Prediction of Urban Forest Aboveground Carbon Using Machine Learning Based on Landsat 8 and Sentinel-2: A Case Study of Shanghai, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets and Processing
2.2.1. Processing Observed Data
2.2.2. Landsat 8 and Sentinel-2 Remote Sensing Data
2.2.3. Remote Sensing Data Preprocessing
3. Research Methodology
3.1. Remote Sensing Variable Settings
3.2. Feature Variable Selection
3.3. AGC model Construction Scheme and Method
3.4. Model Accuracy Evaluation Method
4. Results and Analysis
4.1. Variable Screening Results and Importance Analysis
4.2. AGC Model Construction and Prediction Results
4.2.1. Landsat 8-Based AGC Model and Prediction Results
4.2.2. Sentinel-2-Based AGC Model and Prediction Results
4.2.3. Landsat 8 Combined with the Sentinel-2 AGC Model and Prediction Results
4.3. Spatiotemporal Distribution of AGC in the Shanghai Urban Forest
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bofeng, C. Study on Carbon Dioxide Emissions from Cities of China. Energy China 2011, 33, 28–32+47. [Google Scholar]
- He, S.; Liu, J.; Jiang, P.; Zhou, G.; Wang, H.; Li, Y.; Wu, J. Effects of forest management on soil organic carbon pool: A review. J. Zhejiang A F Univ. 2019, 36, 818–827. [Google Scholar]
- Jun, Y. Urban Forestry Planning and Management; Chinese Forestry Publishing House: Beijing, China, 2012. [Google Scholar]
- Yonghua, W.; Hanxiao, G. Research Progress of Urban Green Space Carbon Sink. Hubei For. Sci. Technol. 2020, 49, 69–76. [Google Scholar]
- Dzhambov, A.M.; Markevych, I.; Tilov, B.; Arabadzhiev, Z.; Stoyanov, D.; Gatseva, P.; Dimitrova, D.D. Lower noise annoyance associated with GIS-derived greenspace: Pathways through perceived greenspace and residential noise. Int. J. Environ. Res. Public Health 2018, 15, 1533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, V.; Gao, J. Importance of structural and spectral parameters in modelling the aboveground carbon stock of urban vegetation. Int. J. Appl. Earth Obs. Geoinf. 2019, 78, 93–101. [Google Scholar] [CrossRef]
- Zhuang, Q.; Shao, Z.; Gong, J.; Li, D.; Huang, X.; Zhang, Y.; Xu, X.; Dang, C.; Chen, J.; Altan, O. Modeling carbon storage in urban vegetation: Progress, challenges, and opportunities. Int. J. Appl. Earth Obs. Geoinf. 2022, 114, 103058. [Google Scholar] [CrossRef]
- Li, Y. Remote Sensing Estimation Model Optimization and Spatio-Temporal Analysis Method of Forest Aboveground Biomass. Ph.D. Thesis, Nanjing Forestry University, Nanjing, China, 2021. [Google Scholar]
- Zhu, X.; Liu, D. Improving forest aboveground biomass estimation using seasonal Landsat NDVI time-series. ISPRS J. Photogramm. Remote Sens. 2015, 102, 222–231. [Google Scholar] [CrossRef]
- Zhang, M.; Du, H.; Zhou, G.; Li, X.; Mao, F.; Dong, L.; Zheng, J.; Liu, H.; Huang, Z.; He, S. Estimating forest aboveground carbon storage in Hang-Jia-Hu using landsat TM/OLI data and random forest model. Forests 2019, 10, 1004. [Google Scholar] [CrossRef] [Green Version]
- Duysak, H.; YİĞİT, E. Investigation of the performance of different wavelet-based fusions of SAR and optical images using Sentinel-1 and Sentinel-2 datasets. Int. J. Eng. Geosci. 2022, 7, 81–90. [Google Scholar] [CrossRef]
- Lu, D. Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon. Int. J. Remote Sens. 2005, 26, 2509–2525. [Google Scholar] [CrossRef]
- Labrecque, S.; Fournier, R.; Luther, J.; Piercey, D. A comparison of four methods to map biomass from Landsat-TM and inventory data in western Newfoundland. For. Ecol. Manag. 2006, 226, 129–144. [Google Scholar] [CrossRef]
- Roy, D.P.; Wulder, M.A.; Loveland, T.R.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Helder, D.; Irons, J.R.; Johnson, D.M.; Kennedy, R. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 2014, 145, 154–172. [Google Scholar] [CrossRef] [Green Version]
- Dong, L.; Du, H.; Han, N.; Li, X.; Zhu, D.e.; Mao, F.; Zhang, M.; Zheng, J.; Liu, H.; Huang, Z. Application of convolutional neural network on lei bamboo above-ground-biomass (AGB) estimation using Worldview-2. Remote Sens. 2020, 12, 958. [Google Scholar] [CrossRef]
- Jun, L.; Yafeng, L.; Ke, Q.; Zhengqiu, F. The quantitative estimation of forest carbon storage and its response to land use change in Fuzhou, China. Acta Ecol. Sin. 2016, 36, 5411–5420. [Google Scholar]
- Shen, G.; Wang, Z.; Liu, C.; Han, Y. Mapping aboveground biomass and carbon in Shanghai's urban forest using Landsat ETM+ and inventory data. Urban For. Urban Green. 2020, 51, 126655. [Google Scholar] [CrossRef]
- Dube, T.; Mutanga, O. Evaluating the utility of the medium-spatial resolution Landsat 8 multispectral sensor in quantifying aboveground biomass in uMgeni catchment, South Africa. ISPRS J. Photogramm. Remote Sens. 2015, 101, 36–46. [Google Scholar] [CrossRef]
- Dang, A.T.N.; Nandy, S.; Srinet, R.; Luong, N.V.; Ghosh, S.; Kumar, A.S. Forest aboveground biomass estimation using machine learning regression algorithm in Yok Don National Park, Vietnam. Ecol. Inform. 2019, 50, 24–32. [Google Scholar] [CrossRef]
- Qi, Z.; Hua, S.; Guangxing, W.; Hui, L.; Yifan, T.; Zhonggang, M. Remote Sensing Retrieval of Forest Carbon Storage in Shenzhen Based on Landsat 8 lmages. J. Northwest For. Univ. 2017, 32, 164–171. [Google Scholar]
- Zhang, M.; Du, H.; Mao, F.; Zhou, G.; Li, X.; Dong, L.; Zheng, J.; Zhu, D.e.; Liu, H.; Huang, Z. Spatiotemporal evolution of urban expansion using Landsat time series data and assessment of its influences on forests. ISPRS Int. J. Geoinf. 2020, 9, 64. [Google Scholar] [CrossRef] [Green Version]
- Dong, L.; Du, H.; Mao, F.; Han, N.; Li, X.; Zhou, G.; Zheng, J.; Zhang, M.; Xing, L.; Liu, T. Very high resolution remote sensing imagery classification using a fusion of random forest and deep learning technique—Subtropical area for example. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 13, 113–128. [Google Scholar] [CrossRef]
- Griffiths, P.; Nendel, C.; Pickert, J.; Hostert, P. Towards national-scale characterization of grassland use intensity from integrated Sentinel-2 and Landsat time series. Remote Sens. Environ. 2020, 238, 111124. [Google Scholar] [CrossRef]
- Qiangxin, O.; Haikui, L.; Xiangdong, L.; Ying, Y. Difference analysis in estimating biomass conversion and expansion factors of masson pine in Fujian Province, China based on national forest inventory data: A comparison of three decision tree models of ensemble learning. Chin. J. Appl. Ecol. 2018, 29, 2007–2016. [Google Scholar] [CrossRef]
- Pham, T.D.; Yokoya, N.; Xia, J.; Ha, N.T.; Le, N.N.; Nguyen, T.T.T.; Dao, T.H.; Vu, T.T.P.; Pham, T.D.; Takeuchi, W. Comparison of machine learning methods for estimating mangrove above-ground biomass using multiple source remote sensing data in the red river delta biosphere reserve, Vietnam. Remote Sens. 2020, 12, 1334. [Google Scholar] [CrossRef] [Green Version]
- Ningna, W. Research on the Integration of the Yangtze River Delta Metropolitan Area with Shanghai as the Core-Based on the Perspective of Inter-City Interlocking Network and Industrial Restructuring. Ph.D. Thesis, Shanghai University of Finance and Economics, Shanghai, China, 2020. [Google Scholar]
- Ying, C. 20-Year Dynamics Changes of Plant Communities in Shanghai Typical Urban Green Space. Master’s Thesis, Central South University of Forestry and Technology, Changsha, China, 2021. [Google Scholar]
- Melson, S.L.; Harmon, M.E.; Fried, J.S.; Domingo, J.B. Estimates of live-tree carbon stores in the Pacific Northwest are sensitive to model selection. Carbon Balance Manag. 2011, 6, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, H.; Zhou, G.; Ge, H.; Fan, W.; Xu, X.; Fan, W.; Shi, Y. Satellite-based carbon stock estimation for bamboo forest with a non-linear partial least square regression technique. Int. J. Remote Sens. 2012, 33, 1917–1933. [Google Scholar] [CrossRef]
- Qiu, C.X.; Dong, Q.K. Study on Remote Sensing lmage Geometric Correction Model. J. Anhui Agric. Sci. 2015, 43, 349–353. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanre, D. Strategy for direct and indirect methods for correcting the aerosol effect on remote sensing: From AVHRR to EOS-MODIS. Remote Sens. Environ. 1996, 55, 65–79. [Google Scholar] [CrossRef]
- Tian, Q.; Zheng, L. Atmospheric radiation correction and reflectance inversion method based on remote sensing image. J. Appl. Meteorol. Sci. 1998, 77–82. [Google Scholar]
- Ying, T.; Zhuoqi, C.; Fengming, H.; Xiao, C.; Lunxi, O. ESA Sentinel-2A/B satellite:characteristics and applications. J. Beijing Norm. Univ. (Nat. Sci.) 2019, 55, 57–65. [Google Scholar] [CrossRef]
- Pasqualotto, N.; D’Urso, G.; Bolognesi, S.F.; Belfiore, O.R.; Van Wittenberghe, S.; Delegido, J.; Pezzola, A.; Winschel, C.; Moreno, J. Retrieval of evapotranspiration from sentinel-2: Comparison of vegetation indices, semi-empirical models and SNAP biophysical processor approach. Agronomy 2019, 9, 663. [Google Scholar] [CrossRef] [Green Version]
- Ji, J.; Li, X.; Du, H.; Mao, F.; Fan, W.; Xu, Y.; Huang, Z.; Wang, J.; Kang, F. Multiscale leaf area index assimilation for Moso bamboo forest based on Sentinel-2 and MODIS data. Int. J. Appl. Earth Obs. Geoinf. 2021, 104, 102519. [Google Scholar] [CrossRef]
- Ni, G. Vegetation Index and lts Advances. J. Arid. Meteorol. 2003, 21, 71–75. [Google Scholar]
- KHORRAMİ, B.; KAMRAN, K.V. A fuzzy multi-criteria decision-making approach for the assessment of forest health applying hyper spectral imageries: A case study from Ramsar forest, North of Iran. Int. J. Eng. Geosci. 2022, 7, 214–220. [Google Scholar] [CrossRef]
- Yunus, K.; Polat, N. A linear approach for wheat yield prediction by using different spectral vegetation indices. Int. J. Eng. Geosci. 2023, 8, 52–62. [Google Scholar]
- Wang, J.; Du, H.; Li, X.; Mao, F.; Zhang, M.; Liu, E.; Ji, J.; Kang, F. Remote Sensing Estimation of Bamboo Forest Aboveground Biomass Based on Geographically Weighted Regression. Remote Sens. 2021, 13, 2962. [Google Scholar] [CrossRef]
- Ren, H.; Zhou, G.; Zhang, F. Using negative soil adjustment factor in soil-adjusted vegetation index (SAVI) for aboveground living biomass estimation in arid grasslands. Remote Sens. Environ. 2018, 209, 439–445. [Google Scholar] [CrossRef]
- Li, X.; Du, H.; Mao, F.; Zhou, G.; Chen, L.; Xing, L.; Fan, W.; Xu, X.; Liu, Y.; Cui, L. Estimating bamboo forest aboveground biomass using EnKF-assimilated MODIS LAI spatiotemporal data and machine learning algorithms. Agric. For. Meteorol. 2018, 256, 445–457. [Google Scholar] [CrossRef]
- Kursa, M.B.; Rudnicki, W.R. Feature selection with the Boruta package. J. Stat. Softw. 2010, 36, 1–13. [Google Scholar] [CrossRef]
- Kursa, M.B.; Jankowski, A.; Rudnicki, W.R. Boruta–a system for feature selection. Fundam. Inform. 2010, 101, 271–285. [Google Scholar] [CrossRef]
- Rudnicki, W.R.; Wrzesień, M.; Paja, W. All relevant feature selection methods and applications. In Feature Selection for Data and Pattern Recognition; Springer: Berlin/Heidelberg, Germany, 2015; pp. 11–28. [Google Scholar]
- Ahady, A.B.; Kaplan, G. Classification comparison of Landsat-8 and Sentinel-2 data in Google Earth Engine, study case of the city of Kabul. Int. J. Eng. Geosci. 2022, 7, 24–31. [Google Scholar] [CrossRef]
- Vafaei, S.; Soosani, J.; Adeli, K.; Fadaei, H.; Naghavi, H.; Pham, T.D.; Tien Bui, D. Improving accuracy estimation of Forest Aboveground Biomass based on incorporation of ALOS-2 PALSAR-2 and Sentinel-2A imagery and machine learning: A case study of the Hyrcanian forest area (Iran). Remote Sens. 2018, 10, 172. [Google Scholar] [CrossRef] [Green Version]
- Vincenzi, S.; Zucchetta, M.; Franzoi, P.; Pellizzato, M.; Pranovi, F.; De Leo, G.A.; Torricelli, P. Application of a Random Forest algorithm to predict spatial distribution of the potential yield of Ruditapes philippinarum in the Venice lagoon, Italy. Ecol. Model. 2011, 222, 1471–1478. [Google Scholar] [CrossRef]
- Çömert, R.; Matci, D.K.; Avdan, U. Object based burned area mapping with random forest algorithm. Int. J. Eng. Geosci. 2019, 4, 78–87. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Ma, J.; Liang, S.; Li, X.; Li, M. An evaluation of eight machine learning regression algorithms for forest aboveground biomass estimation from multiple satellite data products. Remote Sens. 2020, 12, 4015. [Google Scholar] [CrossRef]
- Yu, J.-W.; Yoon, Y.-W.; Baek, W.-K.; Jung, H.-S. Forest Vertical Structure Mapping Using Two-Seasonal Optic Images and LiDAR DSM Acquired from UAV Platform through Random Forest, XGBoost, and Support Vector Machine Approaches. Remote Sens. 2021, 13, 4282. [Google Scholar] [CrossRef]
- Li, Y.; Li, C.; Li, M.; Liu, Z. Influence of variable selection and forest type on forest aboveground biomass estimation using machine learning algorithms. Forests 2019, 10, 1073. [Google Scholar] [CrossRef] [Green Version]
- Dorogush, A.V.; Ershov, V.; Gulin, A. CatBoost: Gradient boosting with categorical features support. arXiv 2018, arXiv:1810.11363. [Google Scholar]
- Sun, H.; He, J.; Chen, Y.; Zhao, B. Space-Time Sea Surface pCO2 Estimation in the North Atlantic Based on CatBoost. Remote Sens. 2021, 13, 2805. [Google Scholar] [CrossRef]
- Ahirwal, J.; Nath, A.; Brahma, B.; Deb, S.; Sahoo, U.K.; Nath, A.J. Patterns and driving factors of biomass carbon and soil organic carbon stock in the Indian Himalayan region. Sci. Total Environ. 2021, 770, 145292. [Google Scholar] [CrossRef]
- Yunjiao, J.; Man, H.; Mingyang, L.; Xiangyang, Z. Remote Sensing Based Estimation of Forest Aboveground Biomass at County Level. J. Southwest For. Univ. (Nat. Sci.) 2015, 35, 53–59. [Google Scholar]
- Du, H.; Zhou, G.; Xu, X. Remote Sensing Quantitative Estimation of Bamboo Biomass Carbon Storage; Science Press: Beijing, China, 2012. [Google Scholar]
- Zhang, Y.; Liang, S.; Sun, G. Forest biomass mapping of northeastern China using GLAS and MODIS data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 7, 140–152. [Google Scholar] [CrossRef]
- Pullanagari, R.R.; Kereszturi, G.; Yule, I. Integrating airborne hyperspectral, topographic, and soil data for estimating pasture quality using recursive feature elimination with random forest regression. Remote Sens. 2018, 10, 1117. [Google Scholar] [CrossRef] [Green Version]
- GuiLian, Z. Spatial Distribution Characteristics of Carbon Storage of Urban Forests in Shanghai Based on Remote Sensing Estimation. Ecol. Environ. Sci. 2021, 30, 1777–1786. [Google Scholar] [CrossRef]
- Kamenova, I.; Dimitrov, P. Evaluation of Sentinel-2 vegetation indices for prediction of LAI, fAPAR and fCover of winter wheat in Bulgaria. Eur. J. Remote Sens. 2021, 54, 89–108. [Google Scholar] [CrossRef]
- Zijun, W.; Guangrong, S.; Yun, Z.; Yujie, H.; Chunjiang, L.; Chunyan, X. Remote-sensing monitoring of urban forest leaf biomass in Shanghai. Chin. J. Ecol. 2016, 35, 1308–1315. [Google Scholar] [CrossRef]
- Chen, L.; Ren, C.; Zhang, B.; Wang, Z.; Xi, Y. Estimation of forest above-ground biomass by geographically weighted regression and machine learning with sentinel imagery. Forests 2018, 9, 582. [Google Scholar] [CrossRef] [Green Version]
- Bourennane, H.; King, D.; Couturier, A.; Nicoullaud, B.; Mary, B.; Richard, G. Uncertainty assessment of soil water content spatial patterns using geostatistical simulations: An empirical comparison of a simulation accounting for single attribute and a simulation accounting for secondary information. Ecol. Model. 2007, 205, 323–335. [Google Scholar] [CrossRef]
- Rodriguez-Veiga, P.; Tansey, K.; Balzter, H. Deliverable D2. 2014. Available online: https://www.researchgate.net/publication/308992082_GIONET_report_Global_Biomass_Information_System_Mapping_Above_Ground_Biomass_Uncertainty_and_Forest_Area_using_Multi-Platform_Earth_Observation_Datasets (accessed on 1 August 2021).
- Saatchi, S.S.; Harris, N.L.; Brown, S.; Lefsky, M.; Mitchard, E.T.; Salas, W.; Zutta, B.R.; Buermann, W.; Lewis, S.L.; Hagen, S. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl. Acad. Sci. USA 2011, 108, 9899–9904. [Google Scholar] [CrossRef]
ID | Year | Sample Dimension | Min (Mg/ha) | Max (Mg/ha) | Mean (Mg/ha) | SD (Mg/ha) |
---|---|---|---|---|---|---|
1 | 2016 | 27 | 1.71 | 53.72 | 26.86 | 12.87 |
2017 | 24 | 2.98 | 55.54 | 26.55 | 11.82 | |
2 | 2018 | 26 | 2.55 | 52.63 | 28.05 | 11.4 |
2019 | 26 | 3.89 | 52.33 | 29.91 | 12.57 |
Satellite | Data ID | 2016 | Data ID | 2017 | ||
---|---|---|---|---|---|---|
Date | Cloud | Date | Cloud | |||
Landsat 8 | LC81180382016202LGN00 | 20/07/2016 | 6.09 | LC81180382017236LGN00 | 24/08/2017 | 0.40 |
LC81180392016122LGN00 | 01/05/2016 | 1.25 | LC81180392017236LGN00 | 24/08/2017 | 0.26 | |
Sentinel-2 | N0202_R089_T51RTQ | 04/05/2016 | 2.62 | N0205_R089_T51RTQ | 28/07/2017 | 0.13 |
N0202_R089_T51RUQ | 04/05/2016 | 5.17 | N0205_R046_T51RUQ | 04/08/2017 | 0.56 | |
N0204_R046_T51SUR | 30/06/2016 | 15.79 | N0205_R089_T51SUR | 27/08/2017 | 1.15 | |
N0204_R089_T51SUR | 02/08/2016 | 19.70 | N0205_R089_T51RUQ | 28/07/2017 | 0.58 | |
N0204_R046_T51RUQ | 30/06/2016 | 4.63 | N0205_R046_T51RUQ | 26/05/2017 | 0.05 | |
Satellite | Data ID | 2018 | Data ID | 2019 | ||
Date | Cloud | Date | Cloud | |||
Landsat 8 | LC81180382018143LGN00 | 23/05/2018 | 18.43 | LC81180382019210LGN00 | 29/07/2019 | 10.78 |
LC81180392018143LGN00 | 23/05/2016 | 4.37 | LC81180392019210LGN00 | 29/07/2019 | 1.66 | |
Sentinel-2 | N0206_R089_T51RTQ | 04/05/2018 | 0.06 | N0208_R089_T51RTQ | 17/08/2019 | 0.01 |
N0206_R089_T51RUQ | 04/05/2018 | 0.03 | N0208_R089_T51RUQ | 17/08/2019 | 0.15 | |
N0204_R046_T51SUR | 04/05/2018 | 15.40 | N0208_R089_T51SUR | 17/08/2019 | 0.09 | |
N0206_R089_T51SUR | 13/06/2016 | 15.92 | N0208_R046_T51RUQ | 14/08/2019 | 2.62 | |
N0206_R046_T51RUQ | 29/08/2016 | 4.10 | N0207_R046_T51RUQ | 15/08/2019 | 1.01 |
Type | Name | Calculation Models or Descriptions | Abbreviation | Remarks |
---|---|---|---|---|
Landsat Original Band | Coastal | Band 1 | B1 | Landsat 8 OLI data |
Blue | Band 2 | B2 | ||
Green | Band 3 | B3 | ||
Red | Band 4 | B4 | ||
NIR | Band 5 | B5 | ||
Swir1 | Band 6 | B6 | ||
Swir2 | Band 7 | B7 | ||
Sentinel-2 Original Band | Blue | Band 2 | S_B1 | Sentinel-2 data |
Green | Band 3 | S_B2 | ||
Red | Band 4 | S_B3 | ||
Red-edge 1 | Band 5 | S_B4 | ||
Red-edge 2 | Band 6 | S_B5 | ||
Red-edge 3 | Band 7 | S_B6 | ||
NIR1 | Band 8 | S_B7 | ||
NIR2 | Band 8A | S_B8 | ||
Swir1 | Band 9 | S_B9 | ||
Swir2 | Band 10 | S_B10 | ||
Vegetation Index | NDVI | NDVI | L takes value for 0.5 [40] | |
NDWI | NDWI | |||
EVI | EVI | |||
RVI | RVI | |||
DVI | DVI | |||
Texture [10] | Mean | MEA | , where is the ith row of the jth column in the Nth moving window; | |
Variance | VAR | |||
Homogeneity | HOM | |||
Contrast | CON | |||
Dissimilarity | DIS | |||
Entropy | ENT | |||
Angular second moment | ASM | |||
Correlation | COR |
Dataset | Number of Selected Variables | Name of Selected Variables |
---|---|---|
L | 11 | W3B4COR, W5B2COR, W5B5VAR, W7B5CON, W7B6VAR, W7B6CON, W9B5CON, W9B5DIS, W11B1CON, W11B5CON, W11B5DIS |
S | 5 | S_EVI, S_W7B8CON, S_W9B3CON, S_W11B3CON, S_W11B7ENT |
L + S | 14 | W3B4COR, W5B2COR, W5B5VAR, W7B5CON, W7B6VAR, W9B5CON, W9B5DIS, W11B1CON, W11B5HOM, W11B5CON, W11B5DIS, W11B5ENT, S_W7B5VAR, S_W9B8CON |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Zhang, G.; Zhong, Q.; Xing, L.; Du, H. Prediction of Urban Forest Aboveground Carbon Using Machine Learning Based on Landsat 8 and Sentinel-2: A Case Study of Shanghai, China. Remote Sens. 2023, 15, 284. https://doi.org/10.3390/rs15010284
Li H, Zhang G, Zhong Q, Xing L, Du H. Prediction of Urban Forest Aboveground Carbon Using Machine Learning Based on Landsat 8 and Sentinel-2: A Case Study of Shanghai, China. Remote Sensing. 2023; 15(1):284. https://doi.org/10.3390/rs15010284
Chicago/Turabian StyleLi, Huimian, Guilian Zhang, Qicheng Zhong, Luqi Xing, and Huaqiang Du. 2023. "Prediction of Urban Forest Aboveground Carbon Using Machine Learning Based on Landsat 8 and Sentinel-2: A Case Study of Shanghai, China" Remote Sensing 15, no. 1: 284. https://doi.org/10.3390/rs15010284
APA StyleLi, H., Zhang, G., Zhong, Q., Xing, L., & Du, H. (2023). Prediction of Urban Forest Aboveground Carbon Using Machine Learning Based on Landsat 8 and Sentinel-2: A Case Study of Shanghai, China. Remote Sensing, 15(1), 284. https://doi.org/10.3390/rs15010284