Estimation of Gully Growth Rate and Erosion Amount Using UAV and Worldview-3 Images in Yimeng Mountain Area, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Overview
2.2. Multisource RS Data Acquisition and Processing
2.2.1. UAV Data Acquisition and Processing
2.2.2. High-Resolution RS Stereopair Image Processing
2.3. Acquisition and Verification of Morphological Parameters of Gullies and Volume Calculation
2.4. Model Verification Method
3. Results
3.1. Precision Analysis and Correction of Morphological Parameters of Gullies Extracted from High-Resolution RS Stereoscopic Images
3.2. Development Rate of Gullies in Yimeng Mountain Area
3.2.1. Development Rate of Retrogressive Erosion of Gullies
3.2.2. Development Rate of Lateral Erosion of Gullies
3.2.3. Development Rate of Gully Downcut
3.3. Optimal Gully Volume Model Building and Verification
3.4. Analysis of the Dynamic Change in Gully Erosion Volume
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Azareh, A.; Rahmati, O.; Rafiei-Sardooi, E.; Sankey, J.B.; Lee, L.; Shahabi, H.; Ahmad, B.B. Modelling gully-erosion susceptibility in a semi-arid region, Iran: Investigation of applicability of certainty factor and maximum entropy models. Sci. Total Environ. 2019, 655, 684–696. [Google Scholar] [CrossRef] [PubMed]
- Omid, R.; Zahra, K.; Sofia, F.C.; Chen, W.; Masoud, S.S.; Marijana, K.S.; Samaneh, S.; Navid, G.; Nader, K. Contribution of physical and anthropogenic factors to gully erosion initiatio. Catena 2022, 210, 105925. [Google Scholar]
- Poesen, J.; Nachtergaele, J.; Verstraeten, G.; Valentin, C. Gully erosion and environmental change: Importance and research needs. Catena 2003, 50, 91–133. [Google Scholar] [CrossRef]
- Anderson, R.L.; Rowntree, K.M.; Roux, J.J.L. An interrogation of research on the influence of rainfall on gully erosion. Catena 2021, 206, 105482. [Google Scholar] [CrossRef]
- Arabameri, A.; Pradhan, B.; Bui, D.T. Spatial modelling of gully erosion in the Ardib River Watershed using three statistical-based techniques. Catena 2020, 190, 104545. [Google Scholar] [CrossRef]
- Bartley, R.; Poesen, J.; Wilkinson, S.; Vanmaercke, M. A review of the magnitude and response times for sediment yield reductions following the rehabilitation of gullied landscapes. Earth Surf. Process. Landf. 2020, 45, 3250–3279. [Google Scholar] [CrossRef]
- Chowdhuri, I.; Pal, S.C.; Arabameri, A.; Saha, A.; Chakrabortty, R.; Blaschke, T.; Pradhan, B.; Band, S.S. Implementation of artificial intelligence-based ensemble models for gully erosion susceptibility assessment. Remote Sens. 2020, 12, 3620. [Google Scholar] [CrossRef]
- Lucà, F.; Conforti, M.; Robustelli, G. Comparison of GIS-based gullying susceptibility mapping using bivariate and multivariate statistics: Northern Calabria, South Italy. Geomorphology 2011, 134, 297–308. [Google Scholar] [CrossRef]
- Millares, A.; Díez-Minguito, M.; Moñino, A. Evaluating gullying effects on modeling erosive responses at basin scale. Environ. Model. Softw. 2019, 111, 61–71. [Google Scholar] [CrossRef]
- Rahmati, O.; Tahmasebipour, N.; Haghizadeh, A.; Pourghasemi, H.R.; Feizizadeh, B. Evaluating the influence of geo-environmental factors on gully erosion in a semi-arid region of Iran: An integrated framework. Sci. Total Environ. 2017, 579, 913–927. [Google Scholar] [CrossRef]
- Peng, X.D.; Dai, Q.H.; Yang, Z.; Zhao, L.S. Sediment yield of surface and underground erosion in the process of rocky desertifi cation of Karst Area. Acta Pedol. Sin. 2016, 53, 1237–1248. [Google Scholar]
- Belayneh, M.; Yirgu, T.; Tsegaye, D. Current extent, temporal trends, and rates of gully erosion in the Gumara watershed, Northwestern Ethiopia. Glob. Ecol. Conserv. 2020, 24, e01255. [Google Scholar] [CrossRef]
- Brecheisen, Z.S.; Richter, D.D. Gully-erosion estimation and terrain reconstruction using analyses of microtopographic roughness and LiDAR. Catena 2021, 202, 105264. [Google Scholar] [CrossRef]
- Castillo, C.; Gómez, J.A. A century of gully erosion research: Urgency, complexity and study approaches. Earth-Science Reviews 2016, 160, 300–319. [Google Scholar] [CrossRef]
- Frankl, A.; Stal, C.; Abraha, A.; Nyssen, J.; Rieke-Zapp, D.; Wulf, A.D.; Poesen, J. Detailed recording of gully morphology in 3D through image-based modelling. Catena 2015, 127, 92–101. [Google Scholar] [CrossRef] [Green Version]
- Slimane, A.B.; Raclot, D.; Rebai, H.; Bissonnais, Y.L.; Planchon, O.; Bouksila, F. Combining field monitoring and aerial imagery to evaluate the role of gully erosion in a Mediterranean catchment (Tunisia). Catena 2018, 170, 73–83. [Google Scholar] [CrossRef]
- Wang, J.X.; Zhang, Y.; Deng, J.Y.; Yu, S.W.; Zhao, Y.Y. Long-Term Gully Erosion and Its Response to Human Intervention in the Tableland Region of the Chinese Loess Plateau. Remote Sens. 2021, 13, 5053. [Google Scholar] [CrossRef]
- Wang, J.X.; Fan, C.H.; Zhang, Y.; Li, Z. Gully head activity and its influencing factors in China’s Loess Plateau. J. Soils Sediments 2022, 22, 1792–1803. [Google Scholar] [CrossRef]
- Yibeltal, M.; Tsunekawa, A.; Haregeweyn, N.; Adgo, E.; Meshesha, D.T.; Masunaga, T.; Tsubo, M.; Billi, P.; Ebabu, K.; Fenta, A.A.; et al. Morphological characteristics and topographic thresholds of gullies in different agro-ecological environments. Geomorphology 2019, 341, 15–27. [Google Scholar] [CrossRef]
- Yuan, M.T.; Zhang, Y.; Zhano, Y.Y.; Deng, J.Y. Effect of rainfall gradient and vegetation restoration on gully initiation under a large-scale extreme rainfall event on the hilly Loess Plateau: A case study from the Wuding River basin, China. Sci. Total Environ. 2020, 739, 140066. [Google Scholar] [CrossRef]
- Castillo, C.; Pérez, R.; James, M.R.; Quinton, J.N.; Taguas, E.V.; Gómez, J.A. Comparing the Accuracy of Several Field Methods for Measuring Gully Erosion. Soil Sci. Soc. Am. J. 2012, 76, 1319–1332. [Google Scholar] [CrossRef] [Green Version]
- Cook, K.L. An evaluation of the effectiveness of low-cost UAVs and structure from motion for geomorphic change detection. Geomorphology 2017, 278, 195–208. [Google Scholar] [CrossRef]
- Krenz, J.; Greenwood, P.; Kuhn, N.J. Soil Degradation Mapping in Drylands Using Unmanned Aerial Vehicle (UAV) Data. Soil Syst. 2019, 3, 33. [Google Scholar] [CrossRef] [Green Version]
- Hosseinalizadeh, M.; Kariminejad, N.; Rahmati, O.; Keesstra, S.; Alinejad, M.; Behbahani, A.M. How can statistical and artificial intelligence approaches predict piping erosion susceptibility? Sci. Total Environ. 2019, 646, 1554–1566. [Google Scholar] [CrossRef] [PubMed]
- Kariminejad, N.; Rossi, M.; Hosseinalizadeh, M.; Pourghasemi, H.R.; Santosh, M. Gully head modelling in Iranian Loess Plateau under different scenarios. Catena 2020, 194, 104769. [Google Scholar] [CrossRef]
- Napoleon, G.E.; Trent, B.; Carlos, C.; Ronald, B.; Eddy, L.; Kristine, T.; Thomas, K.; Yuan, Y.P.; Douglas, L. Measuring ephemeral gully erosion rates and topographical thresholds in an urban watershed using unmanned aerial systems and structure from motion photogrammetric techniques. Land Degrad. Dev. 2018, 29, 1896–1905. [Google Scholar]
- Zhang, Y.; Zhao, Y.Y.; Liu, B.Y.; Wang, Z.Q.; Zhang, S. Rill and gully erosion on unpaved roads under heavy rainfall in agricultural watersheds on China’s Loess Plateau. Agric. Ecosyst. Environ. 2019, 284, 106580. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Y.; Zhu, Q.K.; Yang, S.; Li, H.J.; Ma, H. A gully erosion assessment model for the Chinese Loess Plateau based on changes in gully length and area. Catena 2017, 148, 195–203. [Google Scholar] [CrossRef]
- Capra, A.; Mazzara, L.M.; Scicolone, B. Application of the EGEM model to predict ephemeral gully erosion in Sicily, Italy. Catena 2004, 59, 133–146. [Google Scholar] [CrossRef]
- Caraballo-Arias, N.A.; Conoscenti, C.; Stefano, C.D.; Ferro, V.; Gómez-Gutiérrez, A. Morphometric and hydraulic geometry assessment of a gully in SW Spain. Geomorphology 2016, 274, 143–151. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Zhang, Y.; Shang, G.F.; Qi, F.; Ma, Q.T.; Li, Y.K. Characterizing gully cross section and modelling gully volume in hilly loess region of Western Shanxi Province. Trans. Chin. Soc. Agric. Eng. 2018, 34, 152–159. [Google Scholar]
- Li, Z.; Qi, Z.G.; Qin, W.; Chen, C.; Wu, K.; Feng, T. Gully volume estimation model using high-resolution satellite imaging in mountainous and hilly regions with black soil of Northeast China. Trans. Chin. Soc. Agric. Eng. 2021, 37, 122–130. [Google Scholar]
- Olutoyin, F.; Rotimi, O.; Adeyemi, O.; Deirdre, D. Factors controlling gully morphology on the quartzite ridges of Ibadan, Nigeria. Catena 2022, 212, 106127. [Google Scholar]
- Dong, Y.F.; Xiong, D.H.; Su, Z.A.; Li, J.J.; Yang, D.; Zhai, J.; Lu, X.N.; Liu, G.C.; Shi, L.T. Critical topographic threshold of gully erosion in Yuanmou dry-hot valley in Southwestern China. Phys. Geogr. 2013, 34, 50–59. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, C.Y.; Yang, J.; Zhang, Q.; Wang, J.X. Estimating the gully growth rate in the hilly Loess Plateau using historical satellite images. Trans. Chin. Soc. Agric. Eng. 2022, 38, 109–116. [Google Scholar]
- Frankl, A.; Poesen, J.; Scholiers, N.; Jacob, M.; Haile, M.; Deckers, J.; Nyssen, J. Factors controlling the morphology and volume (V)–length (L) relations of permanent gullies in the Northern Ethiopian Highlands. Earth Surface Processes and Landforms 2013, 38, 1672–1684. [Google Scholar] [CrossRef] [Green Version]
- Kompani-Zare, M.; Soufi, M.; Hamzehzarghani, H.; Dehghani, M. The effect of some watershed, soil characteristics and morphometric factors on the relationship between the gully volume and length in Fars Province, Iran. Catena 2011, 86, 150–159. [Google Scholar] [CrossRef]
- Xu, F.J.; Zhao, W.J.; Yan, T.T.; Qin, W.; Chen, H.N. Can slope spectrum information entropy replace slope length and steepness factor: A case study of the rocky mountain area in northern China. Catena 2022, 212, 106047. [Google Scholar] [CrossRef]
- An, J.; Liu, Q.J. Soil aggregate breakdown in response to wetting rate during the inter-rill and rill stages of erosion in a contour ridge system. Catena 2017, 157, 241–249. [Google Scholar] [CrossRef]
- Liu, B.Y.; Yang, Y.; Lu, S.J. Discriminations on common soil erosion terms and their implications for soil and water conservation. Sci. Soil Water Conserv. 2018, 16, 9–16. [Google Scholar]
- Casalí, J.; Giménez, R.; Campo-Bescós, M.A. Gully geometry: What are we measuring? Soil 2015, 1, 509–513. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.X. Relationship between the volume of gully and the first and second dimension parameters in Yuanmou dry-hot valley. Master´s Thesis, China West Normal University, Nanchong, China, 2017. [Google Scholar]
- Li, Z.; Zhang, Y.; Yang, S.; Zhu, Q.K.; Wu, J.H.; Ma, H.; He, Y.M. Error assessment of extracting morphological parameters of bank gullies by manual visual interpretation based on QuickBird imagery. Trans. Chin. Soc. Agric. Eng. 2014, 30, 179–186. [Google Scholar]
- Tang, J.; Zhang, Y.; Fan, C.H.; Cheng, X.X.; Deng, J.Y. Accuracy assessment of gully morphological parameters from high resolution remote sensing stereoscopic satellite images on hilly Loess Plateau. Trans. Chin. Soc. Agric. Eng. 2017, 33, 111–117. [Google Scholar]
- He, F.H.; Gao, B.J.; Wang, H.Z.; Wang, R.; Sai, L.L. Study on the relationship between gully erosion and topographic factors based on GIS in small watershed of Jiaodong Peninsula. Geogr. Res. 2013, 32, 1856–1864. [Google Scholar]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Deng, Q.C.; Qin, F.C.; Zhang, B.; Wang, H.P.; Luo, M.L.; Shu, C.Q.; Liu, H.; Liu, G.C. Characterizing the morphology of gully cross-sections based on PCA: A case of Yuanmou dry-hot valley. Geomorphology 2015, 228, 703–713. [Google Scholar] [CrossRef]
- Geng, Y.H. Treatment of Typical Sloping Farmland Erosion Ditch in Black Soil Region; Hei Long Jiang University: Harbin, China, 2021. [Google Scholar]
- Samani, A.N.; Rad, F.T.; Azarakhshi, M.; Rahdari, M.R.; Rodrigo-Comino, J. Assessment of the Sustainability of the Territories Affected by Gully Head Advancements through Aerial Photography and Modeling Estimations: A Case Study on Samal Watershed, Iran. Sustainability 2018, 10, 2909. [Google Scholar] [CrossRef] [Green Version]
- Guan, Y.B.; Yang, S.T.; Zhao, C.S.; Lou, H.Z.; Chen, K.; Zhang, C.B.; Wu, B.W. Monitoring long-term gully erosion and topographic thresholds in the marginal zone of the Chinese Loess Plateau. Soil Tillage Res. 2021, 205, 104800. [Google Scholar] [CrossRef]
- Yang, L.H.; Pang, G.W.; Yang, Q.K.; Pei, Z.L.; Wang, L.; Long, Y.Q.; Wang, C.M. Changes and influencing factors of erosion gully in Wangmaogou watershed in the last 50 years. J. Soil Water Conserv. 2020, 34, 64–70. [Google Scholar]
Image | UAV Image | RS Image | Error | Image | UAV Image | RS Image | Error |
---|---|---|---|---|---|---|---|
Length max/m | 225.32 | 225.11 | 0.09% | Depth max/m | 8.05 | 5.88 | 26.96% |
Length min/m | 86.08 | 85.48 | 0.70% | Depth min/m | 2.36 | 2.21 | 6.42% |
Total length/m | 2875.46 | 2914.54 | 1.36% | Total depth/m | 88.15 | 59.83 | 32.12% |
Average length/m | 151.34 | 153.40 | 1.36% | Average depth/m | 4.64 | 3.15 | 32.12% |
Width max/m | 37.16 | 36.14 | 2.74% | Area max/m2 | 8808.67 | 9131.90 | 3.67% |
Width min/m | 10.96 | 11.06 | 0.91% | Area min/m2 | 1160.70 | 1257.08 | 8.30% |
Total width/m | 452.37 | 460.86 | 1.88% | Total area/m2 | 77,691.33 | 81,645.00 | 5.09% |
Average width/m | 23.81 | 24.26 | 1.88% | Average area/m2 | 4089.02 | 4297.11 | 5.09% |
Statistic | 2014 Gully Length/m | 2021 Gully Length/m | Gully Linear Growth Rate/(m·a−1) | Linear Growth Ratio/% |
---|---|---|---|---|
Maximum | 221.22 | 222.50 | 0.83 | 6.73 |
Minimum | 39.23 | 39.58 | 0.01 | 0.03 |
Mean | 120.27 | 121.89 | 0.23 | 1.53 |
Median | 104.40 | 105.01 | 0.17 | 1.16 |
Total | 3367.52 | 3413.04 | 6.50 | 1.35 |
Predicted Model | Total Measured Volume/m3 | Total Predicted Volume/m3 | Er | Ens | R2 |
---|---|---|---|---|---|
V-A | 197,563.27 | 191,077.97 | 0.178 | 0.929 | 0.944 |
V-L | 173,440.16 | 0.438 | 0.696 | 0.695 | |
V-TW | 179,900.83 | 0.293 | 0.786 | 0.854 |
Statistic | A/m2 | V/m3 | A Growth/m2 | A Growth Rate/(m2·a−1) | V Growth/m3 | V Growth Rate/(m3·a−1) | ||
---|---|---|---|---|---|---|---|---|
2014 | 2021 | 2014 | 2021 | |||||
Maximm | 12,056.12 | 12,291.58 | 43,868.45 | 45,119.30 | 733.39 | 104.77 | 2795.71 | 399.39 |
Minimm | 518.11 | 588.18 | 452.41 | 544.00 | 1.28 | 0.18 | 2.96 | 0.42 |
Means | 3,535.42 | 3,710.00 | 8,598.70 | 9,169.75 | 174.59 | 24.94 | 571.05 | 81.58 |
Medians | 2,830.65 | 3,188.92 | 5,338.68 | 6,348.38 | 140.07 | 20.01 | 415.01 | 59.29 |
Total | 137,881.30 | 144,690.25 | 335,349.48 | 357,620.37 | 6808.95 | 972.71 | 22,270.89 | 3181.56 |
Study Area | Major Soil Type | Times | Growth Rates | Author (Year) |
---|---|---|---|---|
Loess Plateau | Loess | 62 | 0.54 m/a (L) | Guan et al. [50] |
58.3 m3/a (V) | ||||
Loess Hilly and Gully Region | Loess | 14 | 0.27 m/a (L) | Yang et al. [51] |
0.004 m/a (W) | ||||
Southwest of Iran | Fars Lithological Groups | 15 | 1.23 m/a (L) | Samani et al. [49] |
6.70 m3/a (V) | ||||
Tunisia | Calcil or Chromic Vertisols | 50 | 68 m3/a (V) | Slimane et al. [16] |
Upper Blue Nile basin, Ethiopia | Acrisols and Leptosols (Guder) Leptosols and Luvisols (Aba Gerima) Vertisols and Luvisols (Dibatie) | 11 | 0.76 m/a (L) 6.77 m3/a (V) 2.09 m/a (L) 19.58 m3/a (V) 3.42 m/a (L) 42.16 m3/a (V) | Yibeltal et al. [19] |
This Study Area | Soil-Rock Dual Structure | 7 | 0.23 m/a (L) | |
0.25 m/a (TW) | ||||
0.09 m/a (D) | ||||
81.58 m3/a (V) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, G.; Zhao, W.; Yan, T.; Qin, W.; Miao, X. Estimation of Gully Growth Rate and Erosion Amount Using UAV and Worldview-3 Images in Yimeng Mountain Area, China. Remote Sens. 2023, 15, 233. https://doi.org/10.3390/rs15010233
Zhang G, Zhao W, Yan T, Qin W, Miao X. Estimation of Gully Growth Rate and Erosion Amount Using UAV and Worldview-3 Images in Yimeng Mountain Area, China. Remote Sensing. 2023; 15(1):233. https://doi.org/10.3390/rs15010233
Chicago/Turabian StyleZhang, Guanghe, Weijun Zhao, Tingting Yan, Wei Qin, and Xiaojing Miao. 2023. "Estimation of Gully Growth Rate and Erosion Amount Using UAV and Worldview-3 Images in Yimeng Mountain Area, China" Remote Sensing 15, no. 1: 233. https://doi.org/10.3390/rs15010233
APA StyleZhang, G., Zhao, W., Yan, T., Qin, W., & Miao, X. (2023). Estimation of Gully Growth Rate and Erosion Amount Using UAV and Worldview-3 Images in Yimeng Mountain Area, China. Remote Sensing, 15(1), 233. https://doi.org/10.3390/rs15010233