Synergy of Geospatial Data from TLS and UAV for Heritage Building Information Modeling (HBIM)
Abstract
:1. Introduction
1.1. Building Information Modeling for CH
1.2. Terrestrial Laser Scanning and Unmanned Aerial Vehicle for HBIM
1.3. Gap in Research on the Application of TLS and UAV for HBIM. Scientific Goal
1.4. The Paper Structure
2. Materials and Methods
2.1. Research Facility
2.2. Field Work TLS, UAV, GNSS Data Acquisition
- Terrestrial laser scanner: Leica ScanStation P40 (Figure 2a) with a linear measurement range accuracy of ±1.2 mm + 10 ppm and an angular accuracy of 8‘‘ for the horizontal and vertical axis. The scanner parameters translate into the accuracy of determining the 3D position of the measurement point at the level of ±3 mm at a scanning distance of 50 m.
- Unmanned Aerial Vehicle: DJI Phantom 4 Pro (Figure 2b) with a mounted digital camera with a 1-inch 20Mpx CMOS sensor,
- GNSS Receive GNSS RTK Measurement: Trimble R8.
2.3. Post Processing of Measurement Data
3. Results
3.1. Development of Geospatial Databases
3.2. Data Consistency and Continuity Testing after TLS-UAV Integration
3.3. Generating a BIM Model (HBIM)
3.3.1. Completed Data Analysis Building BIM Object Databases
3.3.2. Visualisation of the HBIM Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aigwi, I.E.; Egbelakin, T.; Ingham, J. Efficacy of adaptive reuse for the redevelopment of underutilised historical buildings: Towards the regeneration of New Zealand’s provincial town centres. Int. J. Build. Pathol. Adapt. 2018, 36, 385–407. [Google Scholar] [CrossRef]
- Guzmán, P.; Roders, A.P.; Colenbrander, B. Measuring links between cultural heritage management and sustainable urban development: An overview of global monitoring tools. Cities 2017, 60, 192–201. [Google Scholar] [CrossRef]
- European Commission. How Digital Will Help Us Preserve Our Cultural Heritage; Commission Recommendation of 10.11.2021 on a Common European Data Space for Cultural Heritage; European Commission: Brussels, Belgium, 2021; Available online: https://digital-strategy.ec.europa.eu/en/news/commission-proposes-common-european-data-space-cultural-heritage (accessed on 23 December 2022).
- Volk, R.; Stengel, J.; Schultmann, F. Building Information Modeling (BIM) for existing buildings—Literature review and future needs. Autom. Constr. 2014, 38, 109–127. [Google Scholar] [CrossRef] [Green Version]
- Ullah, K.; Witt, E.; Lill, I. The BIM-Based Building Permit Process: Factors Affecting Adoption. Buildings 2022, 12, 45. [Google Scholar] [CrossRef]
- Rodrigues, F.; Teixeira, J.; Matos, R.; Rodrigues, H. Development of a web application for historical building management through BIM technology. Adv. Civ. Eng. 2019, 2019, 9872736. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Grussenmeyer, P.; Koehl, M.; Macher, H.; Murtiyoso, A.; Landes, T. Review of built heritage modelling: Integration of HBIM and other information techniques. J. Cult. Herit. 2020, 46, 350–360. [Google Scholar] [CrossRef]
- Nicu, I.C.; Rubensdotter, L.; Stalsberg, K.; Nau, E. Coastal Erosion of Arctic Cultural Heritage in Danger: A Case Study from Svalbard, Norway. Water 2021, 13, 784. [Google Scholar] [CrossRef]
- Tommasi, C.; Fiorillo, F.; Jiménez Fernández-Palacios, B.; Achille, C. Access and web-sharing of 3D digital documentation of environmental and architectural heritage. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W9, 707–714. [Google Scholar] [CrossRef] [Green Version]
- Bruno, N.; Roncella, R. A restoration oriented HBIM system for cultural heritage documentation: The case study of Parma Cathedral. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 42, 171–178. [Google Scholar] [CrossRef] [Green Version]
- Yilmaz, H.M.; Yakar, M.; Gulec, S.A.; Dulgerler, O.N. Importance of digital close-range photogrammetry in documentation of cultural heritage. J. Cult. Herit. 2007, 8, 428–433. [Google Scholar] [CrossRef]
- Murphy, M.; McGovern, E.; Pavia, S. Historic building information modelling (HBIM). Struct. Surv. 2009, 27, 311–327. [Google Scholar] [CrossRef] [Green Version]
- Murphy, M.; McGovern, E.; Pavia, S. Historic Building Information Modelling–Adding intelligence to laser and image based surveys of European classical architecture. ISPRS J. Photogramm. Remote Sens. 2013, 76, 89–102. [Google Scholar] [CrossRef]
- Williamson, J.; Nicu, I.C. Photogrammetric Measurement of Erosion at the Sabbath Point Beothuk Site in Central Newfoundland, Canada. Sustainability 2020, 12, 7555. [Google Scholar] [CrossRef]
- Baik, A.; Yaagoubi, R.; Boehm, J. Integration of Jeddah historical BIM and 3D GIS for documentation and restoration of historical monument. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, XL–5/W7, 29–34. [Google Scholar] [CrossRef] [Green Version]
- Guarnieri, A.; Fissore, F.; Masiero, A.; Vettore, A. From TLS survey to 3D solid modeling for documentation of built heritage: The case study of Porta Savonarola in Padua. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 303–308. [Google Scholar] [CrossRef] [Green Version]
- Mora, R.; Sánchez-Aparicio, L.J.; Maté-González, M.Á.; García-Álvarez, J.; Sánchez-Aparicio, M.; González-Aguilera, D. An historical building information modelling approach for the preventive conservation of historical constructions: Application to the Historical Library of Salamanca. Autom. Constr. 2021, 121, 103449. [Google Scholar] [CrossRef]
- Shanoer, M.M.; Abed, F.M. Evaluate 3D laser point clouds registration for cultural heritage documentation. Egypt. J. Remote Sens. Space Sci. 2018, 21, 295–304. [Google Scholar] [CrossRef]
- De Naeyer, A.; Arroyo, S.; Blanco, J. Krakow Charter 2000: Principles for Conservation and Restoration of Built Heritage; Bureau: Krakow, Poland, 2000. [Google Scholar]
- Grussenmeyer, P.; Landes, T.; Voegtle, T.; Ringle, K. Comparison methods of terrestrial laser scanning, photogrammetry and tacheometry data for recording of cultural heritage buildings. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 37, 213–218. [Google Scholar]
- Bayram, B.; Nemli, G.; Özkan, T.; Oflaz, O.; Kankotan, B.; Çetin, İ. Comparison of laser scanning and photogrammetry and their use for digital recording of cultural monument case study: Byzantine land walls-istanbul. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, II-5/W3, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Majid, Z.; Lau, C.; Yusoff, A. Three-Dimensional Recording of Bastion Middleburg Monument Using Terrestrial Laser Scanner. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B5, 323–326. [Google Scholar] [CrossRef] [Green Version]
- Korumaz, S.; Tucci, G.; Korumaz, M.; Bonara, V. Opportunities of geometric documentation of historic buildings with terrestrial laser scanner, examples from Aksaray/Turkey. ICONARP Int. J. Archit. Plan. 2018, 6, 246–273. [Google Scholar]
- Georgopoulos, G.; Telioni, E.; Tsontzou, A. The contribution of laser scanning technology in the estimation of ancient Greek monuments’ deformations. Surv. Rev. 2016, 48, 303–308. [Google Scholar] [CrossRef]
- Hess, M.; Petrovic, V.; Yeager, M.; Kuester, F. Terrestrial laser scanning for the comprehensive structural health assessment of the Baptistery di San Giovanni in Florence, Italy: An integrative methodology for repeatable data acquisition, visualization and analysis. Struct. Infrastruct. Eng. 2018, 14, 247–263. [Google Scholar] [CrossRef]
- Takhirov, S.; Gilani, A.; Quigley, B.; Myagkova, L. Structural Health Monitoring and Assessment of Seismic Vulnerability of Historic Monuments on the Great Silk Road Based on Laser Scanning. In Structural Analysis of Historical Constructions; Springer: Berlin/Heidelberg, Germany, 2019; pp. 2254–2263. [Google Scholar]
- Kersten, T.P.; Tschirschwitz, F.; Deggim, S.; Lindstaedt, M. Virtual Reality for Cultural Heritage Monuments–from 3D Data Recording to Immersive Visualisation. In Proceedings of the Euro-Mediterranean Conference, Limassol, Cyprus, 4–5 October 2018; pp. 74–83. [Google Scholar]
- Kersten, T.P.; Tschirschwitz, F.; Lindstaedt, M.; Deggim, S. The historic wooden model of Solomon’s Temple: 3D recording, modelling and immersive virtual reality visualisation. J. Cult. Herit. Manag. Sustain. Dev. 2018, 8, 448–464. [Google Scholar] [CrossRef]
- Moyano, J.; Justo-Estebaranz, Á.; Nieto-Julián, J.E.; Barrera, A.O.; Fernández-Alconchel, M. Evaluation of records using terrestrial laser scanner in architectural heritage for information modeling in HBIM construction: The case study of the La Anunciación church (Seville). J. Build. Eng. 2022, 62, 105190. [Google Scholar] [CrossRef]
- Trinks, I.; Wallner, M.; Kucera, M.; Verhoeven, G.; Torrejón, V.; Löcker, K.; Nau, E.; Severa, C.; Aldrian, L.; Neubauer, E.; et al. Documenting bronze age Akrotiri on Thera using laser scanning, image-based modelling and geophysical prospection. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. In Proceedings of the 3D Virtual Reconstruction and Visualization of Complex Architectures, Nafplio, Greece, 1–3 March 2017. [Google Scholar]
- Agnello, F.; Brutto, M.L. Integrated surveying techniques in cultural heritage documentation. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2007, II–5/W3, 17–24. [Google Scholar]
- Nettley, A.; Anderson, K.; DeSilvey, C.; Caseldine, C. Using terrestrial laser scanning and lidar data for photo-realistic visualization of climate impacts at heritage sites. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2011, XXXVIII-5/W16, 223–229. [Google Scholar] [CrossRef] [Green Version]
- Markiewicz, J. Aspects of photogrammetric data integration for generation 3D models of the selected objects located in the urban space. Arch. Fotogram. Kartogr. I Teledetekcji 2012, 24, 199–209. [Google Scholar]
- Persad, R.A.; Armenakis, C. Alignment of point cloud DSMs from TLS and UAV platforms. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, XL–1/W4, 369–373. [Google Scholar] [CrossRef] [Green Version]
- Klapa, P.; Mitka, B.; Zygmunt, M. Integration of TLS and UAV data for the generation of a three-dimensional basemap. Adv. Geod. Geoinf. 2022, 71, e27. [Google Scholar]
- Klapa, P.; Mitka, B.; Zygmunt, M. Study into point cloud geometric rigidity and accuracy of TLS-based identification of geometric bodies. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2017; p. 032008. [Google Scholar]
- Abdullah, C.C.K.; Baharuddin, N.; Ariff, M.; Majid, Z.; Lau, C.; Yusoff, A.; Idris, K.; Aspuri, A. Integration of point clouds dataset from different sensors. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Costantino, D.; Pepe, M.; Restuccia, A. Scan-to-HBIM for conservation and preservation of Cultural Heritage building: The case study of San Nicola in Montedoro church (Italy). Appl. Geomat. 2021, 1–15. [Google Scholar] [CrossRef]
- Alshawabkeh, Y.; Baik, A.; Fallatah, A. As-Textured As-Built BIM Using Sensor Fusion, Zee Ain Historical Village as a Case Study. Remote Sens. 2021, 13, 5135. [Google Scholar] [CrossRef]
- Currà, E.; D’Amico, A.; Angelosanti, M. Representation and knowledge of historic construction: HBIM for structural use in the case of villa Palma Guazzaroni in Terni. TEMA Technol. Eng. Mater. Arch. 2021, 7, 1–20. [Google Scholar]
- Martínez-Carricondo, P.; Carvajal-Ramírez, F.; Yero-Paneque, L.; Agüera-Vega, F. Combination of nadiral and oblique UAV photogrammetry and HBIM for the virtual reconstruction of cultural heritage. Case study of Cortijo del Fraile in Níjar, Almería (Spain). Build. Res. Inf. 2020, 48, 140–159. [Google Scholar] [CrossRef]
- Sanseverino, A.; Messina, B.; Limongiello, M.; Guida, C.G. An HBIM Methodology for the Accurate and Georeferenced Reconstruction of Urban Contexts Surveyed by UAV: The Case of the Castle of Charles V. Remote Sens. 2022, 14, 3688. [Google Scholar] [CrossRef]
- Monument Card for the Chapel of St. Anna in Kurzelów, National Heritage Institute, Poland. Available online: https://zabytek.pl/pl/obiekty/g-275040 (accessed on 8 October 2022).
- Monument Card for the Belfry, National Heritage Institute, Poland. Available online: https://zabytek.pl/pl/obiekty/g-256433 (accessed on 8 October 2022).
- Mitka, B.; Klapa, P.; Makuch, M. Measuring Instrument for Integration of Data Coming from the Terrestrial Laser Scanning (TLS) and Unmanned Aerial Vehicles (UAV). Patent no. P.424402; (Patent Office of the Republic of Poland), 2020. [Google Scholar]
- Tang, L.; Li, L.; Ying, S.; Lei, Y. A full level-of-detail specification for 3D building models combining indoor and outdoor scenes. ISPRS Int. J. Geo-Inf. 2018, 7, 419. [Google Scholar] [CrossRef] [Green Version]
- Gröger, G.; Kolbe, T.H.; Czerwinski, A.; Nagel, C. OGC Document No. 08-007r1; OpenGIS City Geography Markup Language (CityGML) Encoding Standard, Version 1.0. 0; Open Geospatial Consortium: Arlington, VA, USA, 2008. [Google Scholar]
- Gröger, G.; Kolbe, T.H.; Nagel, C.; Häfele, K.-H. OGC Document No. 12-019; mOGC City Geography Markup Language (CityGML) Encoding Standard; Open Geospatial Consortium: Arlington, VA, USA, 2012. [Google Scholar]
- Polski Związek Pracodawców Budownictwa. BIM Standard PL: Warszawa, Poland, 2020.
- Klapa, P. TLS point cloud as a data source for multi-LOD of 3D models. Geomat. Landmanagement Landsc. 2022, 2, 63–73. [Google Scholar] [CrossRef]
- Maiezza, P. As-built reliability in architectural HBIM modeling. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 461–466. [Google Scholar] [CrossRef] [Green Version]
- Brumana, R.; Della Torre, S.; Previtali, M.; Barazzetti, L.; Cantini, L.; Oreni, D.; Banfi, F. Generative HBIM modelling to embody complexity (LOD, LOG, LOA, LOI): Surveying, preservation, site intervention—The Basilica di Collemaggio (L’Aquila). Appl. Geomat. 2018, 10, 545–567. [Google Scholar] [CrossRef]
- Brumana, R.; Della Torre, S.; Oreni, D.; Cantini, L.; Previtali, M.; Barazzetti, L.; Banfi, F. SCAN to HBIM-post earthquake preservation: Informative model as sentinel at the crossroads of present, past, and future. In Proceedings of the Euro-Mediterranean Conference, Limassol, Cyprus, 4–5 October 2018; pp. 39–51. [Google Scholar]
- Abualdenien, J.; Borrmann, A. Ensemble-learning approach for the classification of Levels of Geometry (LOG) of building elements. Adv. Eng. Inform. 2022, 51, 101497. [Google Scholar] [CrossRef]
- Brumana, R.; Stanga, C.; Banfi, F. Models and scales for quality control: Toward the definition of specifications (GOA-LOG) for the generation and re-use of HBIM object libraries in a Common Data Environment. Appl. Geomat. 2022, 14, 151–179. [Google Scholar] [CrossRef]
- US. Institute of Building Documentation. USIBD Level of Accuracy (LOA) Specification Guide: Level of Accuracy (LOA) Specification for Building Documentation; U.S. Institute of Building Documentation: Denver, CO, USA, 2016. [Google Scholar]
- Biljecki, F.; Heuvelink, G.B.; Ledoux, H.; Stoter, J. The effect of acquisition error and level of detail on the accuracy of spatial analyses. Cartogr. Geogr. Inf. Sci. 2018, 45, 156–176. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klapa, P.; Gawronek, P. Synergy of Geospatial Data from TLS and UAV for Heritage Building Information Modeling (HBIM). Remote Sens. 2023, 15, 128. https://doi.org/10.3390/rs15010128
Klapa P, Gawronek P. Synergy of Geospatial Data from TLS and UAV for Heritage Building Information Modeling (HBIM). Remote Sensing. 2023; 15(1):128. https://doi.org/10.3390/rs15010128
Chicago/Turabian StyleKlapa, Przemysław, and Pelagia Gawronek. 2023. "Synergy of Geospatial Data from TLS and UAV for Heritage Building Information Modeling (HBIM)" Remote Sensing 15, no. 1: 128. https://doi.org/10.3390/rs15010128
APA StyleKlapa, P., & Gawronek, P. (2023). Synergy of Geospatial Data from TLS and UAV for Heritage Building Information Modeling (HBIM). Remote Sensing, 15(1), 128. https://doi.org/10.3390/rs15010128