Holocene Erosional Processes in a Highly Exposed Intertidal Sandstone Reef Inferred from Remote Sensing Data
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. GPS Topography
3.2. Multibeam Bathymetry
3.3. Hyperspectral Altimetry
3.4. Detection of Active Processes
3.5. Data Integration and Interpretation
4. Results
4.1. Morphometric Structure
4.2. Geomorphological Units
4.3. Active Erosional Processes
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guimarães, T.; Mariano, G.; Barreto, A.; Sá, A.A. Beachrocks of Southern Coastal Zone of the State of Pernambuco (Northeastern Brazil): Geological resistance with history. Geoheritage 2017, 9, 111–119. [Google Scholar] [CrossRef]
- Soares, M.D.O.; Rossi, S.; Martins, F.A.S.; Carneiro, P.B.D.M. The forgotten reefs: Benthic assemblage coverage on a sandstone reef (Tropical South-western Atlantic). J. Mar. Biol. Assoc. UK 2017, 97, 1585–1592. [Google Scholar] [CrossRef]
- Darwin, C. On a remarkable bar of sandstone off Pernambuco, on the coast of Brazil. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1841, 19, 257–260. [Google Scholar] [CrossRef] [Green Version]
- Mabesoone, J.M. Origin and age of the sandstone reefs of Pernambuco (Northeastern Brazil). J. Sedim. Res. 1964, 34, 715–726. [Google Scholar] [CrossRef]
- Chaves, N.S.; Sial, A.N. Mixed oceanic and freshwater depositional conditions for beachrocks of Northeast Brazil: Evidence from carbon and oxygen isotopes. Int. Geol. Rev. 1998, 40, 748–754. [Google Scholar] [CrossRef]
- Pereira, L.S.; de Carvalho, D.M.; da Cunha, L.S. Methodology for the semi-quantitative evaluation of geoheritage applied to coastal geotourism in João Pessoa (Paraíba, Northest Brazil). Geoheritage 2019, 11, 1941–1953. [Google Scholar] [CrossRef]
- Da Silva, M.L.N.; do Nascimento, M.A.L. Ecosystem services and typology of urban geodiversity: Qualitative assessment in Natal town, Brazilian Northeast. Geoheritage 2020, 12, 57. [Google Scholar] [CrossRef]
- Alonso, I. North coast: Las Canteras beach. In Tendencias Actuales en Geomorfología Litoral; Hernández-Calvento, L., Alonso, I., Mangas, J., Yanes, A., Eds.; University of Las Palmas de Gran Canaria: Las Palmas de Gran Canaria, Spain, 2005; pp. 219–238. [Google Scholar]
- Menéndez, I.; Herrera-Holguín, C.; Mangas, J. Upper Quaternary coastal palaeoenvironments and palaeosea levels in Las Canteras beach, Gran Canaria (Canary Islands, Spain). Mar. Geol. 2020, 429, 106322. [Google Scholar] [CrossRef]
- Pérez-Torrado, F.J.; Mangas, J. Origin and geological evolution of the Las Canteras bar (Las Palmas de Gran Canaria). Vector Plus 1994, 1, 4–13. [Google Scholar]
- Balcells, R.; Barrera-Morate, J.L.; Ruiz, M.T. Geological map of sheet 1101-I-II, scale 1:25,000. (Las Palmas de Gran Canaria). In Memoir; ITGE: Madrid, Spain, 1990; p. 131. [Google Scholar]
- Meco, J.; Petit-Maire, N.; Fontugne, M.; Shimmield, G.; Ramos, A.J. The Quaternary deposits in Lanzarote and Fuerteventura (Eastern Canary Islands, Spain): An overview. In Climates of the Past. Proceeding CLIP Project; Meco, J., Petit-Maire, N., Eds.; Universidad de Las Palmas de Gran Canaria (ULPGC): Las Palmas, Spain, 1997; pp. 123–136. [Google Scholar]
- Eversole, D.; Fletcher, C.H. Longshore sediment transport rates on a reef-fronted beach: Field data and empirical models Kaanapali Beach, Hawaii. J. Coast. Res. 2003, 19, 649–663. [Google Scholar]
- Bosserelle, C.; Gallop, S.L.; Haigh, I.D.; Pattiaratchi, C.B. The influence of reef topography on storm-driven sand flux. J. Mar. Sci. Eng. 2021, 9, 272. [Google Scholar] [CrossRef]
- Trenhaile, A. Rocky coasts―their role as depositional environments. Earth Sci. Rev. 2016, 159, 1–13. [Google Scholar] [CrossRef]
- Gallop, S.L.; Kennedy, D.M.; Loureiro, C.; Naylor, L.A.; Muñoz-Pérez, J.J.; Jackson, D.W.; Fellowes, T.E. Geologically controlled sandy beaches: Their geomorphology, morphodynamics and classification. Sci. Environ. 2020, 731, 139123. [Google Scholar] [CrossRef]
- Muñoz-Pérez, J.J.; Tejedor, L.; Medina, R. Equilibrium beach profile model for reef-protected beaches. J. Coast. Res. 1999, 15, 950–957. [Google Scholar]
- Gallop, S.L.; Bosserelle, C.; Eliot, I.; Pattiaratchi, C.B. The influence of limestone reefs on storm erosion and recovery of a perched beach. Cont. Shelf Res. 2012, 47, 16–27. [Google Scholar] [CrossRef]
- Gallop, S.L.; Bosserelle, C.; Eliot, I.; Pattiaratchi, C.B. The influence of coastal reefs on spatial variability in seasonal sand fluxes. Mar. Geol. 2013, 344, 132–143. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Padilla, I.; Castelle, B.; Marieu, V.; Morichon, D. Video-Based Nearshore Bathymetric Inversion on a Geologically Constrained Mesotidal Beach during Storm Events. Remote Sens. 2022, 14, 3850. [Google Scholar] [CrossRef]
- Alonso, I.; Vilas, F. The influence of boundary conditions on beach zonation. In Coastal Dynamics; ASCE: Reston, VA, USA, 1994; pp. 417–431. [Google Scholar]
- Jackson, D.W.T.; Cooper, J.A.G.; Del Rio, L. Geological control of beach morphodynamic state. Mar. Geol. 2005, 216, 297–314. [Google Scholar] [CrossRef]
- Dugan, J.P.; Morris, W.D.; Vierra, K.C.; Piotrowski, C.C.; Farruggia, G.J.; Campion, D.C. Jetski-based nearshore bathymetric and current survey system. J. Coast. Res. 2001, 17, 900–908. [Google Scholar]
- Maleika, W.; Palczynski, M.; Frejlichowski, D. Interpolation methods and the accuracy of bathymetric seabed models based on multibeam echosounder data. In Proceedings of the Intelligent Information and Database Systems: 4th Asian Conference, ACIIDS 2012; Proceedings, Part III 4, Kaohsiung, Taiwan, 19–21 March 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 466–475. [Google Scholar]
- Stockdon, H.F.; Holman, R.A. Estimation of wave phase speed and nearshore bathymetry from video imagery. J. Geophys. Res. Oceans 2000, 105, 22015–22033. [Google Scholar] [CrossRef]
- Lee, Z.; Carder, K.L.; Mobley, C.D.; Steward, R.G.; Patch, J.S. Hyperspectral remote sensing for shallow waters: 2. Deriving bottom depths and water properties by optimization. Appl. Opt. 1999, 38, 3831–3843. [Google Scholar] [CrossRef] [Green Version]
- Lyzenga, D.R.; Malinas, N.P.; Tanis, F.J. Multispectral bathymetry using a simple physically based algorithm. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2251–2259. [Google Scholar] [CrossRef]
- Ferrario, F.; Beck, M.W.; Storlazzi, C.D.; Micheli, F.; Shepard, C.C.; Airoldi, L. The effectiveness of coral reefs for coastal hazard risk reduction and adaptation. Nat. Commun. 2014, 5, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Gallop, S.L.; Young, I.R.; Ranasinghe, R.; Durrant, T.H.; Haigh, I.D. The large-scale influence of the Great Barrier Reef matrix on wave attenuation. Coral Reefs 2014, 33, 1167–1178. [Google Scholar] [CrossRef] [Green Version]
- Robinson, L.A. Erosive processes on the shore platform of northeast Yorkshire, England. Mar. Geol. 1977, 23, 339–361. [Google Scholar] [CrossRef]
- Bird, E.C. Coastal Geomorphology: An Introduction; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Gill, E.D.; Lang, J.G. Micro-erosion meter measurements of rock wear on the Otway coast of southeast Australia. Mar. Geol. 1983, 52, 141–156. [Google Scholar] [CrossRef]
- Stephenson, W.J.; Kirk, R.M.; Hemmingsen, S.A.; Hemmingsen, M.A. Decadal scale micro erosion rates on shore platforms. Geomorphology 2010, 114, 22–29. [Google Scholar] [CrossRef]
- Stephenson, W.J.; Kirk, R.M.; Kennedy, D.M.; Finlayson, B.L.; Chen, Z. Long term shore platform surface lowering rates: Revisiting Gill and Lang after 32 years. Mar. Geol. 2012, 299, 90–95. [Google Scholar] [CrossRef]
- Trenhaile, A.S.; Porter, N.J. Shore platform downwearing in eastern Canada; A 9–14 year micro-erosion meter record. Geomorphology 2018, 311, 90–102. [Google Scholar] [CrossRef]
- Stephenson, W.J.; Naylor, L.A. Geological controls on boulder production in a rock coast setting: Insights from South Wales, UK. Mar. Geol. 2011, 283, 12–24. [Google Scholar] [CrossRef]
- Naylor, L.A.; Stephenson, W.J.; Smith, H.C.; Way, O.; Mendelssohn, J.; Cowley, A. Geomorphological control on boulder transport and coastal erosion before, during and after an extreme extra-tropical cyclone. Earth Surf. Process. Landf. 2016, 41, 685–700. [Google Scholar] [CrossRef] [Green Version]
- Buchanan, D.H.; Naylor, L.A.; Hurst, M.D.; Stephenson, W.J. Erosion of rocky shore platforms by block detachment from layered stratigraphy. Earth Surf. Process. Landf. 2020, 45, 1028–1037. [Google Scholar] [CrossRef] [Green Version]
- Trenhaile, A.S. The Geomorphology of Rock Coasts; Clarendon Press: Oxford, UK, 1987; Volume 1168. [Google Scholar]
- Trenhaile, A.S. Modeling the development of wave-cut shore platforms. Mar. Geol. 2000, 166, 163–178. [Google Scholar] [CrossRef]
- Walkden, M.J.A.; Hall, J.W. A predictive mesoscale model of the erosion and profile development of soft rock shores. Coast. Eng. 2005, 52, 535–563. [Google Scholar] [CrossRef]
- Thébaudeau, B.; Trenhaile, A.S.; Edwards, R.J. Modelling the development of rocky shoreline profiles along the northern coast of Ireland. Geomorphology 2013, 203, 66–78. [Google Scholar] [CrossRef] [Green Version]
- Alonso, I. Sedimentary Processes at Las Canteras Beach (Gran Canaria). Ph.D. Thesis, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain, 1993. [Google Scholar]
- Arriola-Velásquez, A.; Tejera, A.; Guerra, J.G.; Alonso, I.; Alonso, H.; Arnedo, M.A.; Martel, P. Spatio-temporal variability of natural radioactivity as tracer of beach sedimentary dynamics. Estuar. Coast. Shelf Sci. 2019, 231, 106476. [Google Scholar] [CrossRef]
- Alonso, I.; Vilas, F. Sedimentary variability at Las Canteras beach (Gran Canaria). Geogaceta 1996, 20, 428–430. [Google Scholar]
- Martínez-Martínez, J.; Gordo Rojas, M.C.; Santana, J.M.; Jiménez, J.A.; Veloso Quevedo, J.J. Sedimentary dynamics at Las Canteras beach (Las Palmas de Gran Canaria). Rev. Obras Públ. 1988, 2, 145–152. [Google Scholar]
- Martínez-Martínez, J.; Álvarez Espejo, R.; Bilbao, I.A.; Rodríguez Cabrera, R. Analysis of sedimentary processes on the Las Canteras beach (Las Palmas, Spain) for its planning and management. Eng. Geol. 1990, 29, 377–386. [Google Scholar] [CrossRef] [Green Version]
- Alonso, I. Spatial beach morphodynamics. An example from Canary Islands, Spain. Litoral 1994, 94, 169–183. [Google Scholar]
- Alonso, I. Medición del transporte de sedimentos por olas y corrientes. Vector Plus Sci. Cult. Misc. 1999, 14, 13–23. [Google Scholar]
- Sánchez García, M.J.; Casamayor Font, M.; Alonso Bilbao, I.; Rodriguez, S. Long-term evolution of the coastline at Las Canteras beach (Canary Islands). Geotemas 2015, 15, 85–88. [Google Scholar]
- Tuya, F.; Asensio, M.; Bosch, N.E.; García, A.; Navarro, A. Partitioning multiple diversity dimensions of nearshore fish assemblages within a coastal seascape. Hydrobiologia 2019, 834, 87–102. [Google Scholar] [CrossRef]
- Tuya, F.; Asensio, M.; Navarro, A. “Urbanite” rays and sharks: Presence, habitat use and population structure in an urban semi-enclosed lagoon. Reg. Stud. Mar. Sci. 2020, 37, 101342. [Google Scholar] [CrossRef]
- Martin, J.; Eugenio, F.; Marcello, J.; Medina, A. Automatic sun glint removal of multispectral high-resolution WorldView-2 imagery for retrieving coastal shallow water parameters. Remote Sens. 2016, 8, 37. [Google Scholar] [CrossRef] [Green Version]
- Guillemot, C.; Le Meur, O. Image inpainting: Overview and recent advances. IEEE Signal Process. Mag. 2013, 31, 127–144. [Google Scholar] [CrossRef]
- Zhonping, L. Hyperspectral remote sensing for shadow waters: 2. Deriving bottom depths and water properties by optimization. Appl. Opt. 1999, 38, 18. [Google Scholar]
- Gavin, H.P. The Levenberg-Marquardt Method for Nonlinear Least Squares Curve-fitting Problems; Department of Civil and Environmental Engineering, Duke University Durham: Durham, NC, USA, 2013. [Google Scholar]
- Hobson, R.D. Surface Roughness in Topography: A Quantitative Approach. In Spatial Analysis in Geomorphology; Chorley, R.J., Ed.; Harper & Row: London, UK, 1972; pp. 221–245. [Google Scholar]
- Sappington, J.M.; Longshore, K.M.; Thomson, D.B. Quantifying Landscape Ruggedness for Animal Habitat Analysis: A case Study Using Bighorn Sheep in the Mojave Desert. J. Wildl. Manag. 2007, 71, 1419–1426. [Google Scholar] [CrossRef]
- Pérez-Torrado, F.J.; Cabrera, M.C.; Hansen Machín, A.; Rodriguez-Gonzalez, A. Geolodía 13 Gran Canaria: An Urban Geological Walk; Las Palmas de Gran Canaria: Las Palmas, Spain, 2013. [Google Scholar]
- Otero Paz, I. La Historia de Las Palmas de Gran Canaria, Enterrada en la Playa de Las Canteras; elDiario.es: Las Palmas de Gran Canaria, Spain, 2016; Available online: https://www.eldiario.es/canariasahora/cultura/palmas-gran-canaria-enterrada-canteras_1_4042039.html (accessed on 20 April 2023).
- Instituto Español de Oceanografía. Topobathymetric Map of the Canary Islands 1:700,000 (UTM 28N Ellipsoid WGS84 Projection); Instituto Español de Oceanografía, Ministerio de Educación y Ciencia: Madrid, Spain, 2006; ISBN 84-958-77-30-9.
- Meco, J.; Guillou, H.; Carracedo, J.C.; Lomoschitz, A.; Ramos, A.J.G.; Rodríguez-Yánez, J.J. The maximum warmings of the Pleistocene world climate recorded in the Canary Islands. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2002, 185, 197–210. [Google Scholar] [CrossRef] [Green Version]
- Zazo, C.; Goy, J.L.; Hillaire-Marcel, C.; Gillot, P.Y.; Soler, V.; Gonzalez, J.Á.; Ghaleb, B. Raised marine sequences of Lanzarote and Fuerteventura revisited-a reappraisal of relative sea-level changes and vertical movements in the eastern Canary Islands during the Quaternary. Quat. Sci. Rev. 2002, 21, 2019–2046. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, D.M.; Dickson, M.E. Lithological control on the elevation of shore platforms in a microtidal setting. Earth Surf. Process. Landf. J. Br. Geomorphol. Res. Group 2006, 31, 1575–1584. [Google Scholar] [CrossRef]
- Naylor, L.A.; Stephenson, W.J. On the role of discontinuities in mediating shore platform erosion. Geomorphology 2010, 114, 89–100. [Google Scholar] [CrossRef]
- Rijsdijk, K.F.; Hengl, T.; Norder, S.J.; Otto, R.; Emerson, B.C.; Ávila, S.P.; López, H.; van Loon, E.; Tjørve, E.; Fernández-Palacios, J.M. Quantifying surface-area changes of volcanic islands driven by Pleistocene sea-level cycles: Biogeographical implications for the Macaronesian archipelagos. J. Biogeogr. 2014, 41, 1242–1254. [Google Scholar] [CrossRef]
- Ballouche, A.; Lefevrè, D.; Carruesco, C.; Raynal, J.P.; Texier, J.P. Holocene environments of coastal and continental Morocco. In Quaternary Climate in Western Mediterranean; Lopez Vera, F., Ed.; Universidad Autónoma de Madrid: Madrid, Spain, 1986; pp. 517–531. [Google Scholar]
- Barusseau, J.P.; Descamps, C.; Giresse, P.; Monteillet, J.; Pazdur, M. Nouvelle définition des niveaux marins le long de la côte nord-mauritienne (Sud du Banc d’Arguin) pendant les cinq derniers millénaires. Comptes Rendus L’académie Sci. Sér. 2 Mécanique Phys. Chim. Sci. L’univers Sci. Terre 1989, 309, 1019–1024. [Google Scholar]
- Meco, J.; Lomoschitz, A.; Rodríguez, Á.; Ramos, A.J.; Betancort, J.F.; Coca, J. Mid and Late Holocene sea level variations in the Canary Islands. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2018, 507, 214–225. [Google Scholar] [CrossRef]
- Herrera-Holguín, A.C.; Menéndez, I.; Mangas, J. Beachrock, paleosuelo y aeolianita holocenas en el arco central de la playa de las canteras (NE de Gran Canaria, España). In Proceedings of the XV Reunión Nacional de Cuaternario Bizkaia Aretoa, Bilbao, Spain, 1–5 July 2019; Libro de Resúmenes; Universidad del País Vasco/Euskal Herriko Unibertsitatea: Leioa, Spain, 2019; pp. 243–246. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrer, N.; Santana, K.; Martín, J.; Valdazo, J.; Bergasa, O. Holocene Erosional Processes in a Highly Exposed Intertidal Sandstone Reef Inferred from Remote Sensing Data. Remote Sens. 2023, 15, 2968. https://doi.org/10.3390/rs15122968
Ferrer N, Santana K, Martín J, Valdazo J, Bergasa O. Holocene Erosional Processes in a Highly Exposed Intertidal Sandstone Reef Inferred from Remote Sensing Data. Remote Sensing. 2023; 15(12):2968. https://doi.org/10.3390/rs15122968
Chicago/Turabian StyleFerrer, Nicolás, Kella Santana, Javier Martín, José Valdazo, and Oscar Bergasa. 2023. "Holocene Erosional Processes in a Highly Exposed Intertidal Sandstone Reef Inferred from Remote Sensing Data" Remote Sensing 15, no. 12: 2968. https://doi.org/10.3390/rs15122968
APA StyleFerrer, N., Santana, K., Martín, J., Valdazo, J., & Bergasa, O. (2023). Holocene Erosional Processes in a Highly Exposed Intertidal Sandstone Reef Inferred from Remote Sensing Data. Remote Sensing, 15(12), 2968. https://doi.org/10.3390/rs15122968