Estimating Soil Moisture over Winter Wheat Fields during Growing Season Using RADARSAT-2 Data
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. Data Used
2.2.1. Ground Truth Data Collection
2.2.2. RADARSAT-2 Data Collection and Preprocessing
- (1)
- Radiometric calibration: the quad-polarization complex images of backscattering coefficient were generated;
- (2)
- Based on the complex images obtained in step 1, we generated the coherency matrix (T3 matrix);
- (3)
- Polarization filtering: the refined Lee filter was used to reduce the noise generated in step 2, and its window size was set to 7 × 7;
- (4)
- Terrain correction and projection transformation: the filtered data was geocoded with an SRTM-3 digital elevation model, and the output coordinate system was projected to WGS84.
3. Methods
- (1)
- RADARSAT-2 data were preprocessed, and T3 matrix was obtained;
- (2)
- Scattering mechanism analysis was used to analyze the main scattering mechanisms of winter wheat in different growth stages in the study area;
- (3)
- The backscattering coefficient of the bare surface was calculated based on the surface scattering matrix (TG). The surface backscattering coefficient and the measured SMC were used to construct the SMC estimation dataset. For each image, we randomly selected 70% as the training set, and the remaining 30% as the validation set. In order to avoid the statistical differences of soil moisture between the training set and the validation set, which would affect the accuracy from the validation set, a selection of statistical characteristics of the training and the validation sets were calculated. Figure 3 shows that the mean, median, and standard deviation of the training and validation sets are significantly close to the statistical characteristics of the total data set, which meets the requirements for data splitting;
- (4)
- On the training set, based on the surface backscattering coefficient simulated by the CIEM or the Dubois model under different roughness conditions in a given range, and the surface backscattering coefficient obtained by polarization decomposition, the cost function between them was constructed to estimate the SMC of each sampling point;
- (5)
- The roughness parameters were optimized when the RMSE between the estimated SMC and the measured SMC on the training set was minimized;
- (6)
- The simulated backscattering coefficient from the CIEM or the Dubois model with optimal roughness parameters was obtained, and then a same cost function was constructed between the simulated backscattering coefficient and the backscattering coefficient obtained by polarization decomposition on the validation set. Then, the estimated SMC was retrieved on the validation set, and the accuracy was also verified on the validation set;
- (7)
- The model with the highest accuracy on the validation set was selected to draw the regional SMC map of the winter wheat area.
3.1. Polarimetric Decomposition Methods
3.1.1. Cloude–Pottier Decomposition
3.1.2. Freeman–Durden Decomposition
3.2. Soil Surface Backscattering Modeling
3.2.1. Dubois Model
3.2.2. CIEM Model
3.2.3. Optimum Surface Roughness Parameter
3.3. Soil Moisture Estimation and Performance Assessment
4. Results and Discussion
4.1. Scattering Mechanisms Analysis
4.2. Simulated Backscattering Coefficient
4.3. CIEM and Dubois Estimation Results
4.4. SMC Dynamics during Wheat Growing Seasons
4.5. Variation and Analysis of Optimal Roughness Parameters
4.6. Soil Moisture Map
4.7. Limitation and Potential Improvements
5. Conclusions
- (1)
- Based on the H/α decomposition and the Freeman–Durden decomposition, the scattering components in the study area are mainly volume scattering component and surface scattering component.
- (2)
- The surface backscattering coefficients were extracted using four volume scattering matrix selection strategies (i.e., horizontal, vertical, random, and based on the Pr value), and combined with the optimal roughness parameters; then the CIEM and Dubois models, as well as different cost functions, were used to retrieve the SMC. Finally, we found that the VV scattering component, based on the vertical volume scattering matrix, and the HH volume scattering component, based on the horizontal volume scattering matrix, achieve the best performance. Using these two scattering components as the effective surface scattering components of VV and HH, combined with the cost function F (3), the highest estimation accuracy is obtained.
- (3)
- From the optimal soil moisture estimation model, the spatial distribution map of SMC in the winter wheat region was completed.
Author Contributions
Funding
Conflicts of Interest
References
- Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, A.J. Investigating soil moisture-climate interactions in a changing climate: A review. Earth-Sci. Rev. 2010, 99, 125–161. [Google Scholar] [CrossRef]
- Kornelsen, K.C.; Coulibaly, P. Advances in soil moisture retrieval from synthetic aperture radar and hydrological applications. J. Hydrol. 2013, 476, 460–489. [Google Scholar] [CrossRef]
- Mccoll, K.A.; Alemohammad, S.H.; Akbar, R.; Konings, A.G.; Yueh, S.; Entekhabi, D. The global distribution and dynamics of surface soil moisture. Nat. Geosci. 2017, 10, 100–104. [Google Scholar] [CrossRef]
- Kolassa, J.; Reichle, R.H.; Liu, Q.; Alemohammad, S.H.; Walker, J.P. Estimating surface soil moisture from SMAP observations using a Neural Network technique. Remote Sens. Environ. 2018, 204, 43–59. [Google Scholar] [CrossRef]
- Bai, X.J.; He, B.B.; Li, X.W. Optimum Surface Roughness to Parameterize Advanced Integral Equation Model for Soil Moisture Retrieval in Prairie Area Using Radarsat-2 Data. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2437–2449. [Google Scholar] [CrossRef]
- Xing, M.F.; He, B.B.; Ni, X.L.; Wang, J.F.; An, G.Q.; Shang, J.L.; Huang, X.D. Retrieving Surface Soil Moisture over Wheat and Soybean Fields during Growing Season Using Modified Water Cloud Model from Radarsat-2 SAR Data. Remote Sens. 2019, 11, 1956. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Li, J.C.; Jin, T.Y.; Chang, X.; Zhu, Y.C.; Li, Y.W.; Sun, J.J.; Li, D.W. Comparative Analysis of Landsat-8, Sentinel-2, and GF-1 Data for Retrieving Soil Moisture over Wheat Farmlands. Remote Sens. 2020, 12, 2708. [Google Scholar] [CrossRef]
- Shi, H.; Zhao, L.; Yang, J.; Lopez-Sanchez, J.M.; Zhao, J.; Sun, W.; Shi, L.; Li, P. Soil moisture retrieval over agricultural fields from L-band multi-incidence and multitemporal PolSAR observations using polarimetric decomposition techniques. Remote Sens. Environ. 2021, 261, 112485. [Google Scholar] [CrossRef]
- Serrano, D.; Vila, E.; Barrios, M.; Darghan, A.; Lobo, D. Surface Soil Moisture Monitoring with Near-Ground Sensors: Performance Assessment of a Matric Potential-Based Method. Measurement 2020, 155, 107542. [Google Scholar] [CrossRef]
- Ochsner, T.E.; Cosh, M.H.; Zreda, M.G.; Cuenca, R.H.; Dorigo, W.; Draper, C.S.; Hagimoto, Y.; Kerr, Y.H.; Larson, K.M.; Njoku, E.G. State of the Art in Large-Scale Soil Moisture Monitoring. Soil Sci. Soc. Am. J. 2013, 77, 1888–1919. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, A.; Tiwari, R.K. Synergetic utilization of sentinel-1 SAR and sentinel-2 optical remote sensing data for surface soil moisture estimation for Rupnagar, Punjab, India. Geocarto. Int. 2020, 1–22. [Google Scholar] [CrossRef]
- Kumar, P.; Prasad, R.; Choudhary, A.; Gupta, D.K.; Mishra, V.N.; Vishwakarma, A.K.; Singh, A.K.; Srivastava, P.K. Comprehensive evaluation of soil moisture retrieval models under different crop cover types using C-band synthetic aperture radar data. Geocarto Int. 2019, 34, 1022–1041. [Google Scholar] [CrossRef]
- Aubert, M.; Baghdadi, N.N.; Zribi, M.; Ose, K.; El Hajj, M.; Vaudour, E.; Gonzalez-Sosa, E. Toward an Operational Bare Soil Moisture Mapping Using TerraSAR-X Data Acquired Over Agricultural Areas. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 900–916. [Google Scholar] [CrossRef]
- El Hajj, M.; Baghdadi, N.; Zribi, M.; Bazzi, H. Synergic Use of Sentinel-1 and Sentinel-2 Images for Operational Soil Moisture Mapping at High Spatial Resolution over Agricultural Areas. Remote Sens. 2017, 9, 1292. [Google Scholar] [CrossRef] [Green Version]
- Jackson, T.J.; Cosh, M.H.; Bindlish, R.; Starks, P.J.; Bosch, D.D.; Seyfried, M.; Goodrich, D.C.; Moran, M.S.; Du, J.Y. Validation of Advanced Microwave Scanning Radiometer Soil Moisture Products. IEEE Trans. Geosci. Remote Sens. 2010, 48, 4256–4272. [Google Scholar] [CrossRef]
- Tomer, S.K.; Al Bitar, A.; Sekhar, M.; Zribi, M.; Bandyopadhyay, S.; Sreelash, K.; Sharma, A.K.; Corgne, S.; Kerr, Y. Retrieval and Multi-scale Validation of Soil Moisture from Multi-temporal SAR Data in a Semi-Arid Tropical Region. Remote Sens. 2015, 7, 8128–8153. [Google Scholar] [CrossRef] [Green Version]
- Narvekar, P.S.; Entekhabi, D.; Kim, S.B.; Njoku, E.G. Soil Moisture Retrieval Using L-Band Radar Observations. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3492–3506. [Google Scholar] [CrossRef]
- De Keyser, E.; Vernieuwe, H.; Lievens, H.; Alvarez-Mozos, J.; De Baets, B.; Verhoest, N.E.C. Assessment of SAR-retrieved soil moisture uncertainty induced by uncertainty on modeled soil surface roughness. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 176–182. [Google Scholar] [CrossRef]
- Wagner, W.; Hahn, S.; Kidd, R.; Melzer, T.; Bartalis, Z.; Hasenauer, S.; Figa-Saldana, J.; De Rosnay, P.; Jann, A.; Schneider, S.; et al. The ASCAT Soil Moisture Product: A Review of its Specifications, Validation Results, and Emerging Applications. Meteorol. Z. 2013, 22, 5–33. [Google Scholar] [CrossRef] [Green Version]
- Petropoulos, G.P.; Ireland, G.; Barrett, B. Surface soil moisture retrievals from remote sensing: Current status, products & future trends. Phys. Chem. Earth 2015, 83, 36–56. [Google Scholar] [CrossRef]
- Liu, C.A.; Chen, Z.X.; Shao, Y.; Chen, J.S.; Hasi, T.; Pan, H.Z. Research advances of SAR remote sensing for agriculture applications: A review. J. Integr. Agric. 2019, 18, 506–525. [Google Scholar] [CrossRef] [Green Version]
- Baghdadi, N.; Holah, N.; Zribi, M. Soil moisture estimation using multi-incidence and multi-polarization ASAR data. Int. J. Remote Sens. 2006, 27, 1907–1920. [Google Scholar] [CrossRef]
- Bousbih, S.; Zribi, M.; El Hajj, M.; Baghdadi, N.; Lili-Chabaane, Z.; Gao, Q.; Fanise, P. Soil Moisture and Irrigation Mapping in A Semi-Arid Region, Based on the Synergetic Use of Sentinel-1 and Sentinel-2 Data. Remote Sens. 2018, 10, 1953. [Google Scholar] [CrossRef] [Green Version]
- El Hajj, M.; Baghdadi, N.; Zribi, M. Comparative analysis of the accuracy of surface soil moisture estimation from the C- and L-bands. Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 101888. [Google Scholar] [CrossRef]
- Oh, Y.; Sarabandi, K.; Ulaby, F.T. An Empirical-Model and an Inversion Technique for Radar Scattering From Bare Soil Surfaces. IEEE Trans. Geosci. Remote Sens. 1992, 30, 370–381. [Google Scholar] [CrossRef]
- Dubois, P.C.; Vanzyl, J.; Engman, T. Measuring Soil-Moisture with Imaging Radars. IEEE Trans. Geosci. Remote Sens. 1995, 33, 915–926. [Google Scholar] [CrossRef] [Green Version]
- Baghdadi, N.; Choker, M.; Zribi, M.; El Hajj, M.; Paloscia, S.; Verhoest, N.E.C.; Lievens, H.; Baup, F.; Mattia, F. A New Empirical Model for Radar Scattering from Bare Soil Surfaces. Remote Sens. 2016, 8, 920. [Google Scholar] [CrossRef] [Green Version]
- Fung, A.K.; Li, Z.Q.; Chen, K.S. Backscattering From a Randomly Rough Dielectric Surface. IEEE Trans. Geosci. Remote Sens. 1992, 30, 356–369. [Google Scholar] [CrossRef]
- Ali, I.; Greifeneder, F.; Stamenkovic, J.; Neumann, M.; Notarnicola, C. Review of Machine Learning Approaches for Biomass and Soil Moisture Retrievals from Remote Sensing Data. Remote Sens. 2015, 7, 16398–16421. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Chen, B.Z.; Fan, H.D.; Huang, J.L.; Zhao, H. The Potential Use of Multi-Band SAR Data for Soil Moisture Retrieval over Bare Agricultural Areas: Hebei, China. Remote Sens. 2016, 8, 7. [Google Scholar] [CrossRef] [Green Version]
- Tong, C.; Wang, H.Q.; Magagi, R.; Goita, K.; Zhu, L.Y.; Yang, M.Y.; Deng, J.S. Soil Moisture Retrievals by Combining Passive Microwave and Optical Data. Remote Sens. 2020, 12, 3173. [Google Scholar] [CrossRef]
- Bryant, R.; Moran, M.S.; Thoma, D.P.; Holifield Collins, C.D.; Skirvin, S.; Rahman, M. Measuring Surface Roughness Height to Parameterize Radar Backscatter Models for Retrieval of Surface Soil Moisture. IEEE Geosci. Remote Sens. Lett. 2007, 4, 137–141. [Google Scholar] [CrossRef]
- Su, Z.; Troch, P.A.; De Troch, F.P. Remote sensing of bare surface soil moisture using EMAC/ESAR data. Int. J. Remote Sens. 1997, 18, 2105–2124. [Google Scholar] [CrossRef]
- Baghdadi, N.; King, C.; Bonnifait, A. An empirical calibration of the integral equation model based on SAR data and soil parameters measurements. Int. J. Remote Sens. 2002, 23, 4325–4340. [Google Scholar] [CrossRef]
- El Hajj, M.; Baghdadi, N.; Wigneron, J.P.; Zribi, M.; Albergel, C.; Calvet, J.C.; Fayad, I. First Vegetation Optical Depth Mapping from Sentinel-1 C-band SAR Data over Crop Fields. Remote Sens. 2019, 11, 2769. [Google Scholar] [CrossRef] [Green Version]
- Nasrallah, A.; Baghdadi, N.; El Hajj, M.; Darwish, T.; Belhouchette, H.; Faour, G.; Darwich, S.; Mhawej, M. Sentinel-1 Data for Winter Wheat Phenology Monitoring and Mapping. Remote Sens. 2019, 11, 2228. [Google Scholar] [CrossRef] [Green Version]
- Bazzi, H.; Baghdadi, N.; Fayad, I.; Charron, F.; Zribi, M.; Belhouchette, H. Irrigation Events Detection over Intensively Irrigated Grassland Plots Using Sentinel-1 Data. Remote Sens. 2020, 12, 4058. [Google Scholar] [CrossRef]
- El Hajj, M.; Baghdadi, N.; Zribi, M.; Belaud, G.; Cheviron, B.; Courault, D.; Charron, F. Soil moisture retrieval over irrigated grassland using X-band SAR data. Remote Sens. Environ. 2016, 176, 202–218. [Google Scholar] [CrossRef] [Green Version]
- Attema, E.; Ulaby, F.T. Vegetation modeled as a water cloud. Radio Sci. 1978, 13, 357–364. [Google Scholar] [CrossRef]
- Kumar, K.; Rao, H.S.; Arora, M.K. Study of water cloud model vegetation descriptors in estimating soil moisture in Solani catchment. Hydrol. Processes 2015, 29, 2137–2148. [Google Scholar] [CrossRef]
- Cloude, S.R.; Pottier, E. A review of target decomposition theorems in radar polarimetry. IEEE Trans. Geosci. Remote Sens. 1996, 34, 498–518. [Google Scholar] [CrossRef]
- Baghdadi, N.; Cresson, R.; El Hajj, M.; Ludwig, R.; La Jeunesse, I. Estimation of soil parameters over bare agriculture areas from C-band polarimetric SAR data using neural networks. Hydrol. Earth Syst. Sci. 2012, 16, 1607–1621. [Google Scholar] [CrossRef] [Green Version]
- Baghdadi, N.; Cresson, R.; Pottier, E.; Aubert, M.; Zribi, M.; Jacome, A.; Benabdallah, S. A Potential Use for the C-Band Polarimetric SAR Parameters to Characterize the Soil Surface over Bare Agriculture Fields. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3844–3858. [Google Scholar] [CrossRef]
- Baghdadi, N.; Dubois-Fernandez, P.; Dupuis, X.; Zribi, M. Sensitivity of Main Polarimetric Parameters of Multifrequency Polarimetric SAR Data to Soil Moisture and Surface Roughness Over Bare Agricultural Soils. IEEE Geosci. Remote Sens. Lett. 2013, 10, 731–735. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Magagi, R.; Goita, K. Comparison of Different Polarimetric Decompositions for Soil Moisture Retrieval over Vegetation Covered Agricultural Area. Remote Sens. Environ. 2017, 199, 120–136. [Google Scholar] [CrossRef]
- Hajnsek, I.; Jagdhuber, T.; Schcon, H.; Papathanassiou, K.P. Potential of Estimating Soil Moisture under Vegetation Cover by Means of PolSAR. IEEE Trans. Geosci. Remote Sens. 2009, 47, 442–454. [Google Scholar] [CrossRef] [Green Version]
- Jagdhuber, T.; Hajnsek, I.; Bronstert, A.; Papathanassiou, K.P. Soil Moisture Estimation under Low Vegetation Cover Using a Multi-Angular Polarimetric Decomposition. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2201–2215. [Google Scholar] [CrossRef]
- Wang, H.; Ramata, M.; Kalifa, G. Potential of a two-component polarimetric decomposition at C-band for soil moisture retrieval over agricultural fields. Remote Sens. Environ. 2018, 217, 38–51. [Google Scholar] [CrossRef]
- Chen, L.; Xing, M.F.; He, B.B.; Wang, J.F.; Shang, J.L.; Huang, X.D.; Xu, M. Estimating Soil Moisture Over Winter Wheat Fields During Growing Season Using Machine-Learning Methods. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 3706–3718. [Google Scholar] [CrossRef]
- Cloude, S.R.; Pottier, E. An entropy based classification scheme for land applications of polarimetric SAR. IEEE Trans. Geosci. Remote Sens. 1997, 35, 68–78. [Google Scholar] [CrossRef]
- Lee, J.S.; Pottier, E. Polarimetric Radar Imaging: From Basics to Applications; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Freeman, A.; Durden, S.L. A three-component scattering model for polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 1998, 36, 963–973. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, Y.; Moriyama, T.; Ishido, M.; Yamada, H. Four-component scattering model for polarimetric SAR image decomposition. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1699–1706. [Google Scholar] [CrossRef]
- An, W.T.; Cui, Y.; Yang, J. Three-Component Model-Based Decomposition for Polarimetric SAR Data. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2732–2739. [Google Scholar] [CrossRef]
- Van Zyl, J.J.; Arii, M.; Kim, Y. Model-Based Decomposition of Polarimetric SAR Covariance Matrices Constrained for Nonnegative Eigenvalues. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3452–3459. [Google Scholar] [CrossRef]
- Xiao, T.; Xing, M.; He, B.; Wang, J.; Ni, X. Retrieving Soil Moisture over Soybean Fields during Growing Season through Polarimetric Decomposition. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 14, 1132–1145. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Sarabandi, K.; Mcdonald, K.; Whitt, M.; Dobson, M.C. Michigan microwave canopy scattering model. Int. J. Remote Sens. 1990, 11, 1223–1253. [Google Scholar] [CrossRef]
- Alvarez-Mozos, J.; Gonzalez-Audicana, M.; Casali, J. Evaluation of empirical and semi-empirical backscattering models for surface soil moisture estimation. Can. J. Remote Sens. 2007, 33, 176–188. [Google Scholar] [CrossRef]
- Topp, G.C.; Davis, J.L.; Annan, A.P. Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resour. Res. 1980, 16, 574–582. [Google Scholar] [CrossRef] [Green Version]
- Baghdadi, N.; Holah, N.; Zribi, M. Calibration of the Integral Equation Model for SAR data in C-band and HH and VV polarizations. Int. J. Remote Sens. 2006, 27, 805–816. [Google Scholar] [CrossRef]
- Wang, H.Q.; Magagi, R.; Goita, K.; Jagdhuber, T.; Hajnsek, I. Evaluation of Simplified Polarimetric Decomposition for Soil Moisture Retrieval over Vegetated Agricultural Fields. Remote Sens. 2016, 8, 142. [Google Scholar] [CrossRef] [Green Version]
Measurement Date | Growth Stage | Soil Moisture Range (Vol.%) | Mean Values (Vol.%) | Std. Dev. (Vol.%) |
---|---|---|---|---|
9 May 2019 | Tillering | 20.88–40.20 | 33.20 | 5.40 |
16 May 2019 | Tillering | 14.20–37.20 | 26.76 | 6.24 |
20 May 2019 | Stem elongation | 14.43–36.02 | 26.42 | 5.88 |
29 May 2019 | Stem elongation | 17.47–35.45 | 27.42 | 5.08 |
2 June 2019 | Booting | 17.65–34.25 | 27.40 | 4.96 |
9 June 2019 | Heading | 11.35–31.52 | 21.36 | 5.49 |
16 June 2019 | Grouting | 22.02–37.87 | 28.87 | 3.98 |
10 July 2019 | Ripening | 4.17–20.97 | 8.98 | 4.04 |
Acquisition Date | Orbit | Acquisition Time (UTC) | Central Incidence Angle (Study Area) |
---|---|---|---|
9 May 2019 | Ascending | 23:14 | 30.0° |
16 May 2019 | Ascending | 23:10 | 25.4° |
20 May 2019 | Descending | 11:34 | 34.2° |
29 May 2019 | Ascending | 23:30 | 48.2° |
2 June 2019 | Ascending | 23:14 | 30.0° |
9 June 2019 | Ascending | 23:10 | 24.2° |
16 June 2019 | Ascending | 23:05 | 19.3° |
10 July 2019 | Ascending | 23:05 | 19.3° |
CIEM | F (1) | F (2) | ||
---|---|---|---|---|
R2 | RMSE (Vol.%) | R2 | RMSE (Vol.%) | |
vertical | 0.400 | 7.02 | 0.156 | 18.24 |
horizontal | 0.166 | 19.09 | 0.360 | 8.71 |
random | 0.142 | 16.46 | 0.183 | 12.94 |
Pr-based | 0.029 | 16.09 | 0.046 | 19.56 |
Dubois | F (1) | F (2) | ||
---|---|---|---|---|
R2 | RMSE (Vol.%) | R2 | RMSE (Vol.%) | |
vertical | 0.510 | 5.80 | 0.151 | 18.65 |
horizontal | 0.181 | 20.82 | 0.480 | 8.00 |
random | 0.213 | 15.96 | 0.211 | 14.14 |
Pr-based | 0.154 | 17.11 | 0.052 | 19.82 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Xing, M.; He, B.; Wang, J.; Xu, M.; Song, Y.; Huang, X. Estimating Soil Moisture over Winter Wheat Fields during Growing Season Using RADARSAT-2 Data. Remote Sens. 2022, 14, 2232. https://doi.org/10.3390/rs14092232
Chen L, Xing M, He B, Wang J, Xu M, Song Y, Huang X. Estimating Soil Moisture over Winter Wheat Fields during Growing Season Using RADARSAT-2 Data. Remote Sensing. 2022; 14(9):2232. https://doi.org/10.3390/rs14092232
Chicago/Turabian StyleChen, Lin, Minfeng Xing, Binbin He, Jinfei Wang, Min Xu, Yang Song, and Xiaodong Huang. 2022. "Estimating Soil Moisture over Winter Wheat Fields during Growing Season Using RADARSAT-2 Data" Remote Sensing 14, no. 9: 2232. https://doi.org/10.3390/rs14092232
APA StyleChen, L., Xing, M., He, B., Wang, J., Xu, M., Song, Y., & Huang, X. (2022). Estimating Soil Moisture over Winter Wheat Fields during Growing Season Using RADARSAT-2 Data. Remote Sensing, 14(9), 2232. https://doi.org/10.3390/rs14092232