High-Resolution Mapping of Winter Cereals in Europe by Time Series Landsat and Sentinel Images for 2016–2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Satellite Data
2.2.2. Field Samples and Agricultural Census Data
2.3. Method
2.3.1. Time-Weighted Dynamic Time Warping (TWDTW)
2.3.2. Removing the Disturbance of Winter Rapeseed
2.3.3. Accuracy Assessment
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sternberg, T. Chinese drought, bread and the Arab Spring. Appl. Geogr. 2012, 34, 519–524. [Google Scholar] [CrossRef]
- Becker-Reshef, I.; Justice, C.; Barker, B.; Humber, M.; Rembold, F.; Bonifacio, R.; Zappacosta, M.; Budde, M.; Magadzire, T.; Shitote, C.; et al. Strengthening agricultural decisions in countries at risk of food insecurity: The GEOGLAM Crop Monitor for Early Warning. Remote Sens. Environ. 2020, 237, 111553. [Google Scholar] [CrossRef]
- Franch, B.; Vermote, E.F.; Skakun, S.; Roger, J.C.; Becker-Reshef, I.; Murphy, E.; Justice, C. Remote sensing based yield monitoring: Application to winter wheat in United States and Ukraine. Int. J. Appl. Earth Obs. Geoinf. 2019, 76, 112–127. [Google Scholar] [CrossRef]
- Zhuo, W.; Huang, J.; Li, L.; Zhang, X.; Ma, H.; Gao, X.; Huang, H.; Xu, B.; Xiao, X. Assimilating Soil Moisture Retrieved from Sentinel-1 and Sentinel-2 Data into WOFOST Model to Improve Winter Wheat Yield Estimation. Remote Sens. 2019, 11, 1618. [Google Scholar] [CrossRef] [Green Version]
- Dong, J.; Fu, Y.; Wang, J.; Tian, H.; Fu, S.; Niu, Z.; Han, W.; Zheng, Y.; Huang, J.; Yuan, W. Early-season mapping of winter wheat in China based on Landsat and Sentinel images. Earth Syst. Sci. Data 2020, 12, 3081–3095. [Google Scholar] [CrossRef]
- Griffiths, P.; Nendel, C.; Hostert, P. Intra-annual reflectance composites from Sentinel-2 and Landsat for national-scale crop and land cover mapping. Remote Sens. Environ. 2019, 220, 135–151. [Google Scholar] [CrossRef]
- Atzberger, C.; Rembold, F. Mapping the spatial distribution of winter crops at sub-pixel level using AVHRR NDVI time series and neural nets. Remote Sens. 2013, 5, 1335–1354. [Google Scholar] [CrossRef] [Green Version]
- Skakun, S.; Franch, B.; Vermote, E.; Roger, J.C.; Becker-Reshef, I.; Justice, C.; Kussul, N. Early season large-area winter crop mapping using MODIS NDVI data, growing degree days information and a Gaussian mixture model. Remote Sens. Environ. 2017, 195, 244–258. [Google Scholar] [CrossRef]
- Yu, L.; Wang, J.; Clinton, N.; Xin, Q.; Zhong, L.; Chen, Y.; Gong, P. FROM-GC: 30 m global cropland extent derived through multisource data integration. Int. J. Digit. Earth 2013, 6, 521–533. [Google Scholar] [CrossRef]
- Fu, Y.; Huang, J.; Shen, Y.; Liu, S.; Huang, Y.; Dong, J.; Han, W.; Ye, T.; Zhao, W.; Yuan, W. A Satellite-Based Method for National Winter Wheat Yield Estimating in China. Remote Sens. 2021, 13, 4680. [Google Scholar] [CrossRef]
- Zhong, L.; Hu, L.; Zhou, H. Deep learning based multi-temporal crop classification. Remote Sens. Environ. 2019, 221, 430–443. [Google Scholar] [CrossRef]
- Wang, S.; Azzari, G.; Lobell, D.B. Crop type mapping without field-level labels: Random forest transfer and unsupervised clustering techniques. Remote Sens. Environ. 2019, 222, 303–317. [Google Scholar] [CrossRef]
- Zheng, B.; Myint, S.W.; Thenkabail, P.S.; Aggarwal, R.M. A support vector machine to identify irrigated crop types using time-series Landsat NDVI data. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 103–112. [Google Scholar] [CrossRef]
- Wardlow, B.D.; Egbert, S.L. Large-area crop mapping using time-series MODIS 250 m NDVI data: An assessment for the U.S. Central Great Plains. Remote Sens. Environ. 2008, 112, 1096–1116. [Google Scholar] [CrossRef]
- Boryan, C.; Yang, Z.; Mueller, R.; Craig, M. Monitoring US agriculture: The US department of agriculture, national agricultural statistics service, cropland data layer program. Geocarto Int. 2011, 26, 341–358. [Google Scholar] [CrossRef]
- Petitjean, F.; Inglada, J.; Gançarski, P. Satellite image time series analysis under time warping. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3081–3095. [Google Scholar] [CrossRef]
- Solano-Correa, Y.T.; Bovolo, F.; Bruzzone, L. A Semi-Supervised Crop-Type Classification Based on Sentinel-2 NDVI Satellite Image Time Series and Phenological Parameters. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 457–460. [Google Scholar] [CrossRef]
- Dong, Q.; Chen, X.; Chen, J.; Zhang, C.; Liu, L.; Cao, X.; Zang, Y.; Zhu, X.; Cui, X. Mapping winter wheat in north China using sentinel 2A/B data: A method based on phenology-timeweighted dynamic time warping. Remote Sens. 2020, 12, 1274. [Google Scholar] [CrossRef] [Green Version]
- Sakoe, H.; Chiba, S. Dynamic Programming Algorithm Optimization for Spoken Word Recognition. IEEE Trans. Acoust. 1978, 26, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Guan, X.; Huang, C.; Liu, G.; Meng, X.; Liu, Q. Mapping rice cropping systems in Vietnam using an NDVI-based time-series similarity measurement based on DTW distance. Remote Sens. 2016, 8, 19. [Google Scholar] [CrossRef] [Green Version]
- Costa, W.S.; Fonseca, L.M.G.; Korting, T.S.; Bendini, H.D.N.; De Souza, R.C.M. Spatiooral segmentation applied to optical remote sensing image time series. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1299–1303. [Google Scholar] [CrossRef]
- Jeong, Y.S.; Jeong, M.K.; Omitaomu, O.A. Weighted dynamic time warping for time series classification. In Pattern Recognition; Academic Press: Cambridge, MA, USA, 2011; pp. 2231–2240. [Google Scholar]
- Rabiner, L.; Juang, B.-H. Fundamentals of Speech Recognition; Prentice-Hall, Inc.: Hoboken, NJ, USA, 1993; ISBN 0130151572. [Google Scholar]
- Maus, V.; CǍmara, G.; Cartaxo, R.; Sanchez, A.; Ramos, F.M.; De Queiroz, G.R. A Time-Weighted Dynamic Time Warping Method for Land-Use and Land-Cover Mapping. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 3729–3739. [Google Scholar] [CrossRef]
- Pan, B.; Zheng, Y.; Shen, R.; Ye, T.; Zhao, W.; Dong, J.; Ma, H.; Yuan, W. High Resolution Distribution Dataset of Double-Season Paddy Rice in China. Remote Sens. 2021, 13, 4609. [Google Scholar] [CrossRef]
- Belgiu, M.; Csillik, O. Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis. Remote Sens. Environ. 2017, 204, 509–523. [Google Scholar] [CrossRef]
- Weissteiner, C.J.; López-Lozano, R.; Manfron, G.; Duveiller, G.; Hooker, J.; van der Velde, M.; Baruth, B. A Crop group-specific pure pixel time series for Europe. Remote Sens. 2019, 11, 2668. [Google Scholar] [CrossRef] [Green Version]
- Estel, S.; Kuemmerle, T.; Alcántara, C.; Levers, C.; Prishchepov, A.; Hostert, P. Mapping farmland abandonment and recultivation across Europe using MODIS NDVI time series. Remote Sens. Environ. 2015, 163, 312–325. [Google Scholar] [CrossRef]
- Estel, S.; Kuemmerle, T.; Levers, C.; Baumann, M.; Hostert, P. Mapping cropland-use intensity across Europe using MODIS NDVI time series. Environ. Res. Lett. 2016, 11, 024015. [Google Scholar] [CrossRef] [Green Version]
- Defourny, P.; Bontemps, S.; Bellemans, N.; Cara, C.; Dedieu, G.; Guzzonato, E.; Hagolle, O.; Inglada, J.; Nicola, L.; Rabaute, T.; et al. Near real-time agriculture monitoring at national scale at parcel resolution: Performance assessment of the Sen2-Agri automated system in various cropping systems around the world. Remote Sens. Environ. 2019, 221, 551–568. [Google Scholar] [CrossRef]
- Pan, L.; Xia, H.; Zhao, X.; Guo, Y.; Qin, Y. Mapping Winter Crops Using a Phenology Algorithm, Time-Series Sentinel-2 and Landsat-7/8 Images, and Google Earth Engine. Remote Sens. 2021, 13, 2510. [Google Scholar] [CrossRef]
- Guo, Y.; Xia, H.; Pan, L.; Zhao, X.; Li, R. Mapping the Northern Limit of Double Cropping Using a Phenology-Based Algorithm and Google Earth Engine. Remote Sens. 2022, 14, 1004. [Google Scholar] [CrossRef]
- Bontemps, S.; Arias, M.; Cara, C.; Dedieu, G.; Guzzonato, E.; Hagolle, O.; Inglada, J.; Matton, N.; Morin, D.; Popescu, R.; et al. Building a data set over 12 globally distributed sites to support the development of agriculture monitoring applications with Sentinel-2. Remote Sens. 2015, 7, 16062–16090. [Google Scholar] [CrossRef] [Green Version]
- Bontemps, S.; Arias, M.; Cara, C.; Dedieu, G.; Guzzonato, E.; Hagolle, O.; Inglada, J.; Morin, D.; Rabaute, T.; Savinaud, M.; et al. “Sentinel-2 for agriculture”: Supporting global agriculture monitoring. IEEE Int. Geosci. Remote Sens. Symp. 2015, 2015, 4185–4188. [Google Scholar]
- Vaudour, E.; Noirot-Cosson, P.E.; Membrive, O. Early-season mapping of crops and cultural operations using very high spatial resolution Pléiades images. Int. J. Appl. Earth Obs. Geoinf. 2015, 42, 128–141. [Google Scholar] [CrossRef]
- Trnka, M.; Rötter, R.P.; Ruiz-Ramos, M.; Kersebaum, K.C.; Olesen, J.E.; Žalud, Z.; Semenov, M.A. Adverse weather conditions for European wheat production will become more frequent with climate change. Nat. Clim. Chang. 2014, 4, 637–643. [Google Scholar] [CrossRef]
- Chipanshi, A.; Zhang, Y.; Kouadio, L.; Newlands, N.; Davidson, A.; Hill, H.; Warren, R.; Qian, B.; Daneshfar, B.; Bedard, F.; et al. Evaluation of the Integrated Canadian Crop Yield Forecaster (ICCYF) model for in-season prediction of crop yield across the Canadian agricultural landscape. Agric. For. Meteorol. 2015, 206, 137–150. [Google Scholar] [CrossRef] [Green Version]
- Trnka, M.; Hlavinka, P.; Semenov, M.A. Adaptation options for wheat in Europe will be limited by increased adverse weather events under climate change. J. R. Soc. Interface 2015, 12, 20150721. [Google Scholar] [CrossRef] [Green Version]
- Senapati, N.; Stratonovitch, P.; Paul, M.J.; Semenov, M.A. Drought tolerance during reproductive development is important for increasing wheat yield potential under climate change in Europe. J. Exp. Bot. 2019, 70, 2549–2560. [Google Scholar] [CrossRef] [Green Version]
- Inglada, J.; Vincent, A.; Arias, M.; Marais-Sicre, C. Improved early crop type identification by joint use of high temporal resolution sar and optical image time series. Remote Sens. 2016, 8, 362. [Google Scholar] [CrossRef] [Green Version]
- Phalke, A.R.; Özdoğan, M.; Thenkabail, P.S.; Erickson, T.; Gorelick, N.; Yadav, K.; Congalton, R.G. Mapping croplands of Europe, Middle East, Russia, and Central Asia using Landsat, Random Forest, and Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2020, 167, 104–122. [Google Scholar] [CrossRef]
- Veloso, A.; Mermoz, S.; Bouvet, A.; Le Toan, T.; Planells, M.; Dejoux, J.F.; Ceschia, E. Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications. Remote Sens. Environ. 2017, 199, 415–426. [Google Scholar] [CrossRef]
- Xu, X.; Conrad, C.; Doktor, D. Optimising phenological metrics extraction for different crop types in Germany using the moderate resolution imaging Spectrometer (MODIS). Remote Sens. 2017, 9, 254. [Google Scholar] [CrossRef] [Green Version]
- Fan, C.; Zheng, B.; Myint, S.W.; Aggarwal, R. Characterizing changes in cropping patterns using sequential Landsat imagery: An adaptive threshold approach and application to Phoenix, Arizona. Int. J. Remote Sens. 2014, 35, 7263–7278. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- King, L.A.; Adusei, B.; Stehman, S.V.; Potapov, P.V.; Song, X.P.; Krylov, A.; Di Bella, C.; Loveland, T.R.; Johnson, D.M.; Hansen, M.C. A multi-resolution approach to national-scale cultivated area estimation of soybean. Remote Sens. Environ. 2017, 195, 13–29. [Google Scholar] [CrossRef]
- Andrimont, R.; Verhegghen, A.; Lemoine, G.; Kempeneers, P.; Meroni, M.; van der Velde, M. From parcel to continental scale–A first European crop type map based on Sentinel-1 and LUCAS Copernicus in-situ observations. Remote Sens. Environ. 2021, 266, 112708. [Google Scholar] [CrossRef]
- Johnson, D.M. Using the Landsat archive to map crop cover history across the United States. Remote Sens. Environ. 2019, 232, 111286. [Google Scholar] [CrossRef]
- McNairn, H.; Kross, A.; Lapen, D.; Caves, R.; Shang, J. Early season monitoring of corn and soybeans with TerraSAR-X and RADARSAT-2. Int. J. Appl. Earth Obs. Geoinf. 2014, 28, 252–259. [Google Scholar] [CrossRef]
- You, N.; Dong, J. Examining earliest identifiable timing of crops using all available Sentinel 1 / 2 imagery and Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2020, 161, 109–123. [Google Scholar] [CrossRef]
- Tian, H.; Wang, Y.; Chen, T.; Zhang, L.; Qin, Y. Early-Season Mapping of Winter Crops Using Sentinel-2 Optical Imagery. Remote Sens. 2021, 13, 3822. [Google Scholar] [CrossRef]
- Johnson, D.M. A comprehensive assessment of the correlations between field crop yields and commonly used MODIS products. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 65–81. [Google Scholar] [CrossRef] [Green Version]
- Song, X.-P.; Potapov, P.V.; Krylov, A.; King, L.; Di Bella, C.M.; Hudson, A.; Khan, A.; Adusei, B.; Stehman, S.V.; Hansen, M.C. National-scale soybean mapping and area estimation in the United States using medium resolution satellite imagery and field survey. Remote Sens. Environ. 2017, 190, 383–395. [Google Scholar] [CrossRef]
- Dong, J.; Xiao, X.; Kou, W.; Qin, Y.; Zhang, G.; Li, L.; Jin, C.; Zhou, Y.; Wang, J.; Biradar, C. Tracking the dynamics of paddy rice planting area in 1986–2010 through time series Landsat images and phenology-based algorithms. Remote Sens. Environ. 2015, 160, 99–113. [Google Scholar] [CrossRef]
- He, M.; Kimball, J.S.; Maneta, M.P.; Maxwell, B.D.; Moreno, A.; Beguería, S.; Wu, X. Regional crop gross primary productivity and yield estimation using fused landsat-MODIS data. Remote Sens. 2018, 10, 372. [Google Scholar] [CrossRef] [Green Version]
Time | Producer’s Accuracy of Non-Winter Cereals (%) | Producer’s Accuracy of Winter Cereals (%) | User’s Accuracy of Non-Winter Cereals (%) | User’s Accuracy of Winter Cereals (%) | Overall Accuracy (%) |
---|---|---|---|---|---|
Nov | 69 | 60 | 78 | 50 | 66 |
Dec | 71.4 | 65.2 | 80.5 | 53.6 | 69.6 |
Jan | 74.5 | 72.3 | 85.37 | 57.14 | 73.9 |
Feb | 75 | 68 | 80.5 | 60.7 | 72.5 |
Mar | 84.5 | 84 | 88 | 75 | 84.1 |
Apr | 86.05 | 84.62 | 89 | 81.6 | 85.51 |
May | 90.24 | 85.11 | 91.5 | 86.71 | 88.4 |
Jun | 92.68 | 89.6 | 92.68 | 89.29 | 91.3 |
Jul | 92.8 | 90.29 | 92.5 | 91 | 91.8 |
Country | Class | Non-Winter Cereals | Winter Cereals | User’s Accuracy | Producer’s Accuracy | Overall Accuracy | Kappa Coefficient |
---|---|---|---|---|---|---|---|
France | Non-winter cereals | 307 | 33 | 90.29% | 91.10% | 90.83% | 0.82 |
Winter cereals | 30 | 317 | 91.35% | 90.57% | |||
Germany | Non-winter cereals | 221 | 18 | 92.47% | 91.70% | 92.03% | 0.84 |
Winter cereals | 20 | 218 | 91.59% | 92.37% | |||
Romania | Non-winter cereals | 108 | 6 | 94.74% | 93.10% | 93.86% | 0.88 |
Winter cereals | 8 | 106 | 92.98% | 94.64% | |||
Poland | Non-winter cereals | 103 | 6 | 94.50% | 91.15% | 92.66% | 0.85 |
Winter cereals | 10 | 99 | 90.83% | 94.29% | |||
UK | Non-winter cereals | 102 | 10 | 91.07% | 88.70% | 89.50% | 0.79 |
Winter cereals | 13 | 94 | 87.85% | 90.38% | |||
Spain | Non-winter cereals | 30 | 3 | 90.19% | 71.43% | 85.58% | 0.69 |
Winter cereals | 12 | 59 | 83.10% | 95.16% | |||
Bulgaria | Non-winter cereals | 24 | 11 | 68.60% | 85.70% | 71.70% | 0.42 |
Winter cereals | 4 | 14 | 77.80% | 56% | |||
Hungary | Non-winter cereals | 27 | 3 | 95.00% | 92.23% | 94.44% | 0.89 |
Winter cereals | 0 | 24 | 92.00% | 94.85% | |||
Czechia | Non-winter cereals | 13 | 2 | 86.67% | 86.67% | 86.67% | 0.73 |
Winter cereals | 2 | 13 | 86.67% | 86.67% | |||
Italy | Non-winter cereals | 67 | 3 | 95.71% | 83.75% | 88.57% | 0.77 |
Winter cereals | 13 | 57 | 81.43% | 95% | |||
Lithuania | Non-winter cereals | 18 | 1 | 94.74% | 85.71% | 91.84% | 0.83 |
Winter cereals | 3 | 27 | 90% | 96.43% | |||
Denmark | Non-winter cereals | 25 | 3 | 89.29% | 92.59% | 91.53% | 0.83 |
Winter cereals | 2 | 29 | 93.55% | 90.63% | |||
Austria | Non-winter cereals | 49 | 0 | 100% | 98% | 98.73% | 0.97 |
Winter cereals | 1 | 29 | 96.67% | 100% | |||
Estonia | Non-winter cereals | 47 | 3 | 94% | 88.68% | 91.35% | 0.83 |
Winter cereals | 6 | 48 | 88.89% | 94.12% | |||
Latvia | Non-winter cereals | 96 | 4 | 96% | 90.70% | 95.07% | 0.88 |
Winter cereals | 3 | 39 | 92.86% | 94.64% | |||
Finland | Non-winter cereals | 54 | 0 | 100% | 81.82% | 89.57% | 0.79 |
Winter cereals | 12 | 49 | 80.33% | 100% | |||
Norway | Non-winter cereals | 61 | 0 | 100% | 85.92% | 91.30% | 0.82 |
Winter cereals | 10 | 44 | 81.48% | 100% | |||
Sweden | Non-winter cereals | 68 | 2 | 97.14% | 81.93% | 83.00% | 0.54 |
Winter cereals | 15 | 15 | 50.00% | 88.24% | |||
Slovakia | Non-winter cereals | 33 | 3 | 91.67% | 86.84% | 88.24% | 0.76 |
Winter cereals | 5 | 27 | 84.38% | 90% | |||
Slovenia | Non-winter cereals | 12 | 1 | 92.31% | 85.71% | 88.89% | 0.78 |
Winter cereals | 2 | 12 | 85.71% | 92.31% | |||
Switzerland | Non-winter cereals | 19 | 0 | 100% | 86.36% | 91.43% | 0.82 |
Winter cereals | 3 | 13 | 81.25% | 100% | |||
Greece | Non-winter cereals | 31 | 0 | 100% | 96.88% | 97.06% | 0.78 |
Winter cereals | 1 | 2 | 66.67% | 100% | |||
Portugal | Non-winter cereals | 40 | 0 | 100% | 88.89% | 92.31% | 0.83 |
Winter cereals | 5 | 20 | 80% | 100% | |||
Croatia | Non-winter cereals | 10 | 0 | 100% | 90.91% | 93.33% | 0.84 |
Winter cereals | 1 | 4 | 80% | 100% | |||
Ireland | Non-winter cereals | 40 | 0 | 100% | 81.63% | 85.94% | 0.68 |
Winter cereals | 9 | 15 | 62.50% | 100% | |||
Netherland | Non-winter cereals | 30 | 0 | 100% | 83.33% | 88.46% | 0.75 |
Winter cereals | 6 | 16 | 72.73% | 100% | |||
Albania, Macedonia, Montenegro, Kosovo, Bosnia and Herzegovina | Non-winter cereals Winter cereals | 23 1 | 0 6 | 100% | 95.83% | 96.67% | 0.90 |
Methods | Class | Winter Cereals | Non-Winter Cereals | User’s Accuracy | Producer’s Accuracy | Overall Accuracy | Kappa Coefficient | Computing Time |
---|---|---|---|---|---|---|---|---|
Random forest | Winter cereals | 1128 | 269 | 80.74% | 75.10% | 80.84% | 0.58 | 5.88 h |
Non-winter cereals | 374 | 1585 | 80.91% | 84.59% | ||||
TWDTW | Winter cereals | 1390 | 196 | 87.64% | 92.54% | 90.82% | 0.70 | 15.36 h |
Non-winter cereals | 112 | 1658 | 93.67% | 89.43% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Fu, Y.; Wang, J.; Dong, J.; Zheng, Y.; Pan, B.; Skakun, S.; Yuan, W. High-Resolution Mapping of Winter Cereals in Europe by Time Series Landsat and Sentinel Images for 2016–2020. Remote Sens. 2022, 14, 2120. https://doi.org/10.3390/rs14092120
Huang X, Fu Y, Wang J, Dong J, Zheng Y, Pan B, Skakun S, Yuan W. High-Resolution Mapping of Winter Cereals in Europe by Time Series Landsat and Sentinel Images for 2016–2020. Remote Sensing. 2022; 14(9):2120. https://doi.org/10.3390/rs14092120
Chicago/Turabian StyleHuang, Xiaojuan, Yangyang Fu, Jingjing Wang, Jie Dong, Yi Zheng, Baihong Pan, Sergii Skakun, and Wenping Yuan. 2022. "High-Resolution Mapping of Winter Cereals in Europe by Time Series Landsat and Sentinel Images for 2016–2020" Remote Sensing 14, no. 9: 2120. https://doi.org/10.3390/rs14092120
APA StyleHuang, X., Fu, Y., Wang, J., Dong, J., Zheng, Y., Pan, B., Skakun, S., & Yuan, W. (2022). High-Resolution Mapping of Winter Cereals in Europe by Time Series Landsat and Sentinel Images for 2016–2020. Remote Sensing, 14(9), 2120. https://doi.org/10.3390/rs14092120