Global Distribution and Morphodynamic Patterns of Paired Spits Developed at the Mouths of Interdistributary Bays of Deltas and within Coastal Channels
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Global Distribution and Geomorphological Description
3.2. Natural Morphodynamics
3.3. Hydrodynamics
3.4. Anthropization of the Paired Spits
4. Discussion
4.1. Hydrodynamic Control
4.2. Sediment Availability and Sedimentary Interactions
4.3. Morphogenetic Models and Morphodynamic Patterns of Paired Spits
4.4. Anthropization of the Paired Spits
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bowman, G.; Harvey, N. Geomorphic evolution of a Holocene beach-ridge complex, LeFevre Peninsula, South Australia. J. Coast. Res. 1986, 2, 345–362. [Google Scholar]
- Davis, R.A.; FitzGerald, D.M. Beaches and Coasts; Blackwell Publishing: Oxford, UK, 2004; 419p. [Google Scholar]
- Shawler, J.L.; Hein, C.J.; Obara, C.A.; Robbins, M.G.; Huot, S.; Fenster, M.S. The effect of coastal landform development on decadal-to millennial-scale longshore sediment fluxes: Evidence from the Holocene evolution of the central mid-Atlantic coast, USA. Quat. Sci. Rev. 2021, 7, 107096. [Google Scholar] [CrossRef]
- Evans, O.F. The origin of spits, bars and related structures. J. Geol. 1942, 50, 846–865. [Google Scholar] [CrossRef]
- Otvos, E.G. Coastal barriers—Nomenclature, processes, and classification issues. Geomorphology 2012, 139–140, 39–52. [Google Scholar] [CrossRef]
- Davis, R.A. Barrier Island Systems—A Geologic Overview. In Geology of Holocene Barrier Island Systems; Davis, R.A., Ed.; Springer: Berlin/Heidelberg, Germany, 1994; pp. 1–46. [Google Scholar] [CrossRef]
- Ashton, A.D.; Nienhuis, J.; Ells, K. On a neck, on a spit: Controls on the shape of free spits. Earth Surf. Dyn. 2016, 4, 193–210. [Google Scholar] [CrossRef]
- Cartera, R.W.G.; Orford, J.D.; Jennings, S.C. The recent transgressive evolution of a paraglacial estuary as a consequence of coastal barrier breakdown: Lower Chezzetcook Inlet, Nova Scotia, Canada. J. Coast. Res. 1990, 9, 564–590. [Google Scholar]
- Kraus, N.C.; Patsch, K.; Munger, S. Barrier beach breaching from the lagoon side, with reference to Northern California. Shore Beach 2008, 76, 33–43. [Google Scholar]
- Bastos, L.; Bio, A.; Pinho, J.L.S.; Granja, H.; da Silva, A.J. Dynamics of the Douro estuary sand spit before and after breakwater construction. Estuar. Coast. Shelf Sci. 2012, 109, 53–69. [Google Scholar] [CrossRef]
- Behrens, D.K.; Bombardelli, F.A.; Largier, J.L.; Twohy, E. Episodic closure of the tidal inlet at the mouth of the Russian River—A small bar-built estuary in California. Geomorphology 2013, 189, 66–80. [Google Scholar] [CrossRef]
- Kumar, A.; Narayana, A.C.; Jayappa, K.S. Shoreline changes and morphology of spits along southern Karnataka, west coast of India: A remote sensing and statistics-based approach. Geomorphology 2010, 120, 133–152. [Google Scholar] [CrossRef]
- Green, A.; Cooper, J.A.G.; LeVieux, A. Unusual barrier/inlet behaviour associated with active coastal progradation and river-dominated estuaries. J. Coast. Res. 2013, 69, 35–45. [Google Scholar] [CrossRef]
- Bateman, M.D.; McHale, K.; Bayntun, H.J.; Williams, N. Understanding historical coastal spit evolution: A case study from Spurn, East Yorkshire, UK. Earth Surf. Process. Landf. 2020, 45, 3670–3686. [Google Scholar] [CrossRef]
- Hoang, V.C.; Tanaka, H.; Mitobe, Y. Estuarine morphology recovery after the 2011 Great East Japan earthquake tsunami. Mar. Geol. 2018, 398, 112–125. [Google Scholar] [CrossRef]
- Robin, N.; Levoy, F.; Anthony, E.J.; Monfort, O. Sand spit dynamics in a large tidal-range environment: Insight from multiple LiDAR, UAV and hydrodynamic measurements on multiple spit hook development, breaching, reconstruction, and shoreline changes. Earth Surf. Process. Landf. 2020, 45, 2706–2726. [Google Scholar] [CrossRef]
- Gunasinghe, G.P.; Ruhunage, L.; Ratnayake, N.P.; Ratnayake, A.S.; Samaradivakara, G.V.I.; Jayaratne, R. Influence of manmade effects on geomorphology, bathymetry and coastal dynamics in a monsoon-affected river outlet in Southwest coast of Sri Lanka. Environ. Earth Sci. 2021, 80, 238. [Google Scholar] [CrossRef]
- Bhattacharya, J.P.; Giosan, L. Wave-influenced deltas: Geomorphological implications for facies reconstruction. Sedimentology 2003, 50, 187–210. [Google Scholar] [CrossRef]
- Van Maren, D.S. Barrier formation on an actively prograding delta system: The Red River delta, Vietnam. Mar. Geol. 2005, 224, 123–143. [Google Scholar] [CrossRef]
- Ashton, A.D.; Giosan, L. Wave-angle control of delta evolution. Geophys. Res. Lett. 2011, 38, L13405. [Google Scholar] [CrossRef]
- Anthony, E.J. Wave influence in the construction, shaping and destruction of river deltas: A review. Mar. Geol. 2015, 361, 53–78. [Google Scholar] [CrossRef]
- Dan, S.; Stive, M.J.; Walstra, D.J.R.; Panin, N. Wave climate, coastal sediment budget and shoreline changes for the Danube Delta. Mar. Geol. 2009, 262, 39–49. [Google Scholar] [CrossRef]
- Ward, E.M. English Coastal Evolution; Methuen & Co. Ltd.: London, UK, 1922; 105p. [Google Scholar]
- Lovegrove, C.H. Old shorelines near Camber Castle. Geog. J. 1953, 119, 200. [Google Scholar] [CrossRef]
- Zenkovich, V.P. Processes of Coastal Development; Wiley-Interscience: New York, NY, USA, 1967; 751p. [Google Scholar]
- Kunte, P.D.; Wagle, B. Spit evolution and shore drift direction along South Karnataka Coast, India. G. Giol. 1991, 153, 71–80. [Google Scholar]
- FitzGerald, D.M.; Kraus, N.C.; Hands, E.B. Natural Mechanisms of Sediment Bypassing at Tidal Inlets, Coastal and Hydraulics Engineering Technical Note IV–30; United States Army Engineer Research and Development Center: Vicksburg, MS, USA, 2000; 10p. [Google Scholar]
- Hume, T.M.; Herdendorf, C.E. Factors congtrolling tidal inlet characteristics on low drift coasts. J. Coast. Res. 1992, 8, 355–375. [Google Scholar]
- Aubrey, D.G.; Gaines, A.G. Rapid formation and degradation of barrier spits in areas with low rates of littoral drift. Mar. Geol. 1982, 49, 257–277. [Google Scholar] [CrossRef]
- Alcántara-Carrió, J.; Dinkel, T.M.; Portz, L.; Mahiques, M.M. Two new conceptual models for formation and degradation of baymouth spits by longshore drift and fluvial discharge (Iguape, SE Brazil). Earth Surf. Process. Landf. 2018, 43, 695–709. [Google Scholar] [CrossRef]
- Zenkovitch, V.P. On the genesis of the cuspate spits along lagoon shores. J. Geol. 1959, 67, 269–277. [Google Scholar] [CrossRef]
- Jensen, J.B.; Stecher, O. Paraglacial barrier-lagoon development in the late Pleistocene Baltic Ice Lake, southwestern Baltic. Mar. Geol. 1992, 107, 81–101. [Google Scholar] [CrossRef]
- Boggs, D.A.; Boggs, G.S.; Eliot, I.; Knott, B. Regional patterns of salt lake morphology in the lower Yarra Yarra drainage system of Western Australia. J. Arid Environ. 2006, 64, 97–115. [Google Scholar] [CrossRef]
- Mahanty, M.M.; Mohanty, P.K.; Pradhan, S.; Samal, R.N.; Ranga Rao, V. Spit and inlet morphodynamics of a tropical coastal lagoon. Mar. Geod. 2019, 42, 130–165. [Google Scholar] [CrossRef]
- Rosen, P.S. Origin and processes of cuspate spit shorelines. In Estuarine and Research. Vol II Geology and Engineering; Academic Press: New York, NY, USA, 1975; pp. 77–92. [Google Scholar]
- Alcántara-Carrió, J.; Caicedo, A.C.; Hernández, J.; Jaramillo-Velez, A.; Manzolli, R.P. Sediment bypassing from the new human-induced lobe to the ancient lobe of the Turbo delta (Gulf of Urabá; southern Caribbean Sea). J. Coast. Res. 2019, 35, 196–209. [Google Scholar]
- O’Shea, M.; Murphy, J. Predicting and monitoring the evolution of a coastal barrier dune system postbreaching. J. Coast. Res. 2013, 29, 38–50. [Google Scholar] [CrossRef]
- Avinash, K.; Deepika, B.; Jayappa, K.S. Evolution of spit morphology: A case study using a remote sensing and statistical based approach. J. Coast. Conserv. 2013, 17, 327–337. [Google Scholar] [CrossRef]
- Alcántara-Carrió, J.; Mahiques, M.M.; Portz, L. Paired baymouth spits. In Encyclopedia of Coastal Sciences; Finkl, C.W., Makowski, C., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–7. [Google Scholar] [CrossRef]
- Cencini, C. Physical process and human activities in the evolution of Po River delta, Italy. J. Coast. Res. 1998, 14, 774–793. [Google Scholar]
- Gabbianelli, G.; Del Grande, C.; Simeoni, U.; Zamariolo, A.; Calderoni, G. Evoluzione dell’area di Goro negli ultimi cinque secoli (Delta del Po). Studi Costieri 2000, 2, 45–63. [Google Scholar]
- Simeoni, U.; Fontolan, G.; Tessari, U.; Corbau, C. Domains of spit evolution in the Goro area, Po River delta, Italy. Geomorphology 2007, 86, 332–348. [Google Scholar] [CrossRef]
- Simeoni, U.; Fontolan, G.; Dal Cin, R.; Calderoni, G.; Zamariolo, A. Dinamica sedimentaria dell’area di Goro (Delta del Po). Studi Costieri 2000, 2, 139–151. [Google Scholar]
- Simeoni, U.; Dal Cin, R.; Fontolan, G.; Tessari, U. Morfogenesi ed evoluzione dello Scanno di Goro (Delta del Po). Studi Costieri 2000, 2, 5–20. [Google Scholar]
- Guilcher, A. Angola. In Encyclopedia of the World’s Coastal Landforms; Bird, E.C.F., Ed.; Springer: Dordrecht, The Netherlands, 2010; pp. 963–967. [Google Scholar] [CrossRef]
- Bird, E.C.F. (Ed.) New Brunswick and Nova Scotia. In Encyclopedia of the World’s Coastal Landforms; Springer: Dordrecht, The Netherlands, 2010; pp. 141–154. [Google Scholar]
- Zimmermann, M.; Prescott, M.M. False Pass, Alaska: Significant changes in depth and shoreline in the historic time period. Fish. Oceanogr. 2021, 30, 264–279. [Google Scholar] [CrossRef]
- Gad, F.K.; Hatiris, G.A.; Loukaidi, V.; Dimitriadou, S.; Drakopoulou, P.; Sioulas, A.; Kapsimalis, V. Long-term shoreline displacements and coastal morphodynamic pattern of north Rhodes Island, Greece. Water 2018, 10, 849. [Google Scholar] [CrossRef]
- Moghaddam, E.I.; Allahdadi, M.N.; Ashrafi, A.; Chaichitehrani, N. Coastal system evolution along the southern Caspian Sea coast using satellite image analysis: Response to the sea level fall during 1994-2-15. Arab. J. Geosci. 2021, 14, 771. [Google Scholar] [CrossRef]
- Jose, F.; Carlin, F. Storm-Driven Morphodynamics of a Sandy Beach in Florida. J. Coast. Res. 2022, 38, 896–907. [Google Scholar] [CrossRef]
- Taveneau, A.; Almar, R.; Bergsma, E.W.; Sy, B.A.; Ndour, A.; Sadio, M.; Garlan, T. Observing and predicting coastal erosion at the Langue de Barbarie sand spit around Saint Louis (Senegal, West Africa) through satellite-derived digital elevation model and shoreline. Remote Sen. 2021, 13, 2454. [Google Scholar] [CrossRef]
- Google Earth Pro. 2023. Available online: http://www.earth.google.com (accessed on 11 April 2023).
- Harvey, N.; Gross, A.M.; Jose, F.; Savarese, M.; Missimer, T. Geomorphologic impact of Hurricane Irma on Marco Island, southwest Florida. Nat. Hazards 2021, 3, 1–17. [Google Scholar] [CrossRef]
- Navionic ChartViewer. 2023. Available online: https://webapp.navionics.com (accessed on 11 April 2023).
- Maicu, F.; Alessandri, J.; Pinardi, N.; Verri, G.; Umgiesser, G.; Lovo, S.; Turolla, S.; Paccagnella, T.; Valentini, A. Downscaling with an unstructured coastal-ocean model to the Goro Lagoon and the Po River delta branches. Front. Mar. Sci. 2021, 8, 647781. [Google Scholar] [CrossRef]
- Smith, W.H.F.; Sandwell, D.T. Global sea floor topography from satellite altimetry and ship depth soundings. Science 1997, 277, 1956–1962. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Hourly Data on Single Levels from 1940 to Present; Copernicus Climate Change Service (C3S) Climate Data Store (CDS): Reading, UK, 2023. [Google Scholar] [CrossRef]
- Pe’eri, S.; Keown, P.; Snyder, L.P.; Gonsalves, M.; Nyberg, J. Reconnaissance surveying of Bechevin Bay, AK using satellite-derived bathymetry. In Proceedings of the US Hydrographic Conference 2015, National Harbor, MD, USA, 16–19 March 2015. [Google Scholar]
- Flater, D. WXTide32. 2007. Available online: http://www.wxtide32.com (accessed on 11 April 2023).
- Canadian Hydrographic Service. 2023. Available online: https://tides.gc.ca/en/stations (accessed on 11 April 2023).
- Davies, J.L. A morphogenetic approach to world shorelines. Z. Geomorphol. 1964, 8, 1–42. [Google Scholar]
- Woodroffe, C.D. Coasts: Form, Process and Evolution; Cambridge University Press: Cambridge, UK, 2003; 640p. [Google Scholar]
- GloVis; 2023. Available online: http://glovis.usgs.gov (accessed on 11 April 2023).
- Alcántara-Carrió, J.; Fontán Bouzas, A.; Albarracín, S.; Correa, I.D.; Montoya Montes, I.; Mahiques, M. Geomorphological coastal classification after natural processes and human disturbance. Oceanography 2014, 2, e108. [Google Scholar] [CrossRef]
- Petersen, D.; Deigaard, R.; Fredsøe, J. Modelling the morphology of sandy spits. Coast. Eng. 2008, 55, 671–684. [Google Scholar] [CrossRef]
- Kim, D.; Jo, J.; Nam, S.I.; Choi, K. Morphodynamic evolution of paraglacial spit complexes on a tide-influenced Arctic fjord delta (Dicksonfjorden, Svalbard). Mar. Geol. 2022, 447, 106800. [Google Scholar] [CrossRef]
- Carr, A.P. Aspects of spit development and decay: The estuary of the River Ore, Suffolk. Field Stud. 1972, 3, 633–653. [Google Scholar]
- Carr, A.P. The estuary of the river Ore, Suffolk: Three decades of change in a longer-term context. Field Stud. 1986, 6, 439–458. [Google Scholar]
- Fox, D.; Pontee, N.I.; Fisher, E.; Box, S.; Rogers, J.R.; Reeve, D.E.; Chadwick, A.J.; Sims, P. Spits and flood risk: The Exe estuary. In Proceedings of the Flood and Coastal Management Conference, Manchester, UK, 1–3 July 2008; pp. 1–10. [Google Scholar]
- Harlow, D.A. The littoral sediment budget between Selsey Bill and Gilkicker Point, and its relevance to coast protection works on Hayling Island. Q. J. Eng. Geol. Hydrogeol. 1979, 12, 257–265. [Google Scholar] [CrossRef]
- Kidson, C. Dawlish Warren: A study of the evolution of the sand spits across the mouth of the River Exe in Devon. Trans. Papers Inst. Br. Geogr. 1950, 16, 69–80. [Google Scholar] [CrossRef]
- Kidson, C. The growth of sand and shingle spits across estuaries. Z. Geomorphol. 1963, 7, 1–22. [Google Scholar]
- Devoy, R.J.N. The development and management of the Dingle Bay spit-barriers of Southwest Ireland. In Sand and Gravel Spits; Randazzo, G., Jackson, D., Cooper, A., Eds.; Coastal Research Library 12; Springer: Cham, Switzerland, 2015; pp. 139–180. [Google Scholar] [CrossRef]
- Rodríguez-Ramírez, A.; Morales, J.A.; Delgado, I.; Cantano, M. The impact of man on the morphodynamics of the Huelva coast. J. Iber. Geol. 2008, 34, 313–327. [Google Scholar]
- Robinson, A.H.W. The harbor entrances of Poole, Christchurch and Pagham. Geog. J. 1955, 121, 33–50. [Google Scholar] [CrossRef]
- Levoy, F.; Monfort, O.; Anthony, E.J. Multi-decadal mobility of a managed sandy tidal coast (Normandy, France): Behavioural variability in a context of sea-level rise and increasing storm intensity. Reg. Stud. Mar. Sci. 2023, 62, 102973. [Google Scholar] [CrossRef]
- Boyd, R.; Dalrymple, R.W.; Zaitlin, B.A. Classification of coastal sedimentary environments. Sedim. Geol. 1992, 80, 139–150. [Google Scholar] [CrossRef]
- Ciavola, P.; Corbau, C.; Cibin, U.; Perini, L. Mapping of the coastal zone of the Emilia-Romagna region using geographical information systems. In Proceedings of the Sixth International Conference on the Mediterranean Coastal Environment, Ravenna, Italy, 7–11 October 2003; Volume 3, pp. 2363–2374. [Google Scholar]
- Short, A.D. Beach dynamics and nearshore morphology of the Alaskan Arctic coast, 2498. In LSU Historical Dissertations and Theses; Louisiana State University and Agricultural & Mechanical College: Baton Rouge, LA, USA, 1973; 140p, Available online: https://digitalcommons.lsu.edu/gradschool_disstheses/2498 (accessed on 20 March 2023).
- Anthony, E.J.; Marriner, N.; Morhange, C. Human influence and the changing geomorphology of Mediterranean deltas and coasts over the last 6000 years: From progradation to destruction phase? Earth Sci. Rev. 2014, 139, 336–361. [Google Scholar] [CrossRef]
- Coleman, J.M.; Gagliano, S.M. Cyclic sedimentation in the Mississippi river deltaic plain. Gulf Coast Ass. Geol. Societ. Trans. 1964, 14, 67–80. [Google Scholar]
- Wu, X.; Bi, N.; Kanai, Y.; Saito, Y.; Zhang, Y.; Yang, Z.; Fan, D.; Wang, H. Sedimentary records off the modern Huanghe (Yellow River) delta and their response to deltaic river channel shifts over the last 200 years. J. Asian Earth Sci. 2015, 108, 68–80. [Google Scholar] [CrossRef]
- Elliott, T. Interdistributary bay sequences and their genesis. Sedimentology 1974, 21, 611–622. [Google Scholar] [CrossRef]
- Tye, R.S.; Kosters, E.C. Styles of interdistributary basin sedimentation: Mississippi delta plain, Louisiana. Trans. Gulf Coast Assoc. Geol. Soc. 1986, 36, 575–588. [Google Scholar]
- Coleman, J.M. Dynamic changes and processes in the Mississippi River delta. Geol. Soc. Am. Bull. 1988, 100, 999–1015. [Google Scholar] [CrossRef]
- Overduin, P.P.; Strzelecki, M.C.; Grigoriev, M.N.; Couture, N.; Lantuit, H.; St-Hilaire-Gravel, D.; Günther, F.; Wetterich, S. Coastal changes in the Arctic. Geol. Soc. Lond. Spec. Publ. 2014, 388, 103–129. [Google Scholar] [CrossRef]
- Héquette, A.; Ruz, M.H. Spit and barrier islands migration in the southeastern Canadian Beafourt Sea. J. Coast. Res. 1991, 7, 677–698. [Google Scholar]
- Gibbs, A.E.; Richmond, B.M. National Assessment of Shoreline Change: Historical Shoreline Change along the North Coast of Alaska, US–Canadian Border to Icy Cape; US Department of the Interior, US Geological Survey: Washington, DC, USA, 2015; 110p.
- Xue, P.; Chen, C.; Beardsley, R.C.; Limeburner, R. Observing system simulation experiments with ensemble Kalman filters in Nantucket Sound, Massachusetts. J. Geophys. Res. Oceans 2011, 116, C01011. [Google Scholar] [CrossRef]
- Piller, W.E.; Pervesler, P.; Golebiowski, R.; Kleemann, K.; Mansour, A.; Rupp, C. The northern Bay of Safaga (Red Sea, Egypt): An actuopalaeontological approach. 1. Topography and bottom facies. Beitr. Paläont. Österr 1989, 15, 103–147. [Google Scholar]
- Marriner, N.; Goiran, J.P.; Morhange, C. Alexander the Great’s tombolos at Tyre and Alexandria, eastern Mediterranean. Geomorphology 2008, 100, 377–400. [Google Scholar] [CrossRef]
- Héquette, A.; Ruz, M.H.; Hill, P.R. The effects of the Holocene sea level rise on the evolution of the southeastern coast of the Canadian Beaufort Sea. J. Coast. Res. 1995, 11, 494–507. [Google Scholar]
- Ward, R.D. Sedimentary response of Arctic coastal wetlands to sea level rise. Geomorphology 2020, 370, 107400. [Google Scholar] [CrossRef]
- Da Lio, C.; Tosi, L. Vulnerability to relative sea-level rise in the Po River delta (Italy). Estuar. Coast. Shelf Sci. 2019, 228, 106379. [Google Scholar] [CrossRef]
- Hammar-Klose, E.S.; Pendleton, E.A.; Thieler, E.R.; Williams, S.J.; Norton, G.A. Coastal Vulnerability Assessment of Cape Cod National Seashore (CACO) to Sea-Level Rise; Open File Report, 02-233; US Geological Survey: Reston, VA, USA, 2003; 18p. [Google Scholar]
- Orford, J.D.; Carter, R.W.G.; Jennings, S.C. Control domains and morphological phases in gravel-dominated coastal barriers of Nova Scotia. J. Coast. Res. 1996, 12, 589–604. [Google Scholar]
- Nienhuis, J.H.; Ashton, A.D.; Nardin, W.; Fagherazzi, S.; Giosan, L. Alongshore sediment bypassing as a control on river mouth morphodynamics. J. Geophys. Res. Earth Surf. 2016, 121, 664–683. [Google Scholar] [CrossRef]
- Bezzi, A.; Casagrande, G.; Martinucci, D.; Pillon, S.; Del Grande, C.; Fontolan, G. Modern sedimentary facies in a progradational barrier-spit system: Goro lagoon, Po River delta, Italy. Estuar. Coast. Shelf Sci. 2019, 227, 106323. [Google Scholar] [CrossRef]
- Maicu, F.; De Pascalis, F.; Ferrarin, C.; Umgiesser, G. Hydrodynamics of the Po river-delta-sea system. J. Geophys. Res. Oceans 2018, 123, 6349–6372. [Google Scholar] [CrossRef]
- Bezzi, A.; Pillon, S.; Popesso, C.; Casagrande, G.; Da Lio, C.; Martinucci, D.; Tosi, L.; Fontolan, G. From rapid coastal collapse to slow sedimentary recovery: The morphological ups and downs of the modern Po River delta. Estuar. Coast. Shelf Sci. 2021, 260, 107499. [Google Scholar] [CrossRef]
- Penland, S.; Boyd, R.; Suter, J.R. Transgressive depositional systems of the Mississippi Delta Plain: A model for barrier shoreline and shelf sand development. J. Sediment. Petrol. 1988, 58, 932–949. [Google Scholar]
- Corbau, C.; Simeoni, U.; Zoccarato, C.; Mantovani, G.; Teatini, P. Coupling land use evolution and subsidence in the Po River delta, Italy: Revising the past occurrence and prospecting the future management challenges. Sci. Total Environ. 2019, 654, 1196–1208. [Google Scholar] [CrossRef]
- Black, K.P.; Andrews, C.J. Sandy shoreline response to offshore obstacles Part 1: Salient and tombolo geometry and shape. J. Coast. Res. 2001, 29, 82–93. [Google Scholar]
- Davies, J.L. Geographical Variation in Coastal Development; Longman: London, UK; New York, NY, USA, 1980; 212p. [Google Scholar]
- Dally, W.R.; Pope, J. Detached Breakwaters for Shore Protection; Technical Report CERC-86-1; U.S. Army Corps of Engineers, Coastal Engineering Research Center, Waterways Experiment Station: Vicksburg, MS, USA, 1986; 62p. [Google Scholar]
- Van Rijn, L.C. Coastal erosion and control. Ocean Coast. Manag. 2011, 54, 867–887. [Google Scholar] [CrossRef]
- Alcántara-Carrió, J.; Sasaki, D.; Mahiques, M.; Taborda, R.; Souza, L.A.P. Sedimentary constraints on the development of a narrow deep strait (São Sebastião Channel, SE Brazil). Geo-Mar. Lett. 2017, 37, 475–488. [Google Scholar] [CrossRef]
- Gourlay, M.R. Beach processes in the vicinity of offshore breakwaters. In Proceedings of the 5th Australasian Conference on Coastal and Ocean Engineering, Perth, Australia, 25–27 November 1981; pp. 132–137. [Google Scholar]
- Sterr, H. Comparative studies of coastal erosion in the FRG. J. Coast. Res. 1990, Sp.I. 9, 821–837. [Google Scholar]
- Hofstede, J. Coastal flood defense and coastal protection along the Baltic Sea coast of Schleswig-Holstein. Die Küste Arch. Res. Technol. North Sea Balt. Coast 2008, 74, 170–178. [Google Scholar]
- Giese, G.S.; Borrelli, M.; Mague, S.T. Tidal inlet evolution and impacts of anthropogenic alteration: An example from Nauset Beach and Pleasant Bay, Cape Cod, Massachusetts. Northeastern Nat. 2020, 27 (Suppl. S10), 1–21. [Google Scholar] [CrossRef]
- Stéphan, P.; Suanez, S.S.; Fichaut, B. Long-term morphodynamic evolution of the Sillon de Talbert gravel barrier (Brittany, France). Shore Beach 2012, 80, 19–36. [Google Scholar]
- Vespremeanu-Stroe, A.; Preoteasa, L. Morphology and the cyclic evolution of Danube delta spits. In Sand and Gravel Spits; Randazzo, G., Jackson, D., Cooper, A., Eds.; Coastal Research Library 12; Springer: Cham, Switzerland, 2015; pp. 327–339. [Google Scholar]
- Nuyts, S.; O’Shea, M.; Murphy, J. Monitoring the Morphodynamic Cannibalization of the Rossbeigh Coastal Barrier and Dune System over a 19-Year Period (2001–2019). J. Mar. Sci. Eng. 2020, 8, 421. [Google Scholar] [CrossRef]
- Aubrey, D.G.; Speer, P.E. Updrift migration of tidal Inlets. J. Geol. 1984, 92, 531–545. [Google Scholar] [CrossRef]
- Peterson, C.D.; Murillo-Jiménez, J.M.; Stock, E.; Price, D.M.; Hostetler, S.W.; Percy, D. Origins of late-Pleistocene coastal dune sheets, Magdalena and Guerrero Negro, from continental shelf low-stand supply (70–20 ka), under conditions of southeast littoral-and eolian-sand transport, in Baja California Sur, Mexico. Aeolian Res. 2017, 28, 13–28. [Google Scholar] [CrossRef]
- Murillo de Nava, J.M.; Gorsline, D.S. Holocene and modern dune morphology for the Magdalena coastal plain and islands, Baja California Sur, Mexico. J. Coast. Res. 2000, 16, 915–925. [Google Scholar]
- Bruun, P.; Mehta, A.; Jonsson, I.G. Stability of Tidal Inlets: Theory and Engineering; Developments in Geotechnical Engineering; Elsevier: Amsterdam, The Netherlands, 1978; Volume 23, 510p. [Google Scholar]
- Nienhuis, J.H.; Ashton, A.D. Mechanics and rates of tidal inlet migration: Modeling and application to natural examples. J. Geophys. Res. Earth Surf. 2016, 121, 2118–2139. [Google Scholar] [CrossRef]
- Lynch-Blosse, M.A.; Kumar, N. Evolution of downdrift-offset tidal inlets: A model based on the Brigantine Inlet system of New Jersey. J. Geol. 1976, 84, 165–178. [Google Scholar] [CrossRef]
- Qi, Y.; Yu, Q.; Gao, S.; Li, Z.; Fang, X.; Guo, Y. Morphological evolution of river mouth spits: Wave effects and self-organization patterns. Estuar. Coast. Shelf Sci. 2021, 262, 107567. [Google Scholar] [CrossRef]
- Chi, S.; Zhang, C.; Wang, P.; Shi, J.; Li, F.; Li, Y.; Wang, P.; Zheng, J.; Sun, J.; Nguyen, V.T. Morphological evolution of paired sand spits at the Fudu river mouth: Wave effects and anthropogenic factors. Mar. Geol. 2023, 456, 106991. [Google Scholar] [CrossRef]
- Leatherman, S.P. Reworking of glacial outwash sediments along outer Cape Cod: Development of Provincetown spit. In Glaciated Coasts; FitzGerald, D.M., Roshan, P.S., Eds.; Academic: London, UK, 1987; pp. 447–464. [Google Scholar]
- Leatherman, S.P.; Zaremba, R.E. Dynamics of a northern barrier beach: Nauset Spit, Cape Cod, Massachusetts. Geol. Soc. Am. Bull. 1986, 97, 116–124. [Google Scholar] [CrossRef]
- Giese, G.S.; Adams, M.B.; Rogers, S.S.; Dingman, S.L.; Borrelli, M.; Smith, T.L. Coastal Sediment Transport on outer Cape Cod Massachusetts: Observations and Theory. In Proceedings of the Coastal Sediments, Miami, FL, USA, 2–6 May 2011; Rosati, J.D., Wang, P., Roberts, T.M., Eds.; World Scientific Pub Co Inc.: Miami, FL, USA, 2011; pp. 2353–2365. [Google Scholar]
- Borrelli, M.; Giese, G.S.; Mague, S.T.; Smith, T.L.; Mittermayer, A.; Legare, B.J.; Solazzo, D. Potential Impacts to the Nauset Barrier from the Proposed Dredging and Disposal in Nauset Harbor. A Technical Report prepared for the Town of Eastham; Tech Rep: 19-CL07; Center for Coastal Studies: Provincetown, MA, USA, 2019; 19p. [Google Scholar]
- Giese, G.S.; Aubrey, D.G.; Liu, J.T. Development, Characteristics, and Effects of the New Chatham Harbor Inlet; Woods Hole Oceanographic Institution: Woods Hole, MS, USA, 1989; 33p. [Google Scholar]
- FitzGerald, D.M.; Pendleton, E. Inlet formation and evolution of the sediment bypassing system: New Inlet, Cape Cod, Massachusetts. J. Coast. Res. 2002, 36, 290–299. [Google Scholar] [CrossRef]
- Borrelli, M.; Oakley, B.A.; Giese, G.S.; Boothroyd, J.C. Inlet formation as a result off hydraulic inefficiency leading to further inlet instability. In Proceedings of the Coastal Sediments, Miami, FL, USA, 2–6 May 2011; pp. 519–532. [Google Scholar]
- Berman, G. Longshore Sediment Transport Cape Cod Massachusetts; Woods Hole Oceanographic Institute & Cape Cod Cooperative Extension: Woods Hole, MS, USA, 2011; 47p. [Google Scholar]
- NASA. Coastline Change. NASA Earth Observatory. 2020. Available online: https://earthobservatory.nasa.gov/world-of-change/CapeCod (accessed on 11 April 2023).
- Giese, G.S.; Mague, S.T.; Rogers, S.S. A Geomorphological Analysis of Nauset Beach/Pleasant Bay/Chatham Harbor for the Purpose of Estimating Future Configurations and Conditions; Prepared for the Pleasant Bay Resource Management Alliance; Pleasant Bay Alliance: Harwich, MA, USA, 2009; 32p. [Google Scholar]
- Oldale, R.N.; Friedman, J.D.; Williams, R.S. Changes in Coastal Morphology of Monomoy Island, Cape Cod, Massachusetts U.S. Geological Survey Prof. Paper 750; U.S. Geological Survey: Reston, VA, USA, 1971; Chapter B; pp. 101–107. [Google Scholar]
- Bird, E.C.F. (Ed.) Heidelberg. In Encyclopedia of the World’s Coastal Landforms; Springer: Dordrecht, The Netherlands, 2010; pp. 641–644. [Google Scholar]
- Serizawa, M.; Uda, T.; Miyahara, S. Prediction of formation of recurved sand spit using BG model. In Proceedings of the 36th Coastal Engineering Conference, Baltimore, MD, USA, 30 July–3 August 2018; Volume 36, p. 24. [Google Scholar]
- Liu, H. Dynamic changes of coastal morphology following the 2011 Tohoku tsunami. In Proceedings of the 7th International Conference on Asian and Pacific Coasts, Bali, Indonesia, 24–26 September 2013; pp. 594–601. [Google Scholar]
- Ruiz, F.; Rodríguez-Vidal, J.; Abad, M.; Cáceres, L.M.; Carretero, M.I.; Pozo, M.; Rodríguez-Llanes, J.M.; Gómez-Toscano, F.; Izquierdo, T.; Font, E.; et al. Sedimentological and geomorphological imprints of Holocene tsunamis in southwestern Spain: An approach to establish the recurrence period. Geomorphology 2013, 203, 97–104. [Google Scholar] [CrossRef]
- Wright, L.D.; Short, A.D. Morphodynamic variability of surf zones and beaches: A synthesis. Mar. Geol. 1984, 56, 93–118. [Google Scholar] [CrossRef]
- Zăinescu, F.I.; Vespremeanu-Stroe, A.; Tătui, F. The formation and closure of the Big Breach of Sacalin spit associated with extreme shoreline retreat and shoreface erosion. Earth Surf. Process. Landf. 2019, 44, 2268–2284. [Google Scholar] [CrossRef]
- Koiwa, N.; Takahashi, M.; Sugisawa, S.; Ito, A.; Matsumoto, H.A.; Tanavud, C.; Goto, K. Barrier spit recovery following the 2004 Indian Ocean tsunami at Pakarang Cape, southwest Thailand. Geomorphology 2018, 306, 314–324. [Google Scholar] [CrossRef]
- Panin, N. The Danube Delta. Geomorphology and Holocene Evolution: A Synthesis. Geomorphol. Relief Process. Environ. 2003, 9, 247–262. [Google Scholar] [CrossRef]
- Preoteasa, L.; Vespremeanu-Stroe, A.; Hanganu, D.; Katona, O.; Timar-Gabor, A. Coastal changes from open coast to present lagoon system in Histria region (Danube Delta). J. Coast. Res. 2013, 65 (Suppl. S1), 564–569. [Google Scholar] [CrossRef]
- Frihy, O.; Lawrence, D. Evolution of the modern Nile delta promontories: Development of accretional features during shoreline retreat. Environ. Geol. 2004, 46, 914–931. [Google Scholar] [CrossRef]
- Kelman, D. Strait of Canso transmission line. In Archaeological Screening & Reconnaissance Antigonish & Inverness Counties, Nova Scotia; Final Report; Kelman Heritage Consulting: West LaHave, NS, Canada, 2015; 29p. [Google Scholar]
- Elliott, E.L. Sandspit of the Otago coast. N. Z. Geogr. 1958, 14, 65–74. [Google Scholar] [CrossRef]
- Canning, P.; Fox, D.; Pontee, N. The benefits of managing spit evolution: A case study in the Exe Estuary, UK. In Innovative Coastal Zone Management: Sustainable Engineering for a Dynamic Coast; Cooper, N.J., Ed.; ICE Publishing: London, UK, 2012; pp. 625–635. [Google Scholar]
- Karunarathna, H.; Reeve, D.E.; Fox, D.; Box, S.; Pontee, N.; Chadwick, A.; Lawrence, J. Appraising spit dynamics and estuary responses: A coastal management study from the Exe Estuary, UK. In Proceedings of the 31st Coastal Engineering Conference, Hamburg, Germany, 31 August–5 September 2008; World Scientific Publishing Company: Singapore, 2009; pp. 4202–4213. [Google Scholar] [CrossRef]
- Johnston, T.W. Sediment Supply, Sediment Transport and Long-Term Shoreline Evolution on “Open” and “Closed” Cellular Coasts: Co. Wexford and Co. Donegal, Ireland. Ph.D. Thesis, The New University of Ulster, Coleraine, Northern Ireland, UK, 1984; 348p. [Google Scholar]
- Ruz, M.H. Impact des amenagernents sur l’evolution du littoral de Wexford, sud-est de l´Irlande. Norois 1987, 34, 261–273. [Google Scholar] [CrossRef]
- Anthony, E.J. Patterns of sand spit development and their management implications on deltaic, drift-Aligned coasts: The cases of the Senegal and Volta River delta spits, West Africa. In Sand and Gravel Spits; Randazzo, G., Jackson, D., Cooper, A., Eds.; Coastal Research Library 12; Springer: Cham, Switzerland, 2015; pp. 21–36. [Google Scholar] [CrossRef]
- Orejarena Rondón, A.F.; Afanador Franco, F.; Ramos de la Hoz, I.; Conde Frías, M.; Restrepo López, J.C. Evolución morfológica de la espiga de Galerazamba, Caribe colombiano. Bol. Cientif. CIOH 2015, 33, 123–144. [Google Scholar] [CrossRef]
- Silva, M.S.; Guedes, C.C.F.; Silva, G.A.M.; Ribeiro, G.P. Active mechanisms controlling morphodynamics of a coastal barrier: Ilha Comprida, Brazil. Ocean Coast. Res. 2021, 69, 21004. [Google Scholar] [CrossRef]
- Lawson, S.K.; Tanaka, H.; Udo, K.; Hiep, N.T.; Tinh, N.X. Morphodynamics and evolution of estuarine sandspits along the bight of Benin coast, West Africa. Water 2021, 13, 2977. [Google Scholar] [CrossRef]
- Restrepo, J.D.; Kjerfve, B.; Correa, I.D.; González, J. Morphodynamics of a high discharge tropical delta, San Juan River, Pacific coast of Colombia. Mar. Geol. 2002, 192, 355–381. [Google Scholar] [CrossRef]
- Villate, D.A.; Portz, L.; Manzolli, R.P.; Alcántara-Carrió, J. Human disturbances of shoreline morphodynamics and dune ecosystem at the Puerto Velero spit (Colombian Caribbean). J. Coast. Res. 2020, 95, 711–716. [Google Scholar] [CrossRef]
- Castillo, M.; Muñoz-Salinas, E.; Sanderson, D.C.W.; Cresswell, A. Landscape evolution of Punta Arena sand spit (SE Baja California Peninsula, NW Mexico): Implications of ENSO on landscape erosion rates. Catena 2020, 193, 104601. [Google Scholar] [CrossRef]
- Nahon, A.; Idier, D.; Senechal, N.; Féniès, H.; Mallet, C.; Mugica, J. Imprints of wave climate and mean sea level variations in the dynamics of a coastal spit over the last 250 years: Cap Ferret, SW France. Earth Surf. Process. Landf. 2019, 44, 2112–2125. [Google Scholar] [CrossRef]
- Orviku, K.; Jaagus, J.; Kont, A.; Ratas, U.; Rivis, R. Increasing activity of coastal processes associated with climate change in Estonia. J. Coast. Res. 2003, 19, 364–375. [Google Scholar]
- Łabuz, T.A. Environmental impacts—Coastal erosion and coastline changes. In Second Assessment of Climate Change for the Baltic Sea Basin; The BACC II Team, Ed.; Springer: Cham, Switzerland, 2015; pp. 381–396. [Google Scholar]
- Iskander, M.M. Stability of the Northern coast of Egypt under the effect of urbanization and climate change. Water Sci. 2021, 35, 1–10. [Google Scholar] [CrossRef]
- Ogorodov, S.A.; Baranskaya, A.V.; Belova, N.G.; Kamalov, A.M.; Kuznetsov, D.E.; Overduin, P.P.; Shabanova, N.N.; Vergun, A.P. Coastal dynamics of the Pechora and Kara Seas under changing climatic conditions and human disturbances. Geogr. Environ. Sustain. 2016, 9, 53–73. [Google Scholar] [CrossRef]
- Nordstrom, K.F.; Jackson, N.L. Removing shore protection structures to facilitate migration of landforms and habitats on the bayside of a barrier spit. Geomorphology 2013, 199, 179–191. [Google Scholar] [CrossRef]
- Correa, I.D.; Alcántara-Carrió, J.; González, R.D.A. Historical and recent shore erosion along the Colombian Caribbean coast. J. Coast. Res. 2005, Sp.I. 49, 52–57. [Google Scholar]
- Orford, J. Alternative interpretations of man-induced shoreline changes in Rosslare Bay, southeast Ireland. Trans. Inst. Br. Geogr. 1988, 13, 65. [Google Scholar] [CrossRef]
- Zweers, S. A Study of the Erosion Problem along Rosslare Strand. Master’s Thesis, Delft University of Technology, Delft, The Netherlands, 2008; 149p. [Google Scholar]
- Simeoni, U.; Corbau, C. A review of the Delta Po evolution (Italy) related to climatic changes and human impacts. Geomorphology 2009, 107, 64–71. [Google Scholar] [CrossRef]
- Stefani, M. The Po River delta region: Depositional evolution, climate change and human Intervention through the last 5000 years. In Landscapes and Landforms of Italy; World Geomorphological Landscapes, Soldati, M., Marchetti, M., Eds.; Springer: Cham, Switzerland, 2017; pp. 193–202. [Google Scholar] [CrossRef]
- Corbau, C.; Zambello, E.; Nardin, W.; Simeoni, U. Secular diachronic analysis of coastal marshes and lagoons evolution: Study case of the Po River delta (Italy). Estuar. Coast. Shelf Sci. 2022, 268, 107781. [Google Scholar] [CrossRef]
- Vincenzi, A. Coastline Changes in Veneto Region (Italy) from 2012 to 2018 by Means of Multitemporal Orthophotos. Master’s Thesis, University of Padua, Padua, Italy, 2022; 118p. [Google Scholar]
- Kosyan, R.D.; Krylenko, M.V. Modern state and dynamics of the Sea of Azov coasts. Estuar. Coast. Shelf Sci. 2019, 224, 314–323. [Google Scholar] [CrossRef]
- Hayashi, K.; Hashimoto, K.; Yagisawa, K.; Kobayashi, N. Beach morphologies at Notsukezaki sand spit, Japan. In Proceedings of the 32nd Coastal Engineering Conference, Shanghai, China, 30 June–5 July 2010; p. 2. [Google Scholar]
- Itori, S.; Yagisawa, K.; Sasaki, T.; Yanaguchi, R.; Kobayashi, N. Storm-induced erosion on Notsuzezaki sand spit. In Proceedings of the 36th Coastal Engineering Conference, Baltimore, MD, USA, 30 July–3 August 2018; Volume 1, p. 79. [Google Scholar] [CrossRef]
- Zenkovich, V.P. The Shores of the Black and Azov Seas; Geographical Press: Moscow, Russia, 1958; 374p. (In Russian) [Google Scholar]
- Pontee, N.I.; Townend, I.H.; Chesher, T.; McLaren, P. To Breach or not to Breach? Spit dynamics and coastal management. In Proceedings of the Coastal Engineering 2002 Conference: Solving Coastal Conundrums, Cardiff, UK, 7–12 July 2002; Smith, J.K., Ed.; World Scientific Publishing Co. Pte. Ltd.: Cardiff, Wales, UK, 2003; pp. 3799–3811. [Google Scholar]
- Stéphan, P.; Suanez, S.; Fichaut, B.; Autret, R.; Blaise, E.; Houron, J.; Ammann, J.; Grandjean, P. Monitoring the medium-term retreat of a gravel spit barrier and management strategies, Sillon de Talbert (North Brittany, France). Ocean Coast. Manag. 2018, 158, 64–82, ISSN 0964-5691. [Google Scholar] [CrossRef]
- Vitousek, S.; Buscombe, D.; Vos, K.; Barnard, P.L.; Ritchie, A.C.; Warrick, J.A. The future of coastal monitoring through satellite remote sensing. Cambridge Prism. Coast. Futur. 2023, 1, e10. [Google Scholar] [CrossRef]
Paired Spits | Latitude | Longitude | Place | Region | Tidal Range | Longest Spit | Shortest Spit | Length Ratio | Inlet Depth | Width Decrease |
---|---|---|---|---|---|---|---|---|---|---|
PS-1 | 69.68°N | 141.34°W | Demarcation Bay | Beaufort Sea | micro– | 5965 | 5647 | 1.06 | 5.2 | 0.02–0.14 |
PS-2 | 44.82°N | 12.43°E | Scardovari lagoon | Adriatic Sea | micro– | 2393 | 2188 | 1.09 | 2.2 | 0.21–0.41 |
PS-3 | 44.80°N | 12.30°E | Goro lagoon | micro– | 8313 | 6741 | 1.23 | 3.5 | 0.17–0.42 | |
PS-4 | 74.84°N | 85.95°E | NW Poluostrov Severnyy Peninsula | Kara Sea | micro– | 3978 | 3460 | 1.15 | <5 | 0.05–0.18 |
PS-5 | 72.98°N | 69.92°E | Malygina Strait | micro– | 31,329 | 6466 | 4.85 | <5 | 0.35 | |
PS-6 | 70.16°N | 125.07°W | Channel between Booth and Fiji islands | Beaufort Sea | micro– | 1181 | 379 | 3.12 | 13.5 | 0.40 |
PS-7 | 69.70°N | 125.36°W | W of Parry Peninsula | micro– | 2435 | 361 | 6.75 | 0.3 | 0.71–0.72 | |
PS-8 | 69.51°N | 139.11°W | Workboat Passage | micro– | 5626 | 1472 | 3.82 | 6.4 | 0.19–0.44 | |
PS-9 | 59.38°N | 153.52°W | Augustine Island | Gulf of Alaska | meso– | 487 | 182 | 2.68 | 0.3 | 0.33 |
PS-10 | 59.10°N | 163.50°E | Litke Strait | Bering Sea | micro– | 16,831 | 9272 | 1.82 | 5 | 0.77 |
PS-11 | 58.68°N | 161.23°W | Hagemeister Strait | meso– | 8990 | 5131 | 1.75 | 20.1 | 0.42 | |
PS-12 | 56.58°N | 154.49°W | Tugidak Passage | Gulf of Alaska | meso– | 17,941 | 2326 | 7.71 | 31 | 0.15–0.16 |
PS-13 | 56.52°N | 154.40°W | meso– | 15,934 | 5780 | 2.77 | 31 | 0.289 | ||
PS-14 | 55.05°N | 163.44°W | NW Bechevin Bay | Bering Sea | micro– | 11,860 | 6119 | 1.94 | 23.8 | 0.17 |
PS-15 | 54.41°N | 10.99°E | Fehmarn Sound | Baltic Sea | micro– | 4931 | 2624 | 1.88 | 12.3 | 0.74–0.75 |
PS-16 | 48.59°N | 123.36°W | Cordova Channel | Salish Sea | meso– | 1177 | 1083 | 1.09 | 32 | 0.62 |
PS-17 | 45.65°N | 61.43°W | Strait of Canso | Gulf of St. Lawrence | micro– | 2640 | 582 | 4.53 | 40 | 0.58 |
PS-18 | 45.24°N | 36.54°E | Kerch Strait | Black Sea | micro– | 4795 | 2186 | 2.19 | 6.7 | 0.46 |
PS-19 | 43.61°N | 145.44°E | Nemuro Strait | Sea of Okhotsk | micro– | 24,613 | 1810 | 13.60 | 20 | 0.68 |
PS-20 | 41.47°N | 70.03°W | Main Channel | Nantucket Sound, NW Atlantic Ocean | micro– | 15,443 | 8282 | 1.86 | 17.0 | 0.46–0.47 |
PS-21 | 41.32°N | 70.29°W | Muskeget Channel | micro– | 2047 | 887 | 2.31 | 1.2 | 0.72–1 | |
PS-22 | 41.28°N | 70.24°W | micro– | 2765 | 1444 | 1.91 | 7.3 | 0.53–0.67 | ||
PS-23 | 28.97°N | 112.18°W | Infiernillo Channel | Gulf of California | micro– | 4797 | 3585 | 1.34 | 13.4 | 0.19 |
PS-24 | 26.75°N | 33.96°E | Safaga Strait | Red Sea | micro– | 887 | 340 | 2.61 | 0.5 | 0.59–0.89 |
PS-25 | 24.51°N | 111.83°W | Almejas Bay | NE Pacific Ocean | micro– | 15,231 | 1149 | 13.25 | 26.6 | 0.09–0.10 |
PS-26 | 24.37°N | 111.67°W | micro– | 11,408 | 3339 | 10.66 | 13.2 | 0.08 | ||
PS-27 | 16.73°S | 11.75°E | Tigres Strait | SE Atlantic Ocean | micro– | 15,346 | 2961 | 5.18 | 9.7 | –––– |
Paired Spits | Progradation Rate | Hooked Ridges | Spit Breaching or Degradation | Spits Merging or Formation of a New Spit | Morphodynamic Pattern | ||
---|---|---|---|---|---|---|---|
Study Period | Longer Spit | Shorter Spit | |||||
PS-1 | 1984–2020 | 10.88 | 16.83 | Yes | Yes | Yes | Ephemeral |
PS-2 | 1984–1989 | 104.54 | 106.88 | Yes | Yes | Yes | Stationary |
PS-3 | 1984–2020 | 75.26 | Very low | Yes | Yes | Yes | Stationary |
PS-4 | 1984–2020 | 3.74 | 8.25 | Yes | No | No | Ephemeral |
PS-5 | 1984–2020 | Very low | No | No | No | Stable | |
PS-6 | 1984–2020 | Very low | No | No | No | Stable | |
PS-7 | 1984–2020 | 12.48 | Very low | Yes | Yes | Yes | Stationary |
PS-8 | 1984–2004 | 6.16 | 11.24 | Yes | Yes | Yes | Stationary |
2005–2020 | 17.42 | ||||||
PS-9 | 1984–2020 | Very low | No | No | No | Stable | |
PS-10 | 1984–2020 | Very low | No | No | No | Stable | |
PS-11 | 1984–2020 | Very low | No | No | No | Stable | |
PS-12 | 1984–2020 | 63.65 | Very low | Yes | No | No | Stationary |
PS-13 | 1984–2020 | 31.98 | 6.44 | Yes | No | No | Stationary |
PS-14 | 1984–2020 | Very low | Yes | No | No | Stable | |
PS-15 | 1984–2020 | 9.46 | 17.69 | Yes | No | No | Stationary |
PS-16 | 1984–2020 | Very low | No | No | No | Stable | |
PS-17 | 1985–2019 | 2.68 | Very low | No | Yes | No | Ephemeral |
PS-18 | 1984–2003 | 17.90 | Yes | Yes | Yes | Stationary | |
1984–2020 | 3.29 | ||||||
PS-19 | 1984–2020 | 10.46 | 15.13 | Yes | No | No | Stationary |
PS-20 | 1992–2006 | 156.93 | Yes | Yes | Yes | Stationary | |
2007–2012 | −13.29 | ||||||
2013–2016 | −135.30 | ||||||
1984–2020 | 1.92 | ||||||
PS-21 | 1984–1991 | 51.99 | 21.69 | Yes | Yes | Yes | Ephemeral |
PS-22 | 1986–2006 | 55.72 | −17.70 | Yes | Yes | Yes | Stationary |
2007–2014 | −79.98 | ||||||
2015–2020 | 42.06 | ||||||
PS-23 | 1984–2020 | Very low | No | No | No | Stable | |
PS-24 | 2003–2020 | 3.08 | −9.27 | No | Yes | Yes | Ephemeral |
PS-25 | 1984–2012 | 35.49 | 3.58 | Yes | Yes | Yes | Stationary |
2012–2020 | 6.91 | ||||||
PS-26 | 1984–2020 | 1.13 | 1.67 | Yes | Yes | Yes | Stationary |
PS-27 | 1984–2020 | 134.92 | −167.65 | Yes | Yes | No | Ephemeral |
Paired Spit | Wave Data Point | % Year | Wave Regime | 1st Component | 2nd Component | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Latitude | Longitude | Freq | Hs | P95 | Dir | Tp | Freq | Hs | P95 | Dir | Tp | |||
PS-1 | 69.71°N | 141.3°W | 33.21 | Bi | 21.71 | 0.85 | 2.12 | ENE | w | 11.34 | 0.80 | 1.77 | NW | w |
PS-2 | 44.75°N | 12.28°E | 100.00 | Uni- | 37.45 | 0.45 | 1.23 | SE | w | |||||
PS-3 | 44.79°N | 12.47°E | 100.00 | Bi- | 45.77 | 0.57 | 1.66 | ENE | w | 37.09 | 0.44 | 1.15 | SE | w |
PS-4 | 74.94°N | 86.05°E | 31.76 | Bi- | 9.27 | 0.74 | 1.67 | NNE | w | 9.04 | 0.79 | 1.98 | NW | i |
PS-5 | 73.09°N | 69.50°E | 40.93 | Uni’- | 18.71 | 1.03 | 2.47 | WSW | w | |||||
PS-6 | 70.16°N | 125.31°W | 31.07 | Bi- | 14.00 | 0.83 | 1.85 | NW | w | 10.01 | 0.72 | 1.56 | ENE | |
PS-7 | 69.69°N | 125.37°W | 31.07 | Uni- | 14.51 | 0.66 | 1.54 | NNW | w | |||||
PS-8 | 69.50°N | 138.98°W | 37.98 | Uni- | 17.72 | 0.53 | 1.07 | ENE | w | |||||
PS-9 | 59.45°N | 153.50°W | 100.00 | Bi- | 25.06 | 1.11 | 2.49 | WNW | w | 21.59 | 1.42 | 2.88 | NE | w |
PS-10 | 59.38°N | 164.57°E | 79.36 | Uni- | 29.20 | 1.64 | 3.75 | E | sw | |||||
PS-11 | 58.59°N | 161.24°W | 91.51 | Bi- | 40.41 | 1.06 | 2.35 | SW | sw | 15.76 | 1.31 | 2.69 | ESE | w |
PS-12 | 56.64°N | 154.33°W | 100 | Bí- | 57.22 | 1.55 | 3.13 | SSW | sw | 15.41 | 2.05 | 3.88 | NW | i |
PS-13 | 56.41°N | 154.43°W | 100 | Uni- | 57.68 | 1.77 | 3.57 | SSW | sw | |||||
PS-14 | 55.14°N | 163.48°W | 100 | Uni- | 65.79 | 1.42 | 3.10 | W | sw | |||||
PS-15 | 54.43°N | 10.94°E | 100 | Bi- | 34.47 | 0.68 | 1.54 | WNW | w | 18.07 | 0.76 | 1.61 | SW | w |
PS-16 | 48.52°N | 123.28°W | 100 | Uni- | 15.63 | 0.51 | 1.12 | SE | w | |||||
PS-17 | 45.74°N | 61.53°W | 96.44 | Uni- | 38.54 | 1.07 | 2.60 | NNW | w | |||||
PS-18 | 45.05°N | 36.56°E | 100 | Bi- | 40.11 | 0.77 | 1.79 | NNE | w | 36.73 | 0.68 | 2.60 | SW | w |
PS-19 | 43.69°N | 145.32°E | 92.13 | Bi- | 37.48 | 0.78 | 1.54 | SE | sw | 21.93 | 1.13 | 2.20 | NNW | sw |
PS-20 | 41.45°N | 70.01°W | 100 | Multi- | 26.91 | 0.89 | 1.86 | SSE | i | 18.95 | 1.35 | 2.99 | ENE | sw |
PS-21 | 41.32°N | 70.27°W | 100 | Multi- | 47.45 | 1.35 | 2.26 | SSW | i | 12.69 | 0.97 | 1.90 | ESE | i |
PS-22 | 41.25°N | 70.26°W | 100 | Multi- | 47.60 | 1.18 | 2.43 | SSW | i | 12.86 | 1.04 | 2.01 | ESE | i |
PS-23 | 28.80°N | 112.16°W | 100 | Uni- | 29.31 | 0.48 | 0.99 | SSE | w | |||||
PS-24 | 27.00°N | 34.20°E | 100 | Uni- | 100 | 0.68 | 1.31 | NN | w | |||||
PS-25 | 24.55°N | 111.87°W | 100 | Uni- | 44.06 | 1.19 | 1.60 | SW | sw | |||||
PS-26 | 24.30°N | 111.66°W | 100 | Uni- | 45.81 | 1.16 | 1.57 | SW | sw | |||||
PS-27 | 16.77°S | 11.68°E | 100.00 | Uni- | 100 | 1.84 | 2.80 | SSW | sw |
Paired Spits | Longer Spit | Shorter Spit | ||||||
---|---|---|---|---|---|---|---|---|
Houses & Roads | Bridges | Seawalls | Type | Houses & Roads | Bridges | Seawalls | Type | |
PS-1 | No | No | No | Natural | No | No | No | Natural |
PS-2 | No | No | Yes | Rural | No | No | Yes | Rural |
PS-3 | No | No | No | Rural | Yes | No | No | Semi-urban |
PS-4 | No | No | No | Natural | No | No | No | Natural |
PS-5 | No | No | No | Natural | No | No | No | Natural |
PS-6 | No | No | No | Natural | No | No | No | Natural |
PS-7 | No | No | No | Natural | No | No | No | Natural |
PS-8 | No | No | No | Natural | No | No | No | Natural |
PS-9 | No | No | No | Natural | No | No | No | Natural |
PS-10 | No | No | No | Natural | No | No | No | Natural |
PS-11 | No | No | No | Natural | No | No | No | Natural |
PS-12 | No | No | No | Natural | No | No | No | Natural |
PS-13 | No | No | No | Natural | No | No | No | Natural |
PS-14 | No | No | No | Natural | No | No | No | Natural |
PS-15 | Yes | No | Yes | Semi-urban | No | No | No | Natural |
PS-16 | Yes | No | No | Rural | Yes | No | Yes | Rural |
PS-17 | No | Yes | Yes | Rural | Yes | No | Yes | Semi-urban |
PS-18 | Yes | No | No | Urban | Yes | Yes | Yes | Urban |
PS-19 | Yes | No | Yes | Semi-urban | No | No | No | Natural |
PS-20 | No | No | No | Natural | No | No | No | Natural |
PS-21 | No | No | No | Natural | No | No | No | Natural |
PS-22 | Yes | No | No | Semi-urban | No | No | No | Natural |
PS-23 | No | No | No | Natural | No | No | No | Natural |
PS-24 | Yes | No | No | Natural | No | No | No | Natural |
PS-25 | No | No | No | Natural | Yes | No | No | Semi-urban |
PS-26 | No | No | No | Natural | No | No | No | Natural |
PS-27 | No | No | No | Natural | No | No | No | Natural |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alcántara-Carrió, J.; Fontán-Bouzas, Á.; Caicedo Rodríguez, A.; Manzolli, R.P.; Portz, L. Global Distribution and Morphodynamic Patterns of Paired Spits Developed at the Mouths of Interdistributary Bays of Deltas and within Coastal Channels. Remote Sens. 2023, 15, 2713. https://doi.org/10.3390/rs15112713
Alcántara-Carrió J, Fontán-Bouzas Á, Caicedo Rodríguez A, Manzolli RP, Portz L. Global Distribution and Morphodynamic Patterns of Paired Spits Developed at the Mouths of Interdistributary Bays of Deltas and within Coastal Channels. Remote Sensing. 2023; 15(11):2713. https://doi.org/10.3390/rs15112713
Chicago/Turabian StyleAlcántara-Carrió, Javier, Ángela Fontán-Bouzas, Ana Caicedo Rodríguez, Rogério Portantiolo Manzolli, and Luana Portz. 2023. "Global Distribution and Morphodynamic Patterns of Paired Spits Developed at the Mouths of Interdistributary Bays of Deltas and within Coastal Channels" Remote Sensing 15, no. 11: 2713. https://doi.org/10.3390/rs15112713
APA StyleAlcántara-Carrió, J., Fontán-Bouzas, Á., Caicedo Rodríguez, A., Manzolli, R. P., & Portz, L. (2023). Global Distribution and Morphodynamic Patterns of Paired Spits Developed at the Mouths of Interdistributary Bays of Deltas and within Coastal Channels. Remote Sensing, 15(11), 2713. https://doi.org/10.3390/rs15112713