Impacts of Assimilating CYGNSS Satellite Ocean-Surface Wind on Prediction of Landfalling Hurricanes with the HWRF Model
Abstract
:1. Introduction
2. HWRF Model, Data, Experimental Design, and Data Thinning
2.1. HWRF Model and Data Assimilation System
2.2. Satellite-Derived Ocean-Surface Winds: CYGNSS vs. ASCAT
2.3. Data Thinning
2.4. CYGNSS V2.1 vs. CYGNSS V3.0
2.5. Experimental Design
3. Impact of CYGNSS Ocean-Surface Winds on Analyses and Forecasts of Hurricanes
3.1. Improved Hurricane Inner-Core Structure in Analyses and Forecasts
3.2. Impacts on Hurricane Track and Intensity Forecasts
4. CYGNSS V2.1 vs. V3.0 Data
5. Summary and Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elsberry, R.L.; Buholzer, N.; Velden, C.S.; Jordan, M.S. Satellite-Based Observations of Nonlinear Relationships between Vertical Wind Shear and Intensity Changes during the Life Cycle of Hurricane Joaquin (2015). Weather Forecast. 2020, 35, 939–958. [Google Scholar] [CrossRef] [Green Version]
- Christophersen, H.; Atlas, R.; Aksoy, A.; Dunion, J. Combined Use of Satellite Observations and Global Hawk Unmanned Aircraft Dropwindsondes for Improved Tropical Cyclone Analyses and Forecasts. Weather Forecast. 2018, 33, 1021–1031. [Google Scholar] [CrossRef]
- Guimond, S.R.; Reasor, P.D.; Heymsfield, G.M.; McLinden, M.M. The Dynamics of Vortex Rossby Waves and Secondary Eyewall Development in Hurricane Matthew (2016): New Insights from Radar Measurements. J. Atmos. Sci. 2020, 77, 2349–2374. [Google Scholar] [CrossRef]
- Atlas, R.; Hoffman, R.; Leidner, S.M.; Sienkiewicz, J.; Yu, T.-W.; Bloom, S.C.; Brin, E.; Ardizzone, J.; Terry, J.; Bungato, D.; et al. The Effects of Marine Winds from Scatterometer Data on Weather Analysis and Forecasting. Bull. Am. Meteorol. Soc. 2001, 82, 1965–1990. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.-H. The Impact of Assimilating SSM/I and QuikSCAT Satellite Winds on Hurricane Isidore Simulations. Mon. Weather Rev. 2007, 135, 549–566. [Google Scholar] [CrossRef] [Green Version]
- Pu, Z.; Li, X.; Velden, C.; Aberson, S.; Liu, W.T. Impact of aircraft dropsonde and satellite wind data on the numerical simulation of two landfalling tropical storms during TCSP. Weather Forecast. 2008, 23, 62–79. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Pu, Z. Influence of Assimilating Surface Observations on Numerical Prediction of Landfalls of Hurricane Katrina (2005) with an Ensemble Kalman Filter. Mon. Weather Rev. 2014, 142, 2915–2934. [Google Scholar] [CrossRef]
- Verhoef, A.; Portabella, M.; Stoffelen, A. High-Resolution ASCAT Scatterometer Winds near the Coast. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2481–2487. [Google Scholar] [CrossRef] [Green Version]
- Lin, W.; Portabella, M.; Stoffelen, A.; Verhoef, A.; Turiel, A. ASCAT Wind Quality Control near Rain. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4165–4177. [Google Scholar] [CrossRef] [Green Version]
- Lin, W.; Portabella, M.; Turiel, A.; Stoffelen, A.; Verhoef, A. An Improved Singularity Analysis for ASCAT Wind Quality Control: Application to Low Winds. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3890–3898. [Google Scholar] [CrossRef]
- Lin, W.; Portabella, M.; Stoffelen, A.; Vogelzang, J.; de Chiara, G. Optimization of ASCAT Data Assimilation in Global NWP; Report NWPSAF-KN-VS-017, Version 1.0; EUMETSAT: Darmstadt, Germany, 2016; Available online: https://www.nwpsaf.eu/vs_reports/nwpsaf-kn-vs-017.pdf?ab5dde&ab5dde (accessed on 11 December 2016).
- Lin, W.; Portabella, M.; Stoffelen, A.; De Chiara, G.; Martinez, J. On the improvement of ASCAT wind data assimilation in global NWP. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 402–405. [Google Scholar] [CrossRef] [Green Version]
- Bi, L.; Jung, J.A.; Morgan, M.C.; Le Marshall, J.F. Assessment of Assimilating ASCAT Surface Wind Retrievals in the NCEP Global Data Assimilation System. Mon. Weather Rev. 2011, 139, 3405–3421. [Google Scholar] [CrossRef]
- Ruf, C.; Asharaf, S.; Balasubramaniam, R.; Gleason, S.; Lang, T.; McKague, D.; Twigg, D.; Waliser, D. In-Orbit Performance of the Constellation of CYGNSS Hurricane Satellites. Bull. Am. Meteorol. Soc. 2019, 100, 2009–2023. [Google Scholar] [CrossRef]
- Gleason, S.; Ruf, C.; Clarizia, M.P.; O’Brien, A.J. Calibration and Unwrapping of the Normalized Scattering cross Section for the Cyclone Global Navigation Satellite System. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2495–2509. [Google Scholar] [CrossRef]
- Leidner, S.M.; Annane, B.; McNoldy, B.; Hoffman, R.; Atlas, R. Variational Analysis of Simulated Ocean Surface Winds from the Cyclone Global Navigation Satellite System (CYGNSS) and Evaluation Using a Regional OSSE. J. Atmos. Ocean. Technol. 2018, 35, 1571–1584. [Google Scholar] [CrossRef]
- Mayers, D.; Ruf, C. Tropical Cyclone Center Fix Using CYGNSS Winds. J. Appl. Meteorol. Clim. 2019, 58, 1993–2003. [Google Scholar] [CrossRef]
- Zhang, S.; Pu, Z.; Posselt, D.J.; Atlas, R. Impact of CYGNSS Ocean Surface Wind Speeds on Numerical Simulations of a Hurricane in Observing System Simulation Experiments. J. Atmos. Ocean. Technol. 2017, 34, 375–383. [Google Scholar] [CrossRef]
- Annane, B.; McNoldy, B.; Leidner, S.M.; Hoffman, R.; Atlas, R.; Majumdar, S.J. A Study of the HWRF Analysis and Forecast Impact of Realistically Simulated CYGNSS Observations Assimilated as Scalar Wind Speeds and as VAM Wind Vectors. Mon. Weather Rev. 2018, 146, 2221–2236. [Google Scholar] [CrossRef]
- Cui, Z.; Pu, Z.; Tallapragada, V.; Atlas, R.; Ruf, C.S. A Preliminary Impact Study of CYGNSS Ocean Surface Wind Speeds on Numerical Simulations of Hurricanes. Geophys. Res. Lett. 2019, 46, 2984–2992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, M.; Ge, G.; Zhou, C.; Stark, D.; Shao, H.; Newman, K.; Beck, J.; Zhang, X. Grid-Point Statistical Interpolation (GSI) User’s Guide Version 3.7; Developmental Testbed Center: Boulder, CO, USA, 2018; p. 149. Available online: https://dtcenter.org/community-code/gridpoint-statistical-interpolation-gsi/documentation (accessed on 6 November 2018).
- Biswas, M.K.; Abarca, S.; Bernardet, L.; Ginis, I.; Grell, E.; Iacono, M.; Kalina, E.; Liu, B.; Liu, Q.; Marchok, T.; et al. Hurricane Weather Research and Forecasting (HWRF) Model: 2018 Scientific Documentation. 2018. Available online: https://dtcenter.org/sites/default/files/community-code/hwrf/docs/scientific_documents/HWRFv4.0a_ScientificDoc.pdf (accessed on 26 February 2022).
- Dando, M.L.; Thorpe, A.J.; Eyre, J.R. The optimal density of atmospheric sounder observations in the Met Office NWP system. Q. J. R. Meteorol. Soc. 2007, 133, 1933–1943. [Google Scholar] [CrossRef]
- Reale, O.; McGrath-Spangler, E.L.; Mccarty, W.; Holdaway, D.; Gelaro, R. Impact of Adaptively Thinned AIRS Cloud-Cleared Radiances on Tropical Cyclone Representation in a Global Data Assimilation and Forecast System. Weather Forecast. 2018, 33, 909–931. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, R.N. The Effect of Thinning and Superobservations in a Simple One-Dimensional Data Analysis with Mischaracterized Error. Mon. Weather Rev. 2018, 146, 1181–1195. [Google Scholar] [CrossRef]
- Wang, T.; Ruf, C.S.; Gleason, S.; O’Brien, A.J.; McKague, D.S.; Block, B.P.; Russel, A. Dynamic Calibration of GPS Effective Isotropic Radiated Power for GNSS-Reflectometry Earth Remote Sensing. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5800512. [Google Scholar] [CrossRef]
- Stewart, S.R.; Berg, R. National Hurricane Center Tropical Cyclone Report, Hurricane Florence (AL062018). 2019. Available online: https://www.nhc.noaa.gov/data/tcr/AL062018_Florence.pdf (accessed on 26 February 2022).
- Bevin, J.L., II; Berg, R.; Hagen, A. National Hurricane Center Tropical Cyclone Report: Hurricane Michael. 2019. Available online: https://www.nhc.noaa.gov/data/tcr/AL142018_Michael.pdf (accessed on 26 February 2022).
- Menelaou, K.; Yau, M.K. On the Role of Asymmetric Convective Bursts to the Problem of Hurricane Intensification: Radiation of Vortex Rossby Waves and Wave–Mean Flow Interactions. J. Atmos. Sci. 2014, 71, 2057–2077. [Google Scholar] [CrossRef]
- Bytheway, J.L.; Kummerow, C.D.; Alexander, C. A Features-Based Assessment of the Evolution of Warm Season Precipitation Forecasts from the HRRR Model over Three Years of Development. Weather Forecast. 2017, 32, 1841–1856. [Google Scholar] [CrossRef]
- Yue, H.; Gebremichael, M. Evaluation of high-resolution rapid refresh (HRRR) forecasts for extreme precipitation. Environ. Res. Commun. 2020, 2, 065004. [Google Scholar] [CrossRef]
Experiments | Data Assimilated | CYGNSS Thinning Distance (km) | |||
---|---|---|---|---|---|
ADP (Exclude ASCAT) | ASCAT | CYGNSS-v2.1 | CYGNSS-v3.0 | ||
Exp. FCOAS; Exp. MCOAS, Exp. LCOAS; Exp. DCOAS | X | X | - | ||
Exp. FCOCY-2-50; Exp. MCOCY-2-50, Exp. DCOCY-2-50, Exp. LCOCY-2-50 | X | X | 50 | ||
Exp. FCOASCY-2-50; Exp. MCOASCY-2-50, Exp. LCOASCY-2-50 | X | X | X | 50 | |
Exp. LCOCY-2-30; Exp. FCOCY-2-30, Exp. LCOCY-2-30, Exp. DCOCY-2-30 | X | X | 30 | ||
Exp. LCOCY-3-30; Exp. FCOCY-3-30, Exp. DCOCY-3-30 | X | X | 30 | ||
Exp. LCOCY-3-50; Exp. FCOCY-3-50, Exp. DCOCY-3-50 | X | X | 50 | ||
Exp. LCOASCY-3-30; DCOASCY-3-30 | X | X | X | 30 | |
Exp. LCOASCY-3-50; DCOASCY-3-50 | X | X | X | 50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pu, Z.; Wang, Y.; Li, X.; Ruf, C.; Bi, L.; Mehra, A. Impacts of Assimilating CYGNSS Satellite Ocean-Surface Wind on Prediction of Landfalling Hurricanes with the HWRF Model. Remote Sens. 2022, 14, 2118. https://doi.org/10.3390/rs14092118
Pu Z, Wang Y, Li X, Ruf C, Bi L, Mehra A. Impacts of Assimilating CYGNSS Satellite Ocean-Surface Wind on Prediction of Landfalling Hurricanes with the HWRF Model. Remote Sensing. 2022; 14(9):2118. https://doi.org/10.3390/rs14092118
Chicago/Turabian StylePu, Zhaoxia, Ying Wang, Xin Li, Christopher Ruf, Li Bi, and Avichal Mehra. 2022. "Impacts of Assimilating CYGNSS Satellite Ocean-Surface Wind on Prediction of Landfalling Hurricanes with the HWRF Model" Remote Sensing 14, no. 9: 2118. https://doi.org/10.3390/rs14092118
APA StylePu, Z., Wang, Y., Li, X., Ruf, C., Bi, L., & Mehra, A. (2022). Impacts of Assimilating CYGNSS Satellite Ocean-Surface Wind on Prediction of Landfalling Hurricanes with the HWRF Model. Remote Sensing, 14(9), 2118. https://doi.org/10.3390/rs14092118