A Self-Attentive Hybrid Coding Network for 3D Change Detection in High-Resolution Optical Stereo Images
Abstract
:1. Introduction
- We propose a multi-path hybrid coding network structure. Different types of encoders are designed for multimodal feature mining tasks to enhance the feature representation capability of the different representation forms of high-resolution remote sensing images and the DSM.
- We design a multimodal feature fusion model based on dual self-attention. The model can adaptively represent the high-level semantic relations of multimodal 3D fusion features in both the channel and space dimensions and enhance the fusion effect and characterization of heterogeneous features.
- We design a dense skip-connection decoding structure. Compared with ordinary decoders, it is more flexible in conducting multi-scale feature learning with multimodal heterogeneous data. It can enhance feature utilization and propagation efficiency and improve small-scale change detection capability.
- Our experimental results on a self-made GF-7 dataset show that MAHNet has superior change detection performance compared to other comparison methods.
2. Related Work
2.1. Pixel-Level Change Detection
2.2. Machine Learning and Object-Based Change Detection
2.3. Deep Learning Change Detection
3. Methodology
3.1. Basic Network Structure
3.2. Multi-Path Hybrid Encoder (MPHE)
3.3. Dual Self-Attention Fusion Module (DAFM)
3.4. Dense Skip-Connection Decoder (DSCD)
4. Experiments
4.1. Data Sources and Study Area
4.2. Experimental Parameter Settings
4.3. Evaluation Metrics
4.4. Comparison of Experimental Results
- (1)
- Traditional change detection methods: These included change vector analysis (CVA) [23] and iterative weighted multivariate change detection (IRMAD) [62]. CVA determines the area of change by analyzing the change vector of dual-time-phase remote sensing images. The magnitude of the change vector can determine the degree of change, and its direction can discriminate the type of feature change. IRMAD is a typical correlation analysis (MAD) extension of the change detection algorithm.
- (2)
- Deep learning change detection algorithms: These were the fully convolutional early fusion network (FC-EF) [40], the fully convolutional Siamese network (FC-Siam-Conv) [40], and the fully convolutional Siamese difference network (FC-Siam-Diff) [40]. These are FCNN change detection algorithms that use different fusion strategies.
- (3)
- Semantic segmentation algorithms: We used the following coding- and decoding-structure-based classical image segmentation algorithms: the fully convolutional network (FCN) [63], the semantic segmentation network (SegNet) [64], the U-shaped neural network (UNet) [65], and a nested U-Net architecture (Unet++), as well as the high-resolution network (HRNet) [66], which is an advanced algorithm for human pose estimation. Unlike most image segmentation algorithms that serially connect convolutional layers and finally recover the image spatial resolution by up-sampling, this network connects convolutional layers in parallel to form a multiple sub-network from high to low resolution and iteratively fuses the high-resolution features generated from the high to low sub-networks. This ensures that the features have high-spatial-resolution details and a guaranteed expression effect.
4.5. Comparison of Experimental Results
4.6. Multi-Path Hybrid Coding Comparison Experiment
- Deep Siamese convolutional neural network (DSCN): This network has two identical encoders. Dual-temporal high-resolution remote sensing images and dual-temporal DSM data are fed into these two identical encoding structures for feature learning and extraction tasks, respectively.
- Multi-path hybrid coding network (MPHE-18/34): This network consists of two different coding structures: (1) a main encoder consisting of a ResNet and (2) a sub-encoder consisting of a set of simple FCNNs. To verify the effect of combining different residual networks with FCNNs, comparative experiments were conducted using two lightly quantized residual networks, ResNet-18 and ResNet-34, paired with FCNNs (Table 2).
4.7. Ablation Experiment
4.7.1. Effectiveness of the DAFM
4.7.2. Effectiveness of the DSCD
4.7.3. Effectiveness of the DSCD + the DAFM
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, A. Review Article Digital change detection techniques using remotely-sensed data. Int. J. Remote Sens. 2010, 10, 989–1003. [Google Scholar] [CrossRef] [Green Version]
- Ban, Y.; Yousif, O. Change Detection Techniques: A Review. In Multitemporal Remote Sensing; Remote Sensing and Digital Image Processing; Springer: Cham, Switzerland, 2016; pp. 19–43. [Google Scholar] [CrossRef]
- Asokan, A.; Anitha, J. Change detection techniques for remote sensing applications: A survey. Earth Sci. Inform. 2019, 12, 143–160. [Google Scholar] [CrossRef]
- Lulla, K.; Nellis, M.D.; Rundquist, B. Celebrating Geocarto International’s Reach. Geocarto Int. 2010, 25, 1–2. [Google Scholar] [CrossRef]
- Yang, Y.; Zhou, Q.; Gong, J.; Wang, Y. An integrated spatio-temporal classification method for urban fringe change detection analysis. Int. J. Remote Sens. 2011, 33, 2516–2531. [Google Scholar] [CrossRef]
- Yan, J.; Wang, L. Suitability Evaluation for Products Generation from Multisource Remote Sensing Data. Remote Sens. 2016, 8, 995. [Google Scholar] [CrossRef] [Green Version]
- Pan, Z.; Yu, J.; Huang, H.; Hu, S.; Zhang, A.; Ma, H.; Sun, W. Super-Resolution Based on Compressive Sensing and Structural Self-Similarity for Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4864–4876. [Google Scholar] [CrossRef]
- Rostami, M.; Michailovich, O.; Wang, Z. Image deblurring using derivative compressed sensing for optical imaging application. IEEE Trans. Image Process. 2012, 21, 3139–3149. [Google Scholar] [CrossRef] [Green Version]
- Kashter, Y.; Levi, O.; Stern, A. Optical compressive change and motion detection. Appl. Opt. 2012, 51, 2491–2496. [Google Scholar] [CrossRef] [Green Version]
- Marcia, R.F. Compressed sensing for practical optical imaging systems: A tutorial. Opt. Eng. 2011, 50, 072601. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Cao, Y.; Li, J. An automatic change detection method for monitoring newly constructed building areas using time-series multi-view high-resolution optical satellite images. Remote Sens. Environ. 2020, 244, 111802. [Google Scholar] [CrossRef]
- Leichtle, T.; Geiß, C.; Lakes, T.; Taubenböck, H. Class imbalance in unsupervised change detection—A diagnostic analysis from urban remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2017, 60, 83–98. [Google Scholar] [CrossRef]
- Ma, L.; Liu, Y.; Zhang, X.; Ye, Y.; Yin, G.; Johnson, B.A. Deep learning in remote sensing applications: A meta-analysis and review. ISPRS J. Photogramm. Remote Sens. 2019, 152, 166–177. [Google Scholar] [CrossRef]
- Zhang, X.; Xiao, P.; Feng, X.; Yuan, M. Separate segmentation of multi-temporal high-resolution remote sensing images for object-based change detection in urban area. Remote Sens. Environ. 2017, 201, 243–255. [Google Scholar] [CrossRef]
- Khelifi, L.; Mignotte, M. Deep Learning for Change Detection in Remote Sensing Images: Comprehensive Review and Meta-Analysis. IEEE Access 2020, 8, 126385–126400. [Google Scholar] [CrossRef]
- Qin, R.; Tian, J.; Reinartz, P. 3D change detection—Approaches and applications. ISPRS J. Photogramm. Remote Sens. 2016, 122, 41–56. [Google Scholar] [CrossRef] [Green Version]
- Ramachandram, D.; Taylor, G.W. Deep Multimodal Learning: A Survey on Recent Advances and Trends. IEEE Signal Process. Mag. 2017, 34, 96–108. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, Z.; He, X.; Deng, L. Multimodal Intelligence: Representation Learning, Information Fusion, and Applications. IEEE J. Sel. Top. Signal Process. 2020, 14, 478–493. [Google Scholar] [CrossRef] [Green Version]
- Melgani, F.; Moser, G.; Serpico, S. Unsupervised change detection methods for remote sensing images. SPIE 2002, 41, 3288–3297. [Google Scholar] [CrossRef]
- Jha, C.S.; Unni, N.V.M. Digital change detection of forest conversion of a dry tropical Indian forest region. Int. J. Remote Sens. 2007, 15, 2543–2552. [Google Scholar] [CrossRef]
- Howarth, P.J.; Wickware, G.M. Procedures for change detection using Landsat digital data. Int. J. Remote Sens. 2007, 2, 277–291. [Google Scholar] [CrossRef]
- Lambin, E.F.; Strahler, A.H. Indicators of land-cover change for change-vector analysis in multitemporal space at coarse spatial scales. Int. J. Remote Sens. 2007, 15, 2099–2119. [Google Scholar] [CrossRef]
- Schoppmann, M.W.; Tyler, W.A. Chernobyl revisited: Monitoring change with change vector analysis. Geocarto Int. 1996, 11, 13–27. [Google Scholar] [CrossRef]
- Munyati, C. Use of Principal Component Analysis (PCA) of Remote Sensing Images in Wetland Change Detection on the Kafue Flats, Zambia. Geocarto Int. 2004, 19, 11–22. [Google Scholar] [CrossRef]
- Alaibakhsh, M.; Emelyanova, I.; Barron, O.; Mohyeddin, A.; Khiadani, M. Multivariate detection and attribution of land-cover changes in the Central Pilbara, Western Australia. Int. J. Remote Sens. 2015, 36, 2599–2621. [Google Scholar] [CrossRef]
- Collins, J.B.; Woodcock, C.E. An assessment of several linear change detection techniques for mapping forest mortality using multitemporal landsat TM data. Remote Sens. Environ. 1996, 56, 66–77. [Google Scholar] [CrossRef]
- Collins, J.B.; Woodcock, C.E. Change detection using the Gramm-Schmidt transformation applied to mapping forest mortality. Remote Sens. Environ. 1994, 50, 267–279. [Google Scholar] [CrossRef]
- Brondizio, E.S.; Moran, E.F.; Mausel, P.; Wu, Y. Land use change in the Amazon estuary: Patterns of caboclo settlement and landscape management. Hum. Ecol. 1994, 22, 249–278. [Google Scholar] [CrossRef]
- Vicente, P.; Soares, R.M.H. Eucalyptus forest change classification using multi-date Landsat TM data. SPIE Proc. 1995, 2314, 281–291. [Google Scholar] [CrossRef]
- Bruzzone, L.; Serpico, S.B. An iterative technique for the detection of land-cover transitions in multitemporal remote-sensing images. IEEE Trans. Geosci. Remote Sens. 1997, 35, 858–867. [Google Scholar] [CrossRef] [Green Version]
- Ghaderpour, E.; Vujadinovic, T. Change Detection within Remotely Sensed Satellite Image Time Series via Spectral Analysis. Remote Sens. 2020, 12, 4001. [Google Scholar] [CrossRef]
- Nemmour, H.; Chibani, Y. Multiple support vector machines for land cover change detection: An application for mapping urban extensions. ISPRS J. Photogramm. Remote Sens. 2006, 61, 125–133. [Google Scholar] [CrossRef]
- Liu, X.; Lathrop, R.G. Urban change detection based on an artificial neural network. Int. J. Remote Sens. 2010, 23, 2513–2518. [Google Scholar] [CrossRef]
- Eisavi, V.; Homayouni, S. Performance evaluation of random forest and support vector regressions in natural hazard change detection. J. Appl. Remote Sens. 2016, 10, 046030. [Google Scholar] [CrossRef]
- Han, T.; Tang, Y.; Yang, X.; Lin, Z.; Zou, B.; Feng, H. Change Detection for Heterogeneous Remote Sensing Images with Improved Training of Hierarchical Extreme Learning Machine (HELM). Remote Sens. 2021, 13, 4918. [Google Scholar] [CrossRef]
- Hussain, M.; Chen, D.; Cheng, A.; Wei, H.; Stanley, D. Change detection from remotely sensed images: From pixel-based to object-based approaches. ISPRS J. Photogramm. Remote Sens. 2013, 80, 91–106. [Google Scholar] [CrossRef]
- Yang, X.; Liu, H.; Gao, X. Land cover changed object detection in remote sensing data with medium spatial resolution. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 129–137. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Du, B. Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of the Art. IEEE Geosci. Remote Sens. Mag. 2016, 4, 22–40. [Google Scholar] [CrossRef]
- Shi, W.; Zhang, M.; Zhang, R.; Chen, S.; Zhan, Z. Change Detection Based on Artificial Intelligence: State-of-the-Art and Challenges. Remote Sens. 2020, 12, 1688. [Google Scholar] [CrossRef]
- Daudt, R.C.; Saux, B.L.; Boulch, A. Fully Convolutional Siamese Networks for Change Detection. In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 4063–4067. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Z.; Wan, Y.; Zhang, Y.; Xiang, S.; Peng, D.; Zhang, B. CLNet: Cross-layer convolutional neural network for change detection in optical remote sensing imagery. ISPRS J. Photogramm. Remote Sens. 2021, 175, 247–267. [Google Scholar] [CrossRef]
- Zhang, C.; Yue, P.; Tapete, D.; Jiang, L.; Shangguan, B.; Huang, L.; Liu, G. A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images. ISPRS J. Photogramm. Remote Sens. 2020, 166, 183–200. [Google Scholar] [CrossRef]
- Samadi, F.; Akbarizadeh, G.; Kaabi, H. Change detection in SAR images using deep belief network: A new training approach based on morphological images. IET Image Process. 2019, 13, 2255–2264. [Google Scholar] [CrossRef]
- Mou, L.; Zhu, X.X. A Recurrent Convolutional Neural Network for Land Cover Change Detection in Multispectral Images. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 4363–4366. [Google Scholar] [CrossRef]
- Wang, D.; Chen, X.; Jiang, M.; Du, S.; Xu, B.; Wang, J. ADS-Net:An Attention-Based deeply supervised network for remote sensing image change detection. Int. J. Appl. Earth Obs. Geoinf. 2021, 101, 102348. [Google Scholar] [CrossRef]
- Yang, X.; Hu, L.; Zhang, Y.; Li, Y. MRA-SNet: Siamese Networks of Multiscale Residual and Attention for Change Detection in High-Resolution Remote Sensing Images. Remote Sens. 2021, 13, 4528. [Google Scholar] [CrossRef]
- Chen, P.; Zhang, B.; Hong, D.; Chen, Z.; Yang, X.; Li, B. FCCDN: Feature constraint network for VHR image change detection. ISPRS J. Photogramm. Remote Sens. 2022, 187, 101–119. [Google Scholar] [CrossRef]
- Pan, J.; Cui, W.; An, X.; Huang, X.; Zhang, H.; Zhang, S.; Zhang, R.; Li, X.; Cheng, W.; Hu, Y. MapsNet: Multi-level feature constraint and fusion network for change detection. Int. J. Appl. Earth Obs. Geoinf. 2022, 108, 102676. [Google Scholar] [CrossRef]
- Li, H.-C.; Yang, G.; Yang, W.; Du, Q.; Emery, W.J. Deep nonsmooth nonnegative matrix factorization network with semi-supervised learning for SAR image change detection. ISPRS J. Photogramm. Remote Sens. 2020, 160, 167–179. [Google Scholar] [CrossRef]
- Lu, N.; Chen, C.; Shi, W.; Zhang, J.; Ma, J. Weakly Supervised Change Detection Based on Edge Mapping and SDAE Network in High-Resolution Remote Sensing Images. Remote Sens. 2020, 12, 3907. [Google Scholar] [CrossRef]
- Fang, H.; Du, P.; Wang, X. A novel unsupervised binary change detection method for VHR optical remote sensing imagery over urban areas. Int. J. Appl. Earth Obs. Geoinf. 2022, 108, 102749. [Google Scholar] [CrossRef]
- Ma, W.; Xiong, Y.; Wu, Y.; Yang, H.; Zhang, X.; Jiao, L. Change Detection in Remote Sensing Images Based on Image Mapping and a Deep Capsule Network. Remote Sens. 2019, 11, 626. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Shen, L.; Albanie, S.; Sun, G.; Wu, E. Squeeze-and-Excitation Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 2011–2023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Wang, M.; Wang, F.; Yang, G.; Zhang, Y.; Jia, J.; Wang, S. A Novel Squeeze-and-Excitation W-Net for 2D and 3D Building Change Detection with Multi-Source and Multi-Feature Remote Sensing Data. Remote Sens. 2021, 13, 440. [Google Scholar] [CrossRef]
- Tian, J.; Cui, S.; Reinartz, P. Building Change Detection Based on Satellite Stereo Imagery and Digital Surface Models. IEEE Trans. Geosci. Remote Sens. 2014, 52, 406–417. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Li, S.; Chen, Z.; Chanussot, J.; Jia, X.; Zhang, B.; Li, B.; Chen, P. An attention-fused network for semantic segmentation of very-high-resolution remote sensing imagery. ISPRS J. Photogramm. Remote Sens. 2021, 177, 238–262. [Google Scholar] [CrossRef]
- Fu, J.; Liu, J.; Tian, H.; Li, Y.; Bao, Y.; Fang, Z.; Lu, H. Dual Attention Network for Scene Segmentation. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 3141–3149. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.; Liu, Z.; Maaten, L.V.D.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Siddiquee, M.M.R.; Tajbakhsh, N.; Liang, J. UNet++: A Nested U-Net Architecture for Medical Image Segmentation. Deep. Learn. Med. Image Anal. Multimodal Learn. Clin. Decis. Support 2018, 11045, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Fan, R.; Wang, H.; Cai, P.; Liu, M. SNE-RoadSeg: Incorporating Surface Normal Information into Semantic Segmentation for Accurate Freespace Detection; Springer International Publishing: Cham, Switzerland, 2020; pp. 340–356. [Google Scholar] [CrossRef]
- Nielsen, A.A. The Regularized Iteratively Reweighted MAD Method for Change Detection in Multi- and Hyperspectral Data. IEEE Trans. Image Process. 2007, 16, 463–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar] [CrossRef] [Green Version]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef] [PubMed]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar] [CrossRef] [Green Version]
- Sun, K.; Xiao, B.; Liu, D.; Wang, J. Deep High-Resolution Representation Learning for Human Pose Estimation. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 5686–5696. [Google Scholar] [CrossRef] [Green Version]
Classes | Method | OA | Precision | Recall | F1-score | Kappa | OA | F1 | ||
---|---|---|---|---|---|---|---|---|---|---|
Mean | Var | Mean | Var | |||||||
CVA | 85.38 | 49.10 | 42.99 | 44.35 | 36.44 | - | - | - | - | |
IRMAD | 85.79 | 52.85 | 67.16 | 57.87 | 49.81 | - | - | - | - | |
FC-EF | 92.95 | 84.10 | 73.22 | 78.28 | 74.10 | 92.92 | 0.09 | 78.18 | 0.12 | |
FC-Siam-Conv | 92.44 | 86.54 | 66.89 | 75.44 | 71.07 | 92.38 | 0.15 | 75.54 | 0.11 | |
FC-Siam-Diff | 92.75 | 88.47 | 66.96 | 76.23 | 72.05 | 92.88 | 0.22 | 76.26 | 0.23 | |
Image | FCN | 91.93 | 80.87 | 70.08 | 75.09 | 70.30 | 91.77 | 0.07 | 75.12 | 0.08 |
SegNet | 93.27 | 86.47 | 72.56 | 78.91 | 74.94 | 93.21 | 0.14 | 78.93 | 0.25 | |
UNet | 93.63 | 87.91 | 73.36 | 79.98 | 76.23 | 93.56 | 0.15 | 79.99 | 0.28 | |
UNet++ | 93.97 | 88.08 | 75.48 | 81.29 | 77.72 | 93.87 | 0.29 | 81.41 | 0.26 | |
HRNet | 94.76 | 84.30 | 85.78 | 85.03 | 81.85 | 94.62 | 0.10 | 85.28 | 0.25 | |
Image + DSM | MAHNet | 97.44 | 92.71 | 92.47 | 92.59 | 91.01 | 97.41 | 0.08 | 92.47 | 0.12 |
Encoder Method | OA | Precision | Recall | F1-Score | Kappa | OA | F1-Score | ||
---|---|---|---|---|---|---|---|---|---|
Mean | Var | Mean | Var | ||||||
DSCN | 96.60 | 91.28 | 88.90 | 90.07 | 88.02 | 96.52 | 0.05 | 90.15 | 0.09 |
MPHE-18 | 96.64 | 88.42 | 92.83 | 90.57 | 88.53 | 96.61 | 0.07 | 90.63 | 0.12 |
MPHE-34 | 94.91 | 88.69 | 94.23 | 91.37 | 89.50 | 96.87 | 0.08 | 91.31 | 0.11 |
MPHE | DAFM | DSCD | OA | Precision | Recall | F1-Score | Kappa |
---|---|---|---|---|---|---|---|
√ | 96.91 | 88.69 | 94.23 | 91.37 | 89.49 | ||
√ | √ | 97.07 | 89.84 | 93.70 | 91.73 | 89.95 | |
√ | √ | 97.01 | 90.38 | 92.64 | 91.50 | 89.68 | |
√ | √ | √ | 97.44 | 92.71 | 92.47 | 92.59 | 91.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, J.; Li, X.; Cai, Z.; Sun, B.; Cui, W. A Self-Attentive Hybrid Coding Network for 3D Change Detection in High-Resolution Optical Stereo Images. Remote Sens. 2022, 14, 2046. https://doi.org/10.3390/rs14092046
Pan J, Li X, Cai Z, Sun B, Cui W. A Self-Attentive Hybrid Coding Network for 3D Change Detection in High-Resolution Optical Stereo Images. Remote Sensing. 2022; 14(9):2046. https://doi.org/10.3390/rs14092046
Chicago/Turabian StylePan, Jianping, Xin Li, Zhuoyan Cai, Bowen Sun, and Wei Cui. 2022. "A Self-Attentive Hybrid Coding Network for 3D Change Detection in High-Resolution Optical Stereo Images" Remote Sensing 14, no. 9: 2046. https://doi.org/10.3390/rs14092046
APA StylePan, J., Li, X., Cai, Z., Sun, B., & Cui, W. (2022). A Self-Attentive Hybrid Coding Network for 3D Change Detection in High-Resolution Optical Stereo Images. Remote Sensing, 14(9), 2046. https://doi.org/10.3390/rs14092046