Global Mapping of Soil Water Characteristics Parameters— Fusing Curated Data with Machine Learning and Environmental Covariates
Abstract
:1. Introduction
- To link an extensive dataset of SWCC parameters to environmental covariates using the CoGTF framework to develop global maps of van Genuchten (vG) parameters.
- To compare the CoGTF derived parameter maps with earlier published maps based on PTFs (Rosetta 3 and HiHydroSoil v2.0).
- To highlight the limitations related to the application of a model based on measured soil properties for global mapping when only predicted soil information is available.
2. Materials and Methods
2.1. Covariate-Based GeoTransfer Functions (CoGTFs) Framework
2.2. Training Data—Expanding the Global SWCC Dataset
2.3. Soil and Environmental Covariates
2.4. CoGTF Models Based on Measured and Predicted Soil Covariates
2.5. Computational Aspects of the Random Forest Model
2.6. Criteria to Assess Predictive Accuracy of SWCC Parameters
2.7. Validation of Van Genuchten Parameter Maps
3. Results
3.1. Covariate Importance and Model Performance for the CoGTF Approach
3.2. Global Maps of vG Parameters Based on CoGTF-1
3.3. Comparison with Alternate Global vG Parameters Maps
3.4. Validation of CoGTF and Other PTF Based Maps
4. Discussion
4.1. Characteristics of the CoGTF Global vG Parameters Maps
4.2. Prediction Accuracy Improves with Covariates and Larger and Well-Curated SWCC Dataset
4.3. Comparison of CoGTF Models Based on Measured and Predicted Soil Covariates
4.4. Use of the Global CoGTF vG Parameters Maps and Future Developments
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
S.No | List of Covariates | Source |
---|---|---|
Climate (clm) | ||
1 | clm_annual mean temperaturebio1_m_1 | http://chelsa-climate.org/bioclim/, (accessed on 20 October 2021) |
km_s0..0cm_1979-2013_v1.0 | ||
2 | clm_temperature seasonalitybio4_ m_1 | Karger et al. [36] |
km_s0..0cm_1979-2013_v1.0 | ||
3 | clm_max temperature of warmest monthbio5_m_1 | |
km_s0..0cm_1979-2013_v1.0 | ||
4 | clm_min temperature of coldest monthbio6_m_1 | |
km_ s0..0cm_1979-2013_v1.0 | ||
5 | clm_annual precipitationbio12_m_1 | |
km_1979_2013_v1.0 | ||
6 | clm_precipitation of wettest monthbio13_m_1 | |
km_1979_2013 | ||
7 | clm_precipitation of driest monthbio14_m_1 | |
km_1979_2013 | ||
8 | clm_diffuse.irradiation_solar.atlas.kwhm2.100_m_1 | |
km_s0..0cm_2016_v1 | https://globalsolaratlas.info/download/world, (accessed on 20 October 2021) | |
9 | clm_direct.irradiation_solar.atlas.kwhm2.10_m_1 | |
km_s0..0cm_2016_v1 | ||
10 | clm_land surface temperature_mod11a2.annual.day_m_1 | https://lpdaac.usgs.gov/products/mod11a2v006/, (accessed on 20 October 2021) |
km_s0..0cm_2000..2017_v1.0 | ||
11 | clm_land surface temperature_mod11a2.annual.day_sd_1 | |
km_s0..0cm_2000..2017_v1.0 | ||
Digital terrain model (dtm) | ||
12 | dtm_topographic wetness index_merit.dem_m_1 | |
km_s0..0cm_2017_v1.0 | ||
13 | dtm_slope_merit.dem_m_1 | |
km_s0..0cm_2017_v1.0 | ||
14 | dtm_aspect.cosine_merit.dem_m_1 | |
km_s0..0cm_2018_v1.0 | https://zenodo.org/record/1447210#.XllTejFKhaQ, (accessed on 25 October 2021) | |
15 | dtm_elevation_merit.dem_m_1 | Yamazaki et al. [37] |
km_s0..0cm_2017_v1.0 | ||
16 | dtm_lithology_usgs.ecotapestry.acid.plutonics_p_1 | |
km_s0..0cm_2014_v1.0 | ||
Surface reflectance (lcv) | ||
17 | lcv_landsat.near infrared_wri.forestwatch_m_1 km_s0..0cm_2018_v1.2 | |
18 | lcv_landsat.red_wri.forestwatch_m_1 km_s0..0cm_2018_v1.2 | Hansen et al. [38] |
19 | lcv_landsat.short wave infrared_wri.forestwatch_m_1 km_s0..0 cm_2018_v1.2 | |
20 | lcv_wetlands.regularly.flooded_upmc.wtd_p_1 | https://doi.pangaea.de/10.1594/PANGAEA.892657 |
km_b0..200cm_2010..2015_v1.0 | Tootchi et al. [39] | |
Vegetation covariates (veg) | ||
21 | veg_fraction of bbsorbed photosynthetically active radiation | https://land.copernicus.eu/global/products/fapar, (accessed on 25 October 2021) |
_proba.v.annnual_d_1km_s0..0cm_2014..2019_v1.0 | ||
Soil properties (sol) | ||
22 | sol_clay.wfraction_usda.3a1a1a_m_1 | |
km_b0_10_30_60_100_200cm_ 1950..2017_v0.2 | ||
23 | sol_sand.wfraction_usda.3a1a1a_m_1 | |
km_b0_10_30_60_100_200cm _1950..2017_v0.2 | https://www.openlandmap.org/, (accessed on 22 December 2021) | |
24 | sol_bulk_density.wfraction_usda.3a1a1a_m_1 | |
km_b0_10_30_60_100_200cm_1950..2017_v0.2 | ||
25 | DEPTH |
Models | Water Content | CCC | RMSE | BIAS | |
---|---|---|---|---|---|
WC_0.1 m | 0.112 | −0.122 | 0.122 | −0.047 | |
Rosetta 3 | WC_3.3 m | 0.093 | −1.112 | 0.112 | −0.085 |
WC_150 m | 0.373 | 0.275 | 0.052 | −0.008 | |
WC_0.1 m | 0.218 | 0.058 | 0.112 | −0.020 | |
HiHydroSoil v2.0 | WC_3.3 m | −0.027 | −2.143 | 0.137 | −0.088 |
WC_150 m | 0.233 | −0.168 | 0.066 | −0.006 | |
WC_0.1 m | 0.622 | 0.454 | 0.085 | −0.019 | |
CoGTF-2 | WC_3.3 m | 0.586 | 0.180 | 0.070 | −0.048 |
WC_150 m | 0.505 | 0.335 | 0.050 | −0.022 |
All and Curated Data | CCC | RMSE | BIAS | |
---|---|---|---|---|
_all | 0.393 | 0.263 | 0.588 | −0.042 |
_cur | 0.432 | 0.273 | 0.442 | 0.009 |
n_all | 0.522 | 0.325 | 0.951 | 0.088 |
n_cur | 0.525 | 0.328 | 0.888 | 0.050 |
_all | 0.315 | 0.152 | 0.069 | 0.0003 |
_cur | 0.325 | 0.172 | 0.076 | −0.001 |
_all | 0.552 | 0.393 | 0.085 | −0.001 |
_cur | 0.565 | 0.412 | 0.082 | 0.001 |
Models | SWCCs | Water Content | CCC | RMSE | BIAS | |
---|---|---|---|---|---|---|
1572 | WC_0.1 m | 0.710 | 0.568 | 0.084 | −0.003 | |
CoGTF-1 | 719 | WC_3.3 m | 0.489 | 0.018 | 0.088 | −0.060 |
1184 | WC_150 m | 0.495 | 0.336 | 0.058 | 0.017 | |
1671 | WC_0.1 m | 0.699 | 0.551 | 0.088 | 0.0003 | |
CoGTF-A | 836 | WC_3.3 m | 0.521 | 0.064 | 0.099 | −0.066 |
1371 | WC_150 m | 0.529 | 0.359 | 0.062 | −0.020 |
References
- Van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef] [Green Version]
- Mualem, Y. Catalogue of the Hydraulic Properties of uNsaturated Soils; Technion Israel Institute of Technology, Technion Research & Development: Haifa, Israel, 1976. [Google Scholar]
- Brooks, R. Hydraulic properties of porous. Media Hydrol. Pap. 1964, 3, 1–27. [Google Scholar]
- Bouma, J. Using Soil Survey Data for Quantitative Land Evaluation. In Advances in Soil Science; Springer: Berlin/Heidelberg, Germany, 1989; pp. 177–213. [Google Scholar]
- Van Looy, K.; Bouma, J.; Herbst, M.; Koestel, J.; Minasny, B.; Mishra, U.; Montzka, C.; Nemes, A.; Pachepsky, Y.A.; Padarian, J.; et al. Pedotransfer Functions in Earth System Science: Challenges and Perspectives. Rev. Geophys. 2017, 55, 1199–1256. [Google Scholar] [CrossRef] [Green Version]
- Fatichi, S.; Or, D.; Walko, R.; Vereecken, H.; Young, M.H.; Ghezzehei, T.A.; Hengl, T.; Kollet, S.; Agam, N.; Avissar, R. Soil structure is an important omission in Earth System Models. Nat. Commun. 2020, 11, 522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonetti, S.; Wei, Z.; Or, D. A framework for quantifying hydrologic effects of soil structure across scales. Commun. Earth Environ. 2021, 2, 107. [Google Scholar] [CrossRef]
- Or, D. The tyranny of small scales–on representing soil processes in global land surface models. Water Resour. Res. 2020, 56. [Google Scholar] [CrossRef] [Green Version]
- Khlosi, M.; Alhamdoosh, M.; Douaik, A.; Gabriels, D.; Cornelis, W. Enhanced pedotransfer functions with support vector machines to predict water retention of calcareous soil. Eur. J. Soil Sci. 2016, 67, 276–284. [Google Scholar] [CrossRef]
- Gupta, S.; Lehmann, P.; Bonetti, S.; Papritz, A.; Or, D. Global Prediction of Soil Saturated Hydraulic Conductivity Using Random Forest in a Covariate-Based GeoTransfer Function (CoGTF) Framework. J. Adv. Model. Earth Syst. 2021, 13, e2020MS002242. [Google Scholar] [CrossRef]
- Chaney, N.W.; Wood, E.F.; McBratney, A.B.; Hempel, J.W.; Nauman, T.W.; Brungard, C.W.; Odgers, N.P. POLARIS: A 30-meter probabilistic soil series map of the contiguous United States. Geoderma 2016, 274, 54–67. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Papritz, A.; Lehmann, P.; Hengl, T.; Bonetti, S.; Or, D. GSHP: Global database of soil hydraulic properties. Sci. Data under review. [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Zhang, Y.; Schaap, M.G. Weighted recalibration of the Rosetta pedotransfer model with improved estimates of hydraulic parameter distributions and summary statistics (Rosetta3). J. Hydrol. 2017, 547, 39–53. [Google Scholar] [CrossRef] [Green Version]
- Simons, G.; Koster, R.; Droogers, P. HiHydroSoil v2.0-High Resolution Soil Maps of Global Hydraulic Properties. 2020. Available online: https://www.futurewater.nl/wp-content/uploads/2020/10/HiHydroSoil-v2.0-High-Resolution-Soil-Maps-of-Global-Hydraulic-Properties.pdf (accessed on 28 November 2021).
- Tóth, B.; Weynants, M.; Nemes, A.; Makó, A.; Bilas, G.; Tóth, G. New generation of hydraulic pedotransfer functions for Europe. Eur. J. Soil Sci. 2015, 66, 226–238. [Google Scholar] [CrossRef] [PubMed]
- Papritz, A. Soilhypfit: Modelling of Soil Water Retention and Hydraulic Conductivity Data; R Package Version 0.1-5; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Uusipaikka, E. Confidence Intervals in Generalized Regression Models; Chapman & Hall: Chapel Hill, NC, USA; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar] [CrossRef]
- Hengl, T.; Collins, T.; Wheeler, I.; MacMillan, R. Everybody Has a Right to Know What’s Happening with the Planet: Towards a Global Commons. 2019. Available online: https://zenodo.org/record/3274294#.Yl0aJ9NByUk (accessed on 28 November 2021).
- Jenny, H. Factors of Soil Formation: A System of Quantitative Pedology; Dover Publications, Inc.: New York, NY, USA, 1994. [Google Scholar]
- Wright, M.N.; Ziegler, A. ranger: A fast implementation of random forests for high dimensional data in C++ and R. arXiv 2015, arXiv:1508.04409. [Google Scholar] [CrossRef] [Green Version]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning; Data Mining, Inference and Prediction, 2nd ed.; Springer: New York, NY, USA, 2009. [Google Scholar]
- Carr, D.; Nicholas, L.-K.; Maechler, M.; Deepayan, S. Hexbin: Hexagonal Binning Routines; R Package Version 1.28.1; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Sarkar, D. Lattice: Multivariate Data Visualization with R; Springer: New York, NY, USA, 2008; ISBN 978-0-387-75968-5. [Google Scholar]
- Garnier, S. Viridis: Default Color Maps from ‘Matplotlib’; R Package Version 0.5.1; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Lovelace, R.; Nowosad, J.; Muenchov, J. Geocomputation with R; The R Series; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar] [CrossRef]
- Cleveland, W.S. LOWESS: A program for smoothing scatterplots by robust locally weighted regression. Am. Stat. 1981, 35, 54. [Google Scholar] [CrossRef]
- Lawrence, I.; Lin, K. A concordance correlation coefficient to evaluate reproducibility. Biometrics 1989, 45, 255–268. [Google Scholar]
- Hodnett, M.; Tomasella, J. Marked differences between van Genuchten soil water-retention parameters for temperate and tropical soils: A new water-retention pedo-transfer functions developed for tropical soils. Geoderma 2002, 108, 155–180. [Google Scholar] [CrossRef]
- Lehmann, P.; Leshchinsky, B.; Gupta, S.; Mirus, B.B.; Bickel, S.; Lu, N.; Or, D. Clays are not created equal: How clay mineral type affects soil parameterization. Geophys. Res. Lett. 2021, 48, e2021GL095311. [Google Scholar] [CrossRef]
- Haverkamp, R.; Leij, F.J.; Fuentes, C.; Sciortino, A.; Ross, P. Soil water retention: I. Introduction of a shape index. Soil Sci. Soc. Am. J. 2005, 69, 1881–1890. [Google Scholar] [CrossRef]
- Oleszczuk, R.; Truba, M. The analysis of some physical properties of drained peat-moorsh soil Layers. Ann. Wars. Univ. Life Sci.-SGGW Land Reclam. 2013, 45, 41–48. [Google Scholar] [CrossRef]
- Feng, J.; Zhang, G. Influence of clay fraction and mineral Composition on unsaturated characteristics of cohesive foundation soil in airports. Geofluids 2021, 2021, 1–10. [Google Scholar] [CrossRef]
- Chauvel, A.; Grimaldi, M.; Tessier, D. Changes in soil pore-space distribution following deforestation and revegetation: An example from the Central Amazon Basin, Brazil. For. Ecol. Manag. 1991, 38, 259–271. [Google Scholar] [CrossRef]
- Schaap, M.G.; Leij, F.J.; Van Genuchten, M.T. Rosetta: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J. Hydrol. 2001, 251, 163–176. [Google Scholar] [CrossRef]
- Karger, D.N.; Conrad, O.; Böhner, J.; Kawohl, T.; Kreft, H.; Soria-Auza, R.W.; Zimmermann, N.E.; Linder, H.P.; Kessler, M. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 2017, 4, 170122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamazaki, D.; Ikeshima, D.; Tawatari, R.; Yamaguchi, T.; O’Loughlin, F.; Neal, J.C.; Sampson, C.C.; Kanae, S.; Bates, P.D. A high-accuracy map of global terrain elevations. Geophys. Res. Lett. 2017, 44, 5844–5853. [Google Scholar] [CrossRef] [Green Version]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [Green Version]
- Tootchi, A.; Jost, A.; Ducharne, A. Multi-source global wetland maps combining surface water imagery and groundwater constraints. Earth Syst. Sci. Data 2019, 11, 189–220. [Google Scholar] [CrossRef] [Green Version]
Models | Water Content | CCC | RMSE | BIAS | |
---|---|---|---|---|---|
WC_0.1 m | 0.172 | 0.079 | 0.122 | −0.026 | |
Rosetta 3 | WC_3.3 m | 0.086 | −1.066 | 0.129 | −0.097 |
WC_150 m | 0.318 | 0.191 | 0.064 | −0.019 | |
WC_0.1 m | 0.184 | 0.099 | 0.121 | −0.004 | |
HiHydroSoil v2.0 | WC_3.3 m | −0.044 | −2.266 | 0.162 | −0.114 |
WC_150 m | 0.175 | −0.133 | 0.076 | −0.036 | |
WC_0.1 m | 0.710 | 0.568 | 0.084 | −0.003 | |
CoGTF-1 | WC_3.3 m | 0.489 | 0.018 | 0.088 | −0.060 |
WC_150 m | 0.495 | 0.336 | 0.058 | −0.017 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gupta, S.; Papritz, A.; Lehmann, P.; Hengl, T.; Bonetti, S.; Or, D. Global Mapping of Soil Water Characteristics Parameters— Fusing Curated Data with Machine Learning and Environmental Covariates. Remote Sens. 2022, 14, 1947. https://doi.org/10.3390/rs14081947
Gupta S, Papritz A, Lehmann P, Hengl T, Bonetti S, Or D. Global Mapping of Soil Water Characteristics Parameters— Fusing Curated Data with Machine Learning and Environmental Covariates. Remote Sensing. 2022; 14(8):1947. https://doi.org/10.3390/rs14081947
Chicago/Turabian StyleGupta, Surya, Andreas Papritz, Peter Lehmann, Tomislav Hengl, Sara Bonetti, and Dani Or. 2022. "Global Mapping of Soil Water Characteristics Parameters— Fusing Curated Data with Machine Learning and Environmental Covariates" Remote Sensing 14, no. 8: 1947. https://doi.org/10.3390/rs14081947
APA StyleGupta, S., Papritz, A., Lehmann, P., Hengl, T., Bonetti, S., & Or, D. (2022). Global Mapping of Soil Water Characteristics Parameters— Fusing Curated Data with Machine Learning and Environmental Covariates. Remote Sensing, 14(8), 1947. https://doi.org/10.3390/rs14081947