A CNN-Based Layer-Adaptive GCPs Extraction Method for TIR Remote Sensing Images
Abstract
:1. Introduction
2. Related Work
3. Methods
3.1. CNN Feature Extractor
3.1.1. Basic Module
3.1.2. Layer-Adaptive Module
3.2. Feature Detection and Description
3.2.1. Feature Detection and Description on
3.2.2. Multiscale Detection
3.3. Feature Matching and Outlier Removal
3.4. Transfer Learning and Fine-Tuning
3.4.1. Transfer Learning
3.4.2. Triplet Margin Ranking Loss
3.4.3. Training Data
- The scale of the training data should be large enough.
- Training data needs to have pixel-level correspondence.
- The training data should have significant radiation and geometric differences.
4. Experimental Results and Discussion
4.1. Experimental Datasets
4.2. Results and Discussion
4.2.1. Experiment 1
4.2.2. Experiment 2
4.3. Further Evaluation and Analysis
4.3.1. Ablation Study
4.3.2. Model Complexity Analysis
4.3.3. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, L.Y.; Li, L.Y.; Li, X.Y.; Jiao, J.J.; Chen, F.S. Extrapolating distortion correction with local measurements for space-based multi-module splicing large-format infrared cameras. Opt. Express 2022, 30, 38043–38059. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Li, X.Y.; Jiang, L.Y.; Zeng, F.J.; Pan, W.H.; Chen, F.S. Resolution-Normalizing Image Stitching for Long-Linear-Array and Wide-Swath Whiskbroom Payloads. IEEE Geosci. Remote Sens. Lett. 2022, 19, 7507705. [Google Scholar] [CrossRef]
- Li, X.Y.; Hu, Z.Y.; Jiang, L.Y.; Yang, L.; Chen, F.S. GCPs Extraction with Geometric Texture Pattern for Thermal Infrared Remote Sensing Images. IEEE Geosci. Remote Sens. Lett. 2022, 19, 7000205. [Google Scholar] [CrossRef]
- Maes, F.; Collignon, A.; Vandermeulen, D.; Marchal, G.; Suetens, P. Multimodality image registration by maximization of mutual information. IEEE Trans. Med. Imaging 1997, 16, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Cole-Rhodes, A.A.; Johnson, K.L.; LeMoigne, J.; Zavorin, I. Multiresolution registration of remote sensing imagery by optimization of mutual information using a stochastic gradient. IEEE Trans. Image Process. 2003, 12, 1495–1511. [Google Scholar] [CrossRef] [PubMed]
- Fischler, M.A.; Bolles, R.C. Random Sample Consensus—A Paradigm for Model-Fitting with Applications to Image-Analysis and Automated Cartography. Commun. ACM 1981, 24, 381–395. [Google Scholar] [CrossRef]
- Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Harris, C.; Stephens, M. A combined corner and edge detector. In Alvey Vision Conference; Alvety Vision Club: Manchester, UK, 1988. [Google Scholar]
- Moravec, H.P. Obstacle Avoidance and Navigation in the Real World by a Seeing Robot Rover. Ph.D. Dissertation, Stanford University, Stanford, CA, USA, 1980. [Google Scholar]
- Rosten, E.; Drummond, T. Fusing points and lines for high performance tracking. In Proceedings of the 10th IEEE International Conference on Computer Vision, Beijing, China, 17–20 October 2005. [Google Scholar]
- Smith, S.M.; Brady, J.M. SUSAN—A new approach to low level image processing. Int. J. Comput. Vis. 1997, 23, 45–78. [Google Scholar] [CrossRef]
- Chen, B.Y.; Li, X.Y.; Zhang, G.X.; Guo, Q.; Wu, Y.P.; Wang, B.Y.; Chen, F.S. On-orbit installation matrix calibration and its application on AGRI of FY-4A. J. Appl. Remote Sens. 2020, 14, 024507. [Google Scholar] [CrossRef]
- Bay, H.; Tuytelaars, T.; Van Gool, L. SURF: Speeded up robust features. In Proceedings of the 9th European Conference on Computer Vision, Graz, Austria, 7–13 May 2006; pp. 404–417. [Google Scholar]
- Yu, G.S.; Morel, J.M. ASIFT: An Algorithm for Fully Affine Invariant Comparison. Image Process. Line 2011, 1, 11–38. [Google Scholar] [CrossRef]
- Ma, W.P.; Wen, Z.L.; Wu, Y.; Jiao, L.C.; Gong, M.G.; Zheng, Y.F.; Liu, L. Remote Sensing Image Registration with Modified SIFT and Enhanced Feature Matching. IEEE Geosci. Remote Sens. Lett. 2017, 14, 3–7. [Google Scholar] [CrossRef]
- Ye, Y.; Shen, L. HOPC: A Novel Similarity Metric Based on Geometric Structural Properties for Multi-Modal Remote Sensing Image Matching. In Proceedings of the 23rd ISPRS Congress, Prague, Czech Republic, 12–19 July 2016; pp. 9–16. [Google Scholar]
- Li, J.Y.; Hu, Q.W.; Ai, M.Y. RIFT: Multi-Modal Image Matching Based on Radiation-Variation Insensitive Feature Transform. IEEE Trans. Image Process. 2020, 29, 3296–3310. [Google Scholar] [CrossRef] [PubMed]
- Han, X.F.; Leung, T.; Jia, Y.Q.; Sukthankar, R.; Berg, A.C. MatchNet: Unifying Feature and Metric Learning for Patch-Based Matching. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3279–3286. [Google Scholar]
- Dusmanu, M.; Rocco, I.; Pajdla, T.; Pollefeys, M.; Sivic, J.; Torii, A.; Sattler, T. D2-Net: A Trainable CNN for Joint Description and Detection of Local Features. In Proceedings of the 32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 8084–8093. [Google Scholar]
- DeTone, D.; Malisiewicz, T.; Rabinovich, A. SuperPoint: Self-Supervised Interest Point Detection and Description. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 337–349. [Google Scholar]
- Zagoruyko, S.; Komodakis, N. Learning to Compare Image Patches via Convolutional Neural Networks. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 4353–4361. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Yang, Z.Q.; Dan, T.T.; Yang, Y. Multi-Temporal Remote Sensing Image Registration Using Deep Convolutional Features. IEEE Access 2018, 6, 38544–38555. [Google Scholar] [CrossRef]
- Ma, W.P.; Zhang, J.; Wu, Y.; Jiao, L.C.; Zhu, H.; Zhao, W. A Novel Two-Step Registration Method for Remote Sensing Images Based on Deep and Local Features. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4834–4843. [Google Scholar] [CrossRef]
- Ye, F.M.; Su, Y.F.; Xiao, H.; Zhao, X.Q.; Min, W.D. Remote Sensing Image Registration Using Convolutional Neural Network Features. IEEE Geosci. Remote Sens. Lett. 2018, 15, 232–236. [Google Scholar] [CrossRef]
- Zhu, H.; Jiao, L.C.; Ma, W.P.; Liu, F.; Zhao, W. A Novel Neural Network for Remote Sensing Image Matching. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 2853–2865. [Google Scholar] [CrossRef] [PubMed]
- Hughes, L.H.; Schmitt, M.; Mou, L.C.; Wang, Y.Y.; Zhu, X.X. Identifying Corresponding Patches in SAR and Optical Images with a Pseudo-Siamese CNN. IEEE Geosci. Remote Sens. Lett. 2018, 15, 784–788. [Google Scholar] [CrossRef]
- Zhang, H.; Ni, W.P.; Yan, W.D.; Xiang, D.L.; Wu, J.Z.; Yang, X.L.; Bian, H. Registration of Multimodal Remote Sensing Image Based on Deep Fully Convolutional Neural Network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 3028–3042. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Li, F.F. ImageNet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami Beach, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar]
- Li, Z.Q.; Snavely, N. MegaDepth: Learning single-view depth prediction from internet photos. In Proceedings of the 31st IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 2041–2050. [Google Scholar]
- Mishchuk, A.; Mishkin, D.; Radenovic, F.; Matas, J. Working hard to know your neighbor’s margins: Local descriptor learning loss. In Proceedings of the 31st Annual Conference on Neural Information Processing Systems (NIPS), Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Schonberger, J.L.; Frahm, J.M. Structure-from-Motion Revisited. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 27–30 June 2016. [Google Scholar]
Operation | |
---|---|
1 | max pooling(2,1) + conv4 |
2 | max pooling(3,1) + conv4 |
3 | max pooling(4,1) + conv4 |
4 | average pooling(2,1) + conv4 |
5 | average pooling(3,1) + conv4 |
Item | Satellite | Category | Date and Time (Local) | Bands (μm) | GSD 1 (m) | Description |
---|---|---|---|---|---|---|
P-A and P-B | Landsat-8 OLI | SWIR | 3 February 2021, 11:45 | 2.1–2.3 | 30 | Mountainous areas |
SDGSAT-1-TIS | TIR | 20 November 2022, 14:36 | 8.0–10.5 | 30 | ||
P-C and P-D | Landsat-8 OLI | PAN | 30 January 2021, 10:32 | 0.50–0.68 | 15 | Dense urban distribution areas |
SDGSAT-1-TIS | TIR | 24 February 2022, 09:45 | 10.3–11.3 | 30 | ||
P-E | Landsat-8 OLI | NIR | 10 December 2013, 10:32 | 0.84–0.88 | 30 | Large span of time, containing waters |
SDGSAT-1-TIS | TIR | 24 February 2022, 09:45 | 10.3–11.3 | 30 |
Item | Method | RMSE (Pixel) | NGCPs | RT (s) | Item | Method | RMSE (Pixel) | NGCPs | RT (s) |
---|---|---|---|---|---|---|---|---|---|
P-A | SIFT | - | 7 | 0.493 | P-B | SIFT | - | 8 | 0.753 |
RIFT | 1.528 | 350 | 13.11 | RIFT | 1.501 | 296 | 13.45 | ||
D2-Net | 1.309 | 503 | 5.016 | D2-Net | 1.400 | 337 | 4.259 | ||
Proposed (R = 0.8) | 0.737 | 622 | 5.515 | Proposed (R = 0.8) | 0.749 | 561 | 5.111 | ||
P-C | SIFT | - | 5 | 0.541 | P-D | SIFT | - | 4 | 0.525 |
RIFT | 4.389 | 248 | 12.87 | RIFT | 4.023 | 217 | 12.51 | ||
D2-Net | 0.417 | 2735 | 8.159 | D2-Net | 0.664 | 1798 | 9.422 | ||
Proposed (R = 0.2) | 0.088 | 6644 | 12.56 | Proposed (R = 0.2) | 0.132 | 4181 | 11.554 | ||
P-E | SIFT | 1.003 | 36 | 0.446 | |||||
RIFT | 1.002 | 1397 | 13.6 | ||||||
D2-Net | 1.224 | 819 | 3.316 | ||||||
Proposed (R = 0.8) | 0.791 | 1069 | 3.453 |
Item | Method | RMSE (Pixel) | NGCPs | RT (s) |
---|---|---|---|---|
P-A | Proposed (Without LAM 1) | 1.324 | 447 | 3.989 |
Proposed (Without Resampling) | 0.918 | 369 | 2.723 | |
Proposed (Without LAM and Resampling) | 1.871 | 294 | 2.253 | |
Proposed | 0.737 | 622 | 5.515 | |
P-B | Proposed (Without LAM) | 1.531 | 430 | 3.408 |
Proposed (Without Resampling) | 0.985 | 237 | 2.662 | |
Proposed (Without LAM and Resampling) | 1.537 | 233 | 2.708 | |
Proposed | 0.749 | 561 | 5.111 | |
P-C | Proposed (Without LAM) | 0.484 | 2030 | 5.632 |
Proposed (Without Resampling) | 0.889 | 414 | 9.571 | |
Proposed (Without LAM and Resampling) | 1.049 | 297 | 3.444 | |
Proposed | 0.088 | 6644 | 12.56 | |
P-D | Proposed (Without LAM) | 0.463 | 1087 | 5.463 |
Proposed (Without Resampling) | 0.148 | 498 | 9.583 | |
Proposed (Without LAM and Resampling) | 0.791 | 383 | 3.512 | |
Proposed | 0.132 | 4181 | 11.554 | |
P-E | Proposed (Without LAM) | 1.121 | 925 | 3.416 |
Proposed (Without Resampling) | 0.917 | 572 | 2.676 | |
Proposed (Without LAM and Resampling) | 1.075 | 561 | 2.676 | |
Proposed | 0.791 | 1069 | 3.453 |
Model | Image Size | GFLOPs | Parameters |
---|---|---|---|
VGG16 | 224 | 15.5 | 138 M |
ResNet-based | 224 | 3.87 | 25.6 M |
VGG16-based | 224 | 14.4 | 9.99 M |
DenseNet-based | 224 | 11.32 | 7.89 M |
Proposed | 224 | 13.9 | 7.63 M |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, L.; Jiao, J.; Yang, L.; Pan, W.; Zeng, F.; Li, X.; Chen, F. A CNN-Based Layer-Adaptive GCPs Extraction Method for TIR Remote Sensing Images. Remote Sens. 2023, 15, 2628. https://doi.org/10.3390/rs15102628
Zhao L, Jiao J, Yang L, Pan W, Zeng F, Li X, Chen F. A CNN-Based Layer-Adaptive GCPs Extraction Method for TIR Remote Sensing Images. Remote Sensing. 2023; 15(10):2628. https://doi.org/10.3390/rs15102628
Chicago/Turabian StyleZhao, Lixing, Jingjie Jiao, Lan Yang, Wenhao Pan, Fanjun Zeng, Xiaoyan Li, and Fansheng Chen. 2023. "A CNN-Based Layer-Adaptive GCPs Extraction Method for TIR Remote Sensing Images" Remote Sensing 15, no. 10: 2628. https://doi.org/10.3390/rs15102628
APA StyleZhao, L., Jiao, J., Yang, L., Pan, W., Zeng, F., Li, X., & Chen, F. (2023). A CNN-Based Layer-Adaptive GCPs Extraction Method for TIR Remote Sensing Images. Remote Sensing, 15(10), 2628. https://doi.org/10.3390/rs15102628