High-Resolution Observation of Ionospheric E-Layer Irregularities Using Multi-Frequency Range Imaging Technology
Abstract
:1. Introduction
2. Method
2.1. Multifrequency Range Imaging Algorithm
2.2. Equipment and Experimental Setup
3. Result
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Booker, H.G. Turbulence in the ionosphere with applications to meteor trails. radio-star scintillation, auroral radar echoes, and other phenomena. J. Gephys. Res. 1956, 61, 673–705. [Google Scholar] [CrossRef]
- Ratcliffe, J.A. An Introduction to the Ionosphere and Magnetosphere; Cambridge University Press: Cambridge, UK, 1972. [Google Scholar]
- Balan, N.; Liu, L.; Le, H. A brief review of equatorial ionization anomaly and ionospheric irregularities. Earth Planet. Phys. 2018, 2, 257–275. [Google Scholar] [CrossRef]
- Yamamoto, M.; Fukao, S.; Ogawa, T.; Tsuda, K.; Kato, S. A morphological study on mid-latitude E-region field-aligned irregularities observed with the MU radar. J. Atmos. Sol. Terr. Phys. 1992, 54, 769–777. [Google Scholar] [CrossRef]
- Haldoupis, C.; Schlegel, K. Characteristic of midlatitude coherent backscatter from the ionospheric E region obtained with Sporadic E scatter experiment. J. Geophys. Res. 1996, 101, 13387–13397. [Google Scholar] [CrossRef]
- Fukao, S.; Yamamoto, M.; Tsunoda, R.T.; Hayakawa, H.; Mukai, T. The SEEK (Sporadic-E Experiment over Kyushu) Campaign. Geophys. Res. Lett. 1998, 25, 1761–1764. [Google Scholar] [CrossRef]
- Woodman, R.F.; Chau, J.L.; Aquino, F.; Rodriguez, R.R.; Flores, L.A. Low-latitude field-aligned irregularities observed in the E region with the Piura VHF radar, First results. Radio Sci. 1999, 34, 983–990. [Google Scholar] [CrossRef]
- Chau, J.L.; Woodman, R.F.; Flores, L.A. Statistical characteristics of low-latitude ionospheric field-aligned irregularities obtained with the Piura VHF radar. Ann. Geophys. 2002, 20, 1203–1212. [Google Scholar] [CrossRef] [Green Version]
- Patra, A.K.; Sripathi, S.; Sivakumar, V.; Rao, P.B. Statistical characteristics of VHF radar observations of low latitude E-region field-aligned irregularities over Gadanki. J. Atmos. Sol.-Terr. Phys. 2004, 66, 1615–1626. [Google Scholar] [CrossRef]
- Ning, B.; Hu, L.; Li, G.; Liu, L.; Wan, W. The first time observations of low-latitude ionospheric irregularities by VHF radar in Hainan. Sci. China Technol. Sci. 2012, 55, 1189–1197. [Google Scholar] [CrossRef]
- Li, G.Z.; Ning, B.Q.; Hu, L.; Li, M. Observations on the field-aligned irregularities using Sanya VHF radar, 2. Low latitude Ionospheric E-region quasi-periodic echoes in the East Asian sector. Chin. J. Geophys. 2013, 56, 2141–2151. (In Chinese) [Google Scholar]
- Li, G.Z.; Ning, B.Q.; Hu, L. Interferometry observations of low latitude E-region irregularity patches using the Sanya VHF radar. Sci. China Technol. Sci. 2014, 57, 1552–1561. [Google Scholar] [CrossRef]
- Wang, C.; Chu, Y.-H.; Su, C.; Kuong, R.; Chen, H.-C.; Yang, K. Statistical investigations of layer-type and clump-type plasma structures of 3-m field-aligned irregularities in nighttime sporadic E region made with Chung-Li VHF radar. J. Geophys. Res. 2011, 116, A12311. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Liu, Y.; Tang, Q.; Gu, X.; Nin, B.; Zhao, Z. Investigation on the occurrence of mid-latitude E-region irregularity by Wuhan VHF radar and its relationship with sporadic E layer. IEEE Trans. Geosci. Remote Sens. 2018, 99, 7207–7216. [Google Scholar] [CrossRef]
- Tsunoda, R.T.; Buoncore, J.J.; Saito, A.; Kishimoto, T.; Fukao, S.; Yamamoto, M. First observations of quasi-periodic radar echoes from Stanford, California. Geophys. Res. Lett. 1999, 26, 995–998. [Google Scholar] [CrossRef]
- Aa, E.; Zou, S.; Liu, S. Statistical Analysis of Equatorial Plasma Irregularities Retrieved From Swarm 2013–2019 Observations. J.Geophys. Res. 2020, 125, e27022. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, C.; Xu, T.; Deng, Z.; Du, Z.; Lan, T.; Tang, Q.; Zhu, Y.; Wang, Z.; Zhao, Z. Geomagnetic and solar dependencies of midlatitude E-region irregularity occurrence rate, A climatology based on Wuhan VHF radar observations. J. Geophys. Res. Space Phys. 2022, 127, e2021JA029597. [Google Scholar] [CrossRef]
- Woodman, R.F.; Yamamoto, M.; Fukao, S. Gravity wave modulation of gradient drift instabilities in mid-latitude sporadic E irregularities. J. Geophys. Res. 1991, 18, 1197–1200. [Google Scholar]
- Tsunoda, R.T.; Fukao, S.; Yamamoto, M. On the origin of quasiperiodic radar backscatter from midlatitude sporadic E. Radio Sci. 1994, 29, 349–365. [Google Scholar] [CrossRef]
- Yokoyama, T.; Horinouchi, T.; Yamamoto, M.; Fukao, S. Modulation of the midlatitude ionospheric E region by atmospheric gravity waves through polarization electric field. J. Geophys. Res. 2004, 109, A12307. [Google Scholar] [CrossRef]
- Larsen, M.F. A shear instability seeding mechanism for quasiperiodic radar echoes. J. Geophys. Res. 2000, 105, 24931–24940. [Google Scholar] [CrossRef]
- Maruyama, T.; Fukao, S.; Yamamoto, M. A possible mechanism for echo striation generation of radar backscatter from midlatitude sporadic E. Radio Sci. 2000, 35, 1155–1164. [Google Scholar] [CrossRef]
- Bernhardt, P.A. The modulation of sporadic-E layers by Kelvin–Helmholtz billows in the neutral atmosphere. J. Atmos. Sol.-Terr. Phys. 2002, 64, 1487–1504. [Google Scholar] [CrossRef]
- Cosgrove, R.B.; Tsunoda, R.T. Simulation of the nonlinear evolution of the sporadic-E layer instability in the nighttime midlatitude ionosphere. J. Geophys. Res. 2003, 108, 1283. [Google Scholar] [CrossRef]
- Cosgrove, R.B.; Tsunoda, R.T. Instability of the E-F coupled nighttime midlatitude ionosphere. J. Geophys. Res. 2004, 109, A04305. [Google Scholar]
- Cosgrove, R.B.; Tsunoda, R.T.; Fukao, S.; Yamamoto, M. Coupling of the Perkins instability and the sporadic E layer instability derived rom physical arguments. J. Geophys. Res. 2004, 109, A06301. [Google Scholar]
- Liu, Y.; Zhou, C.; Tang, Q.; Kong, J.; Gu, X.D.; Ni, B.B.; Yao, Y.B.; Zhao, Z.Y. Evidence of mid- and low-latitude nighttime ionospheric E-F coupling, coordinated observations of sporadic E layers, F-region field aligned irregularities, and medium-scale traveling ionospheric disturbances. IEEE Trans. Geosci. Remote Sens. 2019, 57, 7547–7557. [Google Scholar] [CrossRef]
- Wu, J.; Zhou, C.; Wang, G.; Liu, Y.; Jiang, C.; Zhao, Z. Simulation of Es Layer Modulated by Nonlinear Kelvin Helmholtz Instability. J. Geophys. Res. Space Phys. 2021, 127, e2021JA030065. [Google Scholar] [CrossRef]
- Ecklund, W.L.; Carter, D.A.; Balsley, B. Gradient drift irregularities in mid-latitude sporadic E. J. Geophys. Res. 1981, 86, 858–862. [Google Scholar] [CrossRef]
- Yamamoto, M.; Fukao, S.; Woodman, R.F.; Ogawa, T.; Tsuda, T.; Kato, S. Midlatitude E region field-aligned irregularities observed with the MU radar. J. Geophys. Res. 1991, 96, 15943–15949. [Google Scholar] [CrossRef]
- Haldoupis, C.; Schlegel, K.; Farley, D.T. An explanation for type 1 radar echoes from the midlatitude E-region ionosphere. Geophys. Res. Lett. 1996, 23, 97–100. [Google Scholar] [CrossRef]
- Jin, H.; Zou, S.; Chen, G.; Yan, C.; Zhang, S.; Yang, G. Formation and Evolution of Low-Latitude F Region Field-Aligned Irregularities During the 7–8 September 2017 Storm, Hainan Coherent Scatter Phased Array Radar and Digisonde Observations. Space Weather 2018, 16, 648–659. [Google Scholar] [CrossRef]
- Jin, S.; Wang, Q.; Dardanelli, G. A Review on Multi-GNSS for Earth Observation and Emerging Applications. Remote Sens. 2022, 14, 3930. [Google Scholar] [CrossRef]
- Maruyama, T.; Saito, S.; Yamamoto, M.; Fukao, S. Simultaneous observation of sporadic E with a rapid-run ionosonde and VHF coherent backscatter radar. Ann. Geophys. 2006, 24, 153–162. [Google Scholar] [CrossRef]
- Chen, J.-S.; Zecha, M. Multiple-frequency range imaging using the OSWIN VHF radar, Phase calibration and first results. Radio Sci. 2009, 44, RS1010. [Google Scholar] [CrossRef]
- Chen, J.-S.; Chu, Y.-H.; Su, C.-L.; Hashiguchi, H.; Li, Y. Range imaging of E-region field-aligned irregularities by using a multifrequency technique, Validation and initial results. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3739–3749. [Google Scholar] [CrossRef]
- Chen, J.-S.; Wang, C.-Y.; Chu, Y.-H.; Su, C.-L.; Hashiguchi, H. 3-D Radar Imaging of E-Region Field-Aligned Plasma Irregularities by Using Multireceiver and Multifrequency Techniques. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5591–5599. [Google Scholar] [CrossRef]
- Chen, J.-S.; Wang, C.-Y.; Chu, Y.-H. Measurement of Aspect Angle of Field-Aligned Plasma Irregularities in Mid-Latitude E Region Using VHF Atmospheric Radar Imaging and Interferometry Techniques. Remote Sens. 2022, 14, 611. [Google Scholar] [CrossRef]
- Palmer, R.D.; Yu, T.Y.; Chilson, P.B. Range imaging using frequency diversity. Radio Sci. 1999, 34, 1485–1496. [Google Scholar] [CrossRef]
- Yu, T.Y.; Palmer, R.D. Atmospheric radar imaging using multiple-receiver and multiple-frequency techniques. Radio Sci. 2001, 36, 1493–1503. [Google Scholar] [CrossRef]
- Capon, J. High-resolution frequency-wavenumber spectrum analysis. Proc. IEEE 1969, 57, 1408–1418. [Google Scholar] [CrossRef] [Green Version]
- Luce, H.; Hassenpflug, G.; Yamamoto, M.; Fukao, S. High-resolution vertical imaging of the troposphere and lower stratosphere using the new MU radar system. Ann. Geophys. 2006, 24, 791–804. [Google Scholar] [CrossRef] [Green Version]
- Ning, B.; Li, Z.; Hu, L.L.M. Observations on the field-aligned irregularities using Sanya VHF radar, 1. Ionospheric E-region continuous echoes. Chin. J. Geophys. 2013, 56, 719–730. (In Chinese) [Google Scholar]
- Zhang, S.; Zhao, Z.; Zhou, C.; Ni, B.G.X. Wuhan VHF coherent scattering radar and its initial observation results. Mod. Electron. Tech. 2016, 39, 1–5. [Google Scholar]
- Earle, G.D.; Bishop, R.L.; Collins, S.C.; Gonzalez, S.A.; Sulzer, M.P. Descending layer variability over Arecibo. J. Geophys. Res. 2000, 105, 24951–24961. [Google Scholar] [CrossRef]
- Mathews, J.D. Sporadic E, Current views and recent progress. J. Atmos. Sol. Terr. Phys. 1998, 60, 413–435. [Google Scholar] [CrossRef]
- Szuszczewicz, E.P.; Roble, R.G.; Wilkinson, P.J.; Hanbaba, R. Coupling mechanisms in the lower ionospheric-thermospheric system and manifestations in the formation and dynamics of intermediate and descending layers. J. Atmos. Terr. Phys. 1995, 57, 1483–1496. [Google Scholar] [CrossRef]
- Zhu, Y.; Tang, Q.; Deng, Z.; Zhou, C.; Liu, Y.; Xu, T.; Wang, Z.; Zhao, Z.; Wei, F.; Feng, X. The study of daytime ionospheric E-region radar echoes simultaneously observed by Qujing VHF radar and multi-ionosondes. Space Weather 2022, 20, e2021SW002998. [Google Scholar] [CrossRef]
System | VHF Pulse Doppler Radar |
---|---|
Center frequency | 48.2 MHz |
Antenna | 1 sending and 24 receiving |
Transmitter | Peak power: 20 Kw |
Receiver | 6 Digital channel receiving system |
Peripherals | 24 antennas for layer E FAI observation |
Parameter | Numerical Value |
---|---|
Observation site | (114.2°E, 30.3°N) |
Observation time | From 15 July 2022 to now |
Distance range | 130 km–250 km |
Original range resolution | 500 m |
Time resolution | 1 min |
Pulse repetition rate | 550 Hz |
Coherent accumulation times | 8 |
Coding system | 16 bit complementary code |
Transmission signal bandwidth | 320 kHz |
Carrier frequency (MHz) | 48.15, 48.16, 48.17, 48.18, 48.19 48.20, 48.21, 48.22, 48.23, 48.24, 48.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, B.; Liu, Y.; Feng, J.; Zhang, Y.; Zhou, Y.; Zhou, C.; Zhao, Z. High-Resolution Observation of Ionospheric E-Layer Irregularities Using Multi-Frequency Range Imaging Technology. Remote Sens. 2023, 15, 285. https://doi.org/10.3390/rs15010285
Chen B, Liu Y, Feng J, Zhang Y, Zhou Y, Zhou C, Zhao Z. High-Resolution Observation of Ionospheric E-Layer Irregularities Using Multi-Frequency Range Imaging Technology. Remote Sensing. 2023; 15(1):285. https://doi.org/10.3390/rs15010285
Chicago/Turabian StyleChen, Bo, Yi Liu, Jian Feng, Yuqiang Zhang, Yufeng Zhou, Chen Zhou, and Zhengyu Zhao. 2023. "High-Resolution Observation of Ionospheric E-Layer Irregularities Using Multi-Frequency Range Imaging Technology" Remote Sensing 15, no. 1: 285. https://doi.org/10.3390/rs15010285
APA StyleChen, B., Liu, Y., Feng, J., Zhang, Y., Zhou, Y., Zhou, C., & Zhao, Z. (2023). High-Resolution Observation of Ionospheric E-Layer Irregularities Using Multi-Frequency Range Imaging Technology. Remote Sensing, 15(1), 285. https://doi.org/10.3390/rs15010285