossRef]
- Tobin, K.J.; Torres, R.; Crow, W.T.; Bennett, M.E. Multi-decadal analysis of root-zone soil moisture applying the exponential filter across CONUS. Hydrol. Earth Syst. Sci. 2017, 21, 4403–4417. [Google Scholar] [CrossRef] [Green Version]
- Lia, F.; Crow, W.T.; Kustas, W.P. Towards the estimation root-zone soil moisture via the simultaneous assimilation of thermal and microwave soil moisture retrievals. Adv. Water Resour. 2010, 33, 201–214. [Google Scholar] [CrossRef]
- Ford, T.W.; Harris, E.; Quiring, S.M. Estimating root zone soil moisture using near-surface observations from SMOS. Hydrol. Earth Syst. Sci. 2014, 18, 139–154. [Google Scholar] [CrossRef] [Green Version]
- Dumedah, G.; Walker, J.P.; Merlin, O. Root-zone soil moisture estimation from assimilation of downscaled Soil Moisture and Ocean Salinity data. Adv. Water Res. 2015, 84, 14–22. [Google Scholar] [CrossRef]
- Mishra, V.; Lee, E.W.; Markert, K.N.; Limaye, A.S. Performance evaluation of soil moisture profile estimation through entropy-based and exponential filter models. Hydrol. Sci. J. 2020, 65, 1036–1048. [Google Scholar] [CrossRef]
- Manfreda, S.; Brocca, L.; Moramarco, T.; Melone, F.; Sheffield, J. A physically based approach for the estimation of root-zone soil moisture from surface measurements. Hydrol. Earth Syst. Sci. 2014, 18, 1199–1212. [Google Scholar] [CrossRef] [Green Version]
- Maggioni, V.; Reichle, R.H.; Anagnostou, E.N. The efficiency of assimilating satellite soil moisture retrievals in a land data assimilation system using different rainfall error models. J. Hydrometeorol. 2013, 14, 368–374. [Google Scholar] [CrossRef]
- Tian, S.; Tregoning, P.; Renzullo, L.J.; van Dijk, A.I.J.M.; Walker, J.P.; Pauwels, V.R.N.; Allgeyer, S. Improved water balance component estimates through joint assimilation of GRACE water storage and SMOS soil moisture retrievals. Water Resour. Res. 2017, 53, 1820–1840. [Google Scholar] [CrossRef]
- Reichle, R.H.; Liu, Q.; Koster, R.D.; Crow, W.T.; De Lannoy, G.J.M.; Kimball, J.S.; Ardizzone, J.V.; Bosch, D.; Colliander, A.; Cosh, M.; et al. Version 4 of the SMAP Level-4 Soil Moisture Algorithm and Data Product. J. Adv. Model Earth Syst. 2019, 11, 3106–3130. [Google Scholar] [CrossRef] [Green Version]
- Kornelsen, K.C.; Coulibaly, P. Root- zone soil moisture estimation using data- driven methods. Water Resour. Res. 2014, 50, 2946–2962. [Google Scholar] [CrossRef]
- Grillakis, M.G.; Koutroulis, A.G.; Alexakis, D.D.; Polykretis, C.; Daliakopoulos, I.N. Regionalizing root-zone soil moisture estimates from ESA CCI Soil Water Index using machine learning and information on soil, vegetation, and climate. Water Resour. Res. 2021, 57, e2020WR029249. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Z.; Shangguan, W.; Li, L.; Yao, Y.; Yu, F. Improved Daily SMAP Satellite Soil Moisture Prediction over China using deep learning model with transfer learning. J. Hydrol. 2021, 600, 126698. [Google Scholar] [CrossRef]
- Dumedah, G.; Walker, J.P. Evaluation of model parameter convergence when using data assimilation in soil moisture estimation. J. Hydrometeorol. 2014, 15, 359–375. [Google Scholar] [CrossRef] [Green Version]
- Sabater, J.M.; Jarlan, L.; Calvet, J.C.; Bouyssel, F.; De Rosnay, P. From Near-Surface to Root-Zone Soil Moisture Using Different Assimilation Techniques. J. Hydrometeorol. 2007, 8, 194. [Google Scholar] [CrossRef]
- Walker, J.P.; Willgoose, G.R.; Kalma, J.D. One-dimensional soil moisture profile retrieval by assimilation of near-surface observations: A comparison of retrieval algorithms. Adv. Water Resour. 2001, 24, 631–650. [Google Scholar] [CrossRef] [Green Version]
- Clark, M.P.; Rupp, D.E.; Woods, R.A.; Zheng, X.; Ibbitta, R.P.; Slater, A.G.; Schmidta, J.; Uddstroma, M.J. Hydrological data assimilation with the ensemble Kalman filter: Use of streamflow observations to update states in a distributed hydrological model. Adv. Water Resour. 2008, 31, 1309–1324. [Google Scholar] [CrossRef]
- Reichle, R.H.; De Lannoy, G.J.M.; Liu, Q.; Ardizzone, J.V.; Colliander, A.; Conaty, A.; Crow, W.; Jackson, T.J.; Jones, L.A.; Kimball, J.S.; et al. Assessment of the SMAP Level-4 Surface and Root-Zone Soil Moisture Product Using In Situ Measurements. J. Hydrometeorol. 2017, 18, 2621–2645. [Google Scholar] [CrossRef]
- Reichle, R.H.; De Lannoy, G.J.M.; Liu, Q.; Koster, R.D.; Kimball, J.S.; Crow, W.T.; Ardizzone, J.V.; Chakraborty, P.; Collins, D.W.; Conaty, A.L.; et al. Global Assessment of the SMAP Level-4 Surface and Root-Zone Soil Moisture Product Using Assimilation Diagnostics. J. Hydrometeorol. 2017, 18, 3217–3237. [Google Scholar] [CrossRef] [PubMed]
- Reichle, R.H.; De Lannoy, G.; Koster, R.D.; Crow, W.T.; Kimball, J.S.; Liu, Q. SMAP L4 Global 3-hourly 9 km EASE-Grid Surface and Root Zone Soil Moisture Analysis Update, Version 5; [Indicate Subset Used]; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2020. [Google Scholar] [CrossRef]
- Muñoz Sabater, J. ERA5-Land Hourly Data from 1981 to Present: Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 2019. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.e2161bac?tab=overview (accessed on 20 August 2021).
- Andini, N.; Kim, D.; Chun, J.A. Operational soil moisture modeling using a multi-stage approach based on the generalized complementary principle. Agric. Water Manag. 2020, 231, 106026. [Google Scholar] [CrossRef]
- Brocca, L.; Hasenauer, S.; Lacava, T.; Moramarco, T.; Wagner, W.; Dorigo, W.; Matgen, P.; Fernández, J.M.; Llorens, P.; Latron, J.; et al. Soil moisture estimation through ASCAT and AMSR-E sensors: An intercomparison and validation study across Europe. Remote Sens. Environ. 2011, 15, 3390–3408. [Google Scholar] [CrossRef]
- Wagner, W.; Lemoine, G.; Rott, H. A Method for Estimating Soil Moisture from ERS Scatterometer and Soil Data. Remote Sens. Environ. 1999, 70, 191–207. [Google Scholar] [CrossRef]
- Albergel, C.; Rüdiger, C.; Pellarin, T.; Calvet, J.C.; Fritz, N.; Froissard, F.; Suquia, D.; Petitpa, A.; Martin, E. From near-surface to root-zone soil moisture using an exponential filter: An assessment of the method based on in-situ observations and model simulations. Hydrol. Earth Syst. Sci. 2008, 12, 1323–1337. [Google Scholar] [CrossRef] [Green Version]
- Pablos, M.; González-Zamora, Á.; Sánchez, N.; Martínez-Fernández, J. Assessment of Root Zone Soil Moisture Estimations from SMAP, SMOS and MODIS Observations. Remote Sens. 2018, 10, 981. [Google Scholar] [CrossRef] [Green Version]
- Stefan, V.-G.; Indrio, G.; Escorihuela, M.-J.; Quintana-Seguí, P.; Villar, J.M. High-Resolution SMAP-Derived Root-Zone Soil Moisture Using an Exponential Filter Model Calibrated per Land Cover Type. Remote Sens. 2021, 13, 1112. [Google Scholar] [CrossRef]
- Ceballos, A.; Scipal, K.; Wagner, W.; Martínez-Fernández, J. Validation of ERS scatterometer-derived soil moisture data in the central part of the Duero Basin, Spain. Hydrol. Process. 2005, 19, 1549–1566. [Google Scholar] [CrossRef]
- Li, J.; Cui, J.; Sui, P.; Yue, S.; Yang, J.; Lv, Z.; Wang, D.; Chen, X.; Sun, B.; Ran, M.; et al. Valuing the synergy in the water-energy-food nexus for cropping systems: A case in the North China Plain. Ecol. Indic. 2021, 127, 107741. [Google Scholar] [CrossRef]
- Mo, K.C.; Lettenmaier, D.P. Objective drought classification using multiple land surface models. J. Hydrometeorol. 2013, 15, 990–1010. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, J.; Bao, Z.; Ao, T.; Wang, G.; Wu, H.; Wang, J. Evaluation of Multi-Source Soil Moisture Datasets over Central and Eastern Agricultural Area of China Using In Situ Monitoring Network. Remote Sens. 2021, 13, 1175. [Google Scholar] [CrossRef]
- O’Neill, P.E.; Chan, S.K.; Njoku, E.G.; Jackson, T.; Bindlish, R.; Chaubell, J. SMAP Enhanced L3 Radiometer Global Daily 9 km EASE-Grid Soil Moisture, Version 4; [Indicate Subset Used]; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2020. [Google Scholar] [CrossRef]
- Reichle, R.; Crow, W.T.; Koster, R.T.; Kimball, J.; De Lannoy, G. Algorithm Theoretical Basis Document (ATBD) SMAP Level 4 Surface and Root Zone Soil Moisture (L4_SM) Data Product. Available online: https://nsidc.org/sites/nsidc.org/files/files/data/smap/pdfs/l4_sm_initrel_v1_9.pdf (accessed on 25 May 2020).
- Alt, H. The Computational Geometry of Comparing Shapes. In Conference on Efficient Algorithms; Institut fuer Informatik, Freie Universitaet: Berlin, Germany, 2009. [Google Scholar]
- Xie, D.; Li, F.; Phillips, J.M. Distributed trajectory similarity search. Proc. VLDB Endow. 2017, 10, 1478–1489. [Google Scholar] [CrossRef] [Green Version]
- Lange, R.D.; Beck, R.; Van, D.; Friesen, J.; Wit, A.D.; Wagner, W. Scatterometer-derived soil moisture calibrated for soil texture with a one-dimensional water-flow model. IEEE Trans. Geosci. Electron. 2008, 46, 4041–4049. [Google Scholar] [CrossRef]
- Liu, S.; Xing, B.; Yuan, G.; Mo, X.; Lin, Z. Relationship analysis between soil moisture in root zone and top-most layer in China. Chin. J. Plant Ecol. 2013, 37, 1–17, (In Chinese with an English Abstract). [Google Scholar] [CrossRef]
- Albergel, C.; Calvet, J.C.; Mahfouf, J.F.; Rudiger, C.; Barbu, A.L.; Lafont, S.; Roujean, J.L.; Walker, J.P.; Crapeau, M.; Wigneron, J.P. Monitoring of water and carbon fluxes using a land data assimilation system: A case study for southwestern France. Hydrol. Earth Syst. Sci. 2010, 14, 1109–1124. [Google Scholar] [CrossRef] [Green Version]
- Barbu, A.L.; Calvet, J.C.; Mahfouf, J.F.; Albergel, C.; Lafont, T.S. Assimilation of Soil Wetness Indes and Leaf Area Index into the ISBA-A-gs land surface model: Grassland case study. Biogeosciences 2011, 8, 1971–1986. [Google Scholar] [CrossRef] [Green Version]
- Entekhabi, D.; Yueh, S.; O’Neill, P.; Kellogg, K.; Allen, A.; Bindlish, R.; Crow, W.T. SMAP Handbook–Soil Moisture Active Passive: Mapping Soil Moisture and Freeze/Thaw from Space; Jet Propulsion Laboratory (JPL) Publication: Pasadena, CA, USA, 2014; 180p. [Google Scholar]
- Anderson, G.; Bell, R. Wheat grain-yield response to lime application: Relationships with soil pH and aluminium in Western Australia. Crop Pasture Sci. 2019, 70, 295–305. [Google Scholar] [CrossRef]
- Markus, R.; Gustau, C.-V.; Bjorn, S.; Martin, J.; Joachim, D.; Prabhat, C.N. Deep learning and process understanding for data-driven Earth system science. Nature 2019, 566, 195–204. [Google Scholar]
Soil Properties | Texture | Sand Fraction (%) | Silt Fraction (%) | Clay Fraction (%) | Bulk Density |
---|---|---|---|---|---|
Middle-lower Yangtze Plain | Medium/Fine | 38.1 | 37.7 | 24.2 | 1.18~1.74 (1.39) |
Huang-Huai-Hai Plain | Medium | 45.9 | 34.1 | 20.0 | 1.21~1.79 (1.43) |
Northeast China Plain | Medium | 40.1 | 37.5 | 22.4 | 1.21~1.71 (1.40) |
Loess Plateau | Medium/Coarse | 48.6 | 34.3 | 17.1 | 1.21~1.74 (1.44) |
Dataset | Retrieval/Assimilation Method | Period | Spatial Coverage | Temporal Resolution | Spatial Resolution | Depth | Latency | References/ Links |
---|---|---|---|---|---|---|---|---|
ERA 5 | ECMWF-Integrated Forecast System | 1981-present | Global | 1-hourly | 0.1° | 0–7 cm; 7–28 cm; 28–100 cm; 100–289 cm | 5 days (Preliminary data); 3 months (Accurate data) | https://www.ecmwf.int/en/forecasts/datasets (accessed on 20 August 2021) |
SMAP L3 | Backus-Gilbert Optimal Interpolation | 2015-present | Global | Diurnal | 9 km | 0–5 cm | Within 50 h | https://nsidc.org/data/smap/smap-data.html (accessed on 2 August 2021) |
SMAP L4 | Ensemble Kalman Filter | 2015-present | Global | 3-hourly | 9 km | 0–100 cm | ~7days |
Statistical Indexes | RZSM | CC | RMSE (m3/m3) | NSE |
---|---|---|---|---|
Middle-lower Yangtze Plain | SMAP L3-derived by EF | 0.58 ** | 0.02 | 0.34 |
SMAP L4-provided | 0.76 ** | 0.02 | 0.4 | |
Huang-Huai-Hai Plain | SMAP L3-derived by EF | 0.82 ** | 0.05 | 0.48 |
SMAP L4-provided | 0.83 ** | 0.02 | 0.51 | |
Northeast China Plain | SMAP L3-derived by EF | 0.53 ** | 0.03 | 0.35 |
SMAP L4-provided | 0.55 ** | 0.03 | 0.33 | |
Loess Plateau | SMAP L3-derived by EF | 0.66 ** | 0.05 | 0.41 |
SMAP L4-provided | 0.77 ** | 0.02 | 0.46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Bao, Z.; Wu, H.; Wang, G.; Liu, C.; Wang, J.; Zhang, J. An Exponential Filter Model-Based Root-Zone Soil Moisture Estimation Methodology from Multiple Datasets. Remote Sens. 2022, 14, 1785. https://doi.org/10.3390/rs14081785
Yang Y, Bao Z, Wu H, Wang G, Liu C, Wang J, Zhang J. An Exponential Filter Model-Based Root-Zone Soil Moisture Estimation Methodology from Multiple Datasets. Remote Sensing. 2022; 14(8):1785. https://doi.org/10.3390/rs14081785
Chicago/Turabian StyleYang, Yanqing, Zhenxin Bao, Houfa Wu, Guoqing Wang, Cuishan Liu, Jie Wang, and Jianyun Zhang. 2022. "An Exponential Filter Model-Based Root-Zone Soil Moisture Estimation Methodology from Multiple Datasets" Remote Sensing 14, no. 8: 1785. https://doi.org/10.3390/rs14081785
APA StyleYang, Y., Bao, Z., Wu, H., Wang, G., Liu, C., Wang, J., & Zhang, J. (2022). An Exponential Filter Model-Based Root-Zone Soil Moisture Estimation Methodology from Multiple Datasets. Remote Sensing, 14(8), 1785. https://doi.org/10.3390/rs14081785