Magnetic Anomaly Characteristics and Magnetic Basement Structure in Earthquake-Affected Changning Area of Southern Sichuan Basin, China: A New Perspective from Land-Based Stations
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
3.1. Magnetic Data and Processing
3.2. Reduction to the Pole
3.3. Inversion theory
4. Results and Discussion
4.1. Characteristics of Magnetic Anomaly
4.2. Characteristics of Magnetic Basement Depth
4.3. Geological Significance of Magnetic Basement
4.4. Comparison with Other Studies
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dong, S.; Gao, R.; Yin, A.; Guo, T.; Zhang, Y.; Hu, J.; Li, J.; Shi, W.; Li, Q. What drove continued continent-continent convergence after ocean closure? Insights from high-resolution seismic-reflection profiling across the Daba Shan in central China. Geology 2013, 41, 671–674. [Google Scholar] [CrossRef]
- Gao, R.; Chen, C.; Wang, H.; Lu, Z.; Brown, L.; Dong, S.; Feng, S.; Li, W.; Wen, Z.; Li, F. SINOPROBE deep reflection profile reveals a Neo-Proterozoic subduction zone beneath The Sichuan basin. Earth Planet. Sci. Lett. 2016, 454, 86–91. [Google Scholar] [CrossRef]
- Wang, J.; Yao, C.; Li, Z.; Zheng, Y.; Shen, X.; Zeren, Z.; Liu, W. 3D inversion of the Sichuan basin magnetic anomaly in South China and its geological significance. Earth Planets Space 2020, 72, 40. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Chen, Y.; Houseman, G.A.; Tian, X.; Wang, E.; Teng, J. Crustal structure across Longmenshan fault belt from passive source seismic profiling. Geophys. Res. Lett. 2009, 36, L17310. [Google Scholar] [CrossRef] [Green Version]
- Lei, X.; Wang, Z.; Su, J. The December 2018 ML5.7 and January 2019 ML5.3 earthquakes in south Sichuan basin induced by shale gas hydraulic fracturing. Seismol. Res. Lett. 2019, 90, 1099–1110. [Google Scholar] [CrossRef]
- Lei, X.; Su, J.; Wang, Z. Growing seismicity in the Sichuan basin and its associated with industrial activities. Sci. China Earth Sci. 2020, 63, 1633–1660. [Google Scholar] [CrossRef]
- Sheng, M.; Chu, R.; Ni, S.; Wang, Y.; Jiang, L.; Yang, H. Source parameters of three moderate size earthquakes in Weiyuan, China, and their relations to shale gas hydraulic fracturing. J. Geophys. Res. Solid Earth 2020, 125, e2020JB019932. [Google Scholar] [CrossRef]
- Deng, Q.; Zhang, P.; Ran, Y.; Yang, X.; Yan, W.; Chen, L. Active tectonics and earthquake activities in China. Earth Sci. Front. 2003, 10, 66–73. (In Chinese) [Google Scholar]
- Foulger, G.R.; Wilson, M.P.; Gluyas, J.G.; Julian, B.R.; Davies, R.J. Global review of human-induced earthquakes. Earth-Sci. Rev. 2018, 178, 438–514. [Google Scholar] [CrossRef] [Green Version]
- Weingarten, M.; Ge, S.; Godt, J.W.; Bekins, B.A.; Rubinstein, J.L. High-rate injection is associated with the increase in US mid-continent seismicity. Science 2015, 348, 1336–1340. [Google Scholar] [CrossRef] [Green Version]
- Clerc, F.; Harrington, R.M.; Liu, Y.; Gu, Y.J. Stress drop estimates and hypocenter relocations of induced seismicity near Crooked Lake, Alberta. Geophys. Res. Lett. 2016, 43, 6942–6951. [Google Scholar] [CrossRef]
- Van Eck, T.; Goutbeek, F.; Haak, H.; Dost, B. Seismic hazard due to small-magnitude, shallow-source, induced earthquakes in The Netherlands. Eng. Geol. 2006, 87, 105–121. [Google Scholar] [CrossRef]
- Lu, R.; He, D.; Liu, J.Z.; Tao, W.; Huang, H.; Xu, F.; Liu, G. Seismogenic Faults of the Changning Earthquake Sequence Constrained by High-Resolution Seismic Profiles in the Southwestern Sichuan basin, China. Seismol. Res. Lett. 2021, 92, 3757–3766. [Google Scholar] [CrossRef]
- Sun, X.; Yang, P.; Zhang, Z. A study of earthquakes induced by water injection in the Changning salt mine area, SW China. J. Asian Earth Sci. 2017, 136, 102–109. [Google Scholar] [CrossRef]
- Meng, L.; McGarr, A.; Zhou, L.; Zang, Y. An Investigation of Seismicity Induced by Hydraulic Fracturing in the Sichuan basin of China Based on Data from a Temporary Seismic Network An Investigation of Seismicity Induced by Hydraulic Fracturing in the Sichuan basin. Bull. Seismol. Soc. Am. 2019, 109, 348–357. [Google Scholar] [CrossRef]
- Tan, Y.; Hu, J.; Zhang, H.; Chen, Y.; Qian, J.; Wang, Q.; Zha, H.; Tang, P.; Nie, Z. Hydraulic fracturing induced seismicity in the Southern Sichuan basin due to fluid diffusion inferred from seismic and injection data analysis. Geophys. Res. Lett. 2020, 47, e2019GL084885. [Google Scholar] [CrossRef]
- Zhao, M.; Tang, L.; Chen, S.; Su, J.; Zhang, M. Machine learning based automatic foreshock catalog building for the 2019 MS6.0 Changning, Sichuan earthquake. Chin. J. Geophys. 2021, 64, 54–66. (In Chinese) [Google Scholar] [CrossRef]
- Maus, S.; Barckhausen, U.; Berkenbosch, H.; Bournas, N.; Brozena, J.; Childers, V.; Dostaler, F.; Fairhead, J.D.; Finn, C.; von Frese, R.B.; et al. EMAG2: A 2-arc min resolution Earth Magnetic Anomaly Grid compiled from satellite, airborne, and marine magnetic measurements. Geochem. Geophys. Geosyst. 2009, 10, 1130–1143. [Google Scholar] [CrossRef]
- Ou, J.; Du, A.; Thébault, E.; Xu, W.; Tian, X.; Zhang, T. A high resolution lithospheric magnetic field model over China. Sci. China Earth Sci. 2013, 56, 1759–1768. [Google Scholar] [CrossRef]
- Chen, C.H.; Lin, J.Y.; Gao, Y.; Lin, C.H.; Han, P.; Chen, C.R.; Lin, L.; Huang, R.; Liu, J.Y. Magnetic pulsations triggered by microseismic ground motion. J. Geophys. Res. Solid Earth 2021, 126, e2020JB021416. [Google Scholar] [CrossRef]
- Maus, S.; Rother, M.; Hemant, K.; Stolle, C.; Lühr, H.; Kuvshinov, A.; Olsen, N. Earth’s lithospheric magnetic field determined to spherical harmonic degree 90 from CHAMP satellite measurements. Geophys. J. Int. 2006, 164, 319–330. [Google Scholar] [CrossRef]
- Ou, J.; Du, A.; Xu, W. Investigation of the SA evolution by using the CHAOS-4 model over 1997–2013. Sci. China Earth Sci. 2016, 59, 1041–1050. [Google Scholar] [CrossRef]
- Yang, T.; Dekkers, M.J.; Chen, J. Thermal alteration of pyrite to pyrrhotite during earthquakes: New evidence of seismic slip in the rock record. J. Geophys. Res. Solid Earth 2018, 123, 1116–1131. [Google Scholar] [CrossRef]
- Yang, T.; Chen, J.; Xu, H.; Dekkers, M.J. High-velocity friction experiments indicate magnetic enhancement and softening of fault gouges during seismic slip. J. Geophys. Res. Solid Earth 2019, 124, 26–43. [Google Scholar] [CrossRef]
- Gao, Y.; Zhao, G.; Chong, J.; Klemperer, S.L.; Han, B.; Jiang, F.; Wen, J.; Chen, X.; Zhang, Y.; Tang, J.; et al. Coseismic electric and magnetic signals observed during 2017 Jiuzhaigou M w 6.5 earthquake and explained by electrokinetics and magnetometer rotation. Geophys. J. Int. 2020, 223, 1130–1143. [Google Scholar] [CrossRef]
- Dong, C.; Chen, B.; Yuan, J.; Wang, Z.; Wang, C. Characteristic analysis of the lithospheric magnetic anomaly before the Madoi MS7.4 earthquake on 22th May 2021. Acta Seismol. Sin. 2021, 43, 453–462. (In Chinese) [Google Scholar] [CrossRef]
- Hamed, S.; Nabi, A.E. Curie point depth beneath the Barramiya-Red Sea coast area estimated from spectral analysis of aeromagnetic data. J. Asian Earth Sci. 2012, 43, 254–266. [Google Scholar]
- Wen, L.; Kang, G.; Bai, C.; Gao, G. Relationship between crustal magnetic anomalies and strong earthquake activity in the south segment of the China North-South Seismic Belt. Appl. Geophys. 2021, 18, 408–419. [Google Scholar] [CrossRef]
- Gu, Z.; Wang, Z. The discovery of Neoproterozoic extensional structures and its significance for gas exploration in the Central Sichuan Block, The Sichuan basin, South China. Sci. China Earth Sci. 2014, 57, 2758–2768. [Google Scholar] [CrossRef]
- Xiong, S.; Yang, H.; Ding, Y.; Li, Z. Characteristics of Chinese continent Curie point isotherm. Chin. J. Geophys. 2016, 59, 3604–3617. (In Chinese) [Google Scholar] [CrossRef]
- Raymond, C.A.; Blakely, R.J. Crustal magnetic anomalies. Rev. Geophys. 1995, 33, 177–183. [Google Scholar] [CrossRef]
- Li, B.; Song, Y.; Wang, Q.; Wang, Z.; Guo, L.; Jiang, J.; Geng, S.; Deng, M.; Zhou, D. Magnetic field characteristics and geological significance of The Sichuan basin. Geophys. Geochem. Explor. 2018, 42, 937–945. (In Chinese) [Google Scholar]
- Parker, R.L. The rapid calculation of potential anomalies. Geophys. J. R. Astron. Soc. 1973, 31, 447–455. [Google Scholar] [CrossRef]
- Pham, L.T.; Oksum, E.; Gómez-Ortiz, D.; Do, T.D. MagB_inv: A high performance Matlab program for estimating the magnetic basement relief by inverting magnetic anomalies. Comput. Geosci. 2020, 134, 104347. [Google Scholar] [CrossRef]
- Blakely, R.J. Potential Theory in Gravity and Magnetic Applications; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar] [CrossRef]
- Thompson, D.T. EULDPH: A new technique for making computer-assisted depth estimates from magnetic data. Geophysics 1982, 47, 31–37. [Google Scholar] [CrossRef]
- Reid, A.B.; Allsop, J.M.; Granser, H.; Millett, A.J.; Somerton, I.W. Magnetic interpretation in three dimensions using Euler deconvolution. Geophysics 1990, 55, 80–91. [Google Scholar] [CrossRef] [Green Version]
- Curto, J.B.; Diniz, T.; Vidotti, R.M.; Blakely, R.J.; Fuck, R.A. Optimizing depth estimates from magnetic anomalies using spatial analysis tools. Comput. Geosci. 2015, 84, 1–9. [Google Scholar] [CrossRef]
- Spector, A.; Grant, F.S. Statistical models for interpreting aeromagnetic data. Geophysics 1970, 35, 293–302. [Google Scholar] [CrossRef]
- Bansal, A.R.; Gabriel, G.; Dimri, V.P.; Krawczyk, C.M. Estimation of depth to the bottom of magnetic sources by a modified centroid method for fractal distribution of sources: An application to aeromagnetic data in Germany. Geophysics 2011, 76, L11–L22. [Google Scholar] [CrossRef]
- Ravat, D.; Morgan, P.; Lowry, A.R. Geotherms from the temperature-depth constrained solutions of 1-D steady-state heat flow equation. Geosphere 2016, 12, 1187–1197. [Google Scholar] [CrossRef]
- Kumar, R.; Bansal, A.R.; Ghods, A. Estimation of Depth to Bottom of Magnetic Sources Using Spectral Methods: Application on Iran’s Aeromagnetic Data. J. Geophys. Res. Solid Earth 2020, 125, e2019JB018119. [Google Scholar] [CrossRef]
- Wei, G. Structural characteristics and oil and gas in Sichuan Basin. Science Press: Beijing, China, 2019. [Google Scholar]
- He, D.; Lu, R.; Huang, H.; Wang, X.; Jiang, H.; Zhang, W. Tectonic and geological setting of the earthquake hazards in the Changning shale gas development zone, The Sichuan basin, SW China. Pet. Explor. Dev. 2019, 46, 1051–1064. [Google Scholar] [CrossRef]
- Hu, X.; Cui, X.; Zhang, G.; Wang, G.; Shi, B.; Jiang, D. Analysis on the mechanical causes of the complex seismicity in Changning area, China. Chin. J. Geophys. 2021, 64, 1–17. (In Chinese) [Google Scholar] [CrossRef]
- Sun, Q.; Pei, S.; Su, J.; Liu, Y.; Xue, X.; Li, J.; Li, L.; Zuo, H. Three-dimensional seismic velocity structure across the 17 June 2019 Changning MS6.0 earthquake, Sichuan, China. Chin. J. Geophys. 2021, 64, 36–53. (In Chinese) [Google Scholar] [CrossRef]
- Kuang, W.; Bloxham, J. An Earth-like numerical dynamo model. Nature 1997, 389, 371–374. [Google Scholar] [CrossRef]
- Dong, C.; Zhang, H.; Jiao, L.; Cheng, H.; Yuen, D.A.; Shi, Y. The Non-Negligible Effect of Viscosity Diffusion on the Geodynamo Process. J. Geophys. Res. Solid Earth 2021, 126, e2020JB021281. [Google Scholar] [CrossRef]
- Chen, B.; Yuan, J.; Wang, C.; Xu, R.; Wang, Z. Data processing flowchart of Chinese mobile geomagnet monitoring array. J. Seismol. Res. 2017, 40, 335–339. (In Chinese) [Google Scholar]
- Alken, P.; Thébault, E.; Beggan, C.D.; Amit, H.; Aubert, J.; Baerenzung, J.; Bondar, T.N.; Brown, W.J.; Califf, S.; Chambodut, A.; et al. International geomagnetic reference field: The thirteenth generation. Earth Planets Space 2021, 73, 1–25. [Google Scholar] [CrossRef]
- Xiong, S.; Ding, Y.; Li, Z. Characteristics of China continent magnetic basement depth. Chin. J. Geophys. 2014, 57, 3981–3993. (In Chinese) [Google Scholar] [CrossRef]
- Zhou, W. Gravity and Magnetic Anomalies in the Sichuan Basin, China: Implications for Deep Structure. Master’s Thesis, Nanjing University, Nanjing, China, 2016. (In Chinese). [Google Scholar]
- Johnston, M.J.S.; Sasai, Y.; Egbert, G.D.; Mueller, R.J. Seismomagnetic effects from the long-awaited 28 September 2004 M 6.0 Parkfield earthquake. Bull. Seismol. Soc. Am. 2006, 96, S206–S220. [Google Scholar] [CrossRef]
- Xiong, S.; Yang, H.; Ding, Y.; Li, Z.; Li, W. Distribution of igneous rocks in China revealed by aeromagnetic data. J. Asian Earth Sci. 2016, 129, 231–242. [Google Scholar] [CrossRef] [Green Version]
- Oldenburg, D.W. The inversion and interpretation of gravity anomalies. Geophysics 1974, 39, 526–536. [Google Scholar] [CrossRef]
- Li, Z.X.; Bogdanova, S.; Collins, A.S.; Davidson, A.; De Waele, B.; Ernst, R.E.; Fitzsimons, I.C.W.; Fuck, R.A.; Gladkochub, D.P.; Jacobs, J.; et al. Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Res. 2008, 160, 179–210. [Google Scholar] [CrossRef]
- Zhao, G.; Cawood, P.A. Precambrian geology of China. Precambrian Res. 2012, 222, 13–54. [Google Scholar] [CrossRef]
- Wang, Z.C.; Zhao, W.Z.; Li, Z.Y.; Jiang, X.F.; Jun, L. Role of basement faults in gas accumulation of Xujiahe Formation, Sichuan Basin. Pet. Explor. Dev. 2008, 35, 541–547. [Google Scholar] [CrossRef]
- Zandt, G.; Ammon, C.J. Continental crust composition constrained by measurements of crustal Poisson’s ratio. Nature 1995, 374, 152–154. [Google Scholar] [CrossRef]
- Jiang, G.; Hu, S.; Shi, Y.; Zhang, C.; Wang, Z.; Hu, D. Terrestrial heat flow of continental China: Updated dataset and tectonic implications. Tectonophysics 2019, 753, 36–48. [Google Scholar] [CrossRef]
- Li, C.; Wang, J. Variations in Moho and Curie depths and heat flow in Eastern and Southeastern Asia. Mar. Geophys. Res. 2016, 37, 1–20. [Google Scholar] [CrossRef]
- Sun, Y.; Dong, S.; Wang, X.; Liu, M.; Zhang, H.; Shi, Y. Three-dimensional thermal structure of East Asian continental lithosphere. J. Geophys. Res. Solid Earth 2022, 127, e2021JB023432. [Google Scholar] [CrossRef]
- Wessel, P.; Smith, W.H.; Scharroo, R.; Luis, J.; Wobbe, F. Generic mapping tools: Improved version released. Eos Trans. Am. Geophys. Union 2013, 94, 409–410. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, C.; Chen, B.; Wang, C. Magnetic Anomaly Characteristics and Magnetic Basement Structure in Earthquake-Affected Changning Area of Southern Sichuan Basin, China: A New Perspective from Land-Based Stations. Remote Sens. 2023, 15, 23. https://doi.org/10.3390/rs15010023
Dong C, Chen B, Wang C. Magnetic Anomaly Characteristics and Magnetic Basement Structure in Earthquake-Affected Changning Area of Southern Sichuan Basin, China: A New Perspective from Land-Based Stations. Remote Sensing. 2023; 15(1):23. https://doi.org/10.3390/rs15010023
Chicago/Turabian StyleDong, Chao, Bin Chen, and Can Wang. 2023. "Magnetic Anomaly Characteristics and Magnetic Basement Structure in Earthquake-Affected Changning Area of Southern Sichuan Basin, China: A New Perspective from Land-Based Stations" Remote Sensing 15, no. 1: 23. https://doi.org/10.3390/rs15010023
APA StyleDong, C., Chen, B., & Wang, C. (2023). Magnetic Anomaly Characteristics and Magnetic Basement Structure in Earthquake-Affected Changning Area of Southern Sichuan Basin, China: A New Perspective from Land-Based Stations. Remote Sensing, 15(1), 23. https://doi.org/10.3390/rs15010023