An Efficient On-Chip Data Storage and Exchange Engine for Spaceborne SAR System
Abstract
:1. Introduction
- Through modeling and calculating the time parameters impacting DDR3 access efficiency, such as DDR3 row activation and pre-charging, a three-dimensional cross-mapping method is proposed premised on the equal division of sub-matrix with dual-channel DDR3. While maintaining the three-dimensional cross-mapping method, this approach maximizes the parallelism of two off-chip DDR3 to amplify the range and azimuth data storage access bandwidth, thereby achieving balance in range and azimuth data access.
- By analyzing and studying traditional pipeline resources, a superscalar pipeline buffer is proposed as a method for efficient on-chip data exchange for SAR imaging processors. This method subdivides pipeline resources further, diminishes the idle ratio, optimizes spatial parallelism, and leverages the advantages of dual-channel DDR3 storage, thereby markedly augmenting the efficiency of data exchange.
- Based on the aforementioned solution, we propose a hardware architecture for an on-chip efficient data exchange engine. This architecture employs a modular register addressing control mode and synthesizes a superscalar pipeline buffer module with a dual-channel DDR3 access control module, thereby forming a data exchange engine with configurable granularity and state monitoring capabilities.
- We verified the proposed hardware architecture in a “CPU + FPGA” heterogeneous SAR imaging system, and evaluated the data bandwidth. The experimental results show that the efficient storage and exchange engine for SAR imaging data designed in this paper has a storage access bandwidth of up to 16.6 GB/s in the range direction, which is the read bandwidth in the range direction. In addition, the write access bandwidth in the range direction of DDR3 is 16.0 GB/s. In the azimuth direction, the storage access bandwidth can reach up to 20.0 GB/s, which is read bandwidth in the azimuth, and the write bandwidth in the azimuth is 18.3 GB/s. The method proposed in this paper is better than the existing implementations.
2. Analysis of Storage and Exchange Efficiency for SAR Data
2.1. Analysis of Chirp Scaling (CS) Algorithm
2.2. Analysis of Storage Access Characteristics for DDR3 SDRAM
2.3. Analysis of Existing Data Exchange Solutions
2.3.1. Matrix Block Three-Dimensional Mapping
2.3.2. Sub-Matrix Cross-Mapping
2.3.3. Scalar Pipeline
3. The Data Storage and Exchange Method Based on Superscalar Pipeline
3.1. The Three-Dimensional Cross-Mapping Method Based on Equal Division of Sub-Matrix with Dual-Channel
3.1.1. The Matrix Block Three-Dimensional Mapping with Dual-Channel
3.1.2. Sub-Matrix Equal Division Cross-Mapping
3.1.3. Address Mapping Strategy
3.2. Superscalar Pipeline Ping-Pong Buffer
3.2.1. Data Exchange in Range Direction Based on Superscalar Pipeline
3.2.2. Data Exchange in Azimuth Direction Based on Superscalar Pipeline
4. Hardware Implementation
4.1. On-Chip Data Exchange Engine Architecture
4.1.1. DDR3_TOP Module
4.1.2. Dline_Buf Module
4.1.3. Structure of Address Generation
4.2. Register Control for Custom Engines
5. Experiments and Results
5.1. Experiment Setting
5.2. Experimental Results and Performance Evaluation
5.2.1. Superscalar Pipeline Data Storage and Exchange Engine
5.2.2. The SAR Imaging Processing System with Heterogeneous “CPU + FPGA” Architecture
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Long, T.; Zeng, T.; Hu, C.; Dong, X.; Chen, L.; Liu, Q.; Xie, Y.; Ding, Z.; Li, Y.; Wang, Y.; et al. High Resolution Radar Real-Time Signal and Information Processing. China Commun. 2019, 16, 105–133. [Google Scholar]
- John, C.; Curlander, R.N.M. Synthetic Aperture Radar: Systems and Signal Processing, 1st ed.; Wiley-Interscience: Hoboken, NJ, USA, 1991; ISBN 0-471-85770-X. [Google Scholar]
- Chan, Y.K.; Koo, V. An Introduction to Synthetic Aperture Radar (SAR). Prog. Electromagn. Res. B 2008, 2, 27–60. [Google Scholar] [CrossRef]
- Yu, C.-L.; Chakrabarti, C. Transpose-Free SAR Imaging on FPGA Platform. In Proceedings of the 2012 IEEE International Symposium on Circuits and Systems, Seoul, Republic of Korea, 20–23 May 2012; pp. 762–765. [Google Scholar]
- Moreira, A.; Prats-Iraola, P.; Younis, M.; Krieger, G.; Hajnsek, I.; Papathanassiou, K.P. A Tutorial on Synthetic Aperture Radar. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–43. [Google Scholar] [CrossRef]
- Hirose, A.; Rosen, P.A.; Yamada, H.; Zink, M. Foreword to the Special Issue on Advances in SAR and Radar Technology. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3748–3750. [Google Scholar] [CrossRef]
- De-min, Z.; Hui-li, G.; Jin-ming, H.; Feng-lin, W. Application of Satellite Remote Sensing Technology to Wetland Research. Remote Sens. Technol. Appl. 2011, 21, 577–583. [Google Scholar]
- Earth Beyond: How SpaceAlpha’s SAR Processing Tech Will Aid Future Interplanetary Missions. Available online: https://www.alphainsights.space/post/alpha-high-speed-processing-csa (accessed on 29 August 2022).
- Li, F.; Zhang, C.; Zhang, X.; Li, Y. MF-DCMANet: A Multi-Feature Dual-Stage Cross Manifold Attention Network for PolSAR Target Recognition. Remote Sens. 2023, 15, 2292. [Google Scholar] [CrossRef]
- Gheorghe, M.; Armaş, I. Comparison of Multi-Temporal Differential Interferometry Techniques Applied to the Measurement of Bucharest City Subsidence. Procedia Environ. Sci. 2016, 32, 221–229. [Google Scholar] [CrossRef]
- Tralli, D.M.; Blom, R.G.; Zlotnicki, V.; Donnellan, A.; Evans, D.L. Satellite Remote Sensing of Earthquake, Volcano, Flood, Landslide and Coastal Inundation Hazards. ISPRS J. Photogramm. Remote Sens. 2005, 59, 185–198. [Google Scholar] [CrossRef]
- Home—NASA-ISRO SAR Mission (NISAR). Available online: https://nisar.jpl.nasa.gov/ (accessed on 29 August 2022).
- Bernstein, R.; Cardone, V.; Katsaros, K.; Lipes, R.; Riley, A.; Ross, D.; Switft, C. GOASEX Workshop Results from the Seasat-1 Scanning Multichannel Microwave Radiometer. In Proceedings of the OCEANS’79, San Diego, CA, USA, 17–19 September 1979; p. 657. [Google Scholar]
- China Launches Gaofen-3-03 Payload on CZ-4C from Jiuquan—NASASpaceFlight. Available online: https://www.nasaspaceflight.com/2022/04/china-gaofen-3-03/ (accessed on 29 August 2022).
- SAOCOM—Earth Online. Available online: https://earth.esa.int/eogateway/missions/saocom (accessed on 29 August 2022).
- SAR_ICEYE. Available online: https://www.iceye.com/hubfs/Downloadables/SAR_Data_Brochure_ICEYE.pdf (accessed on 29 August 2022).
- He, Y.; Yao, L.; Li, G.; Liu, Y.; Yang, D.; Li, W. Summary and Future Development of On-Board Information Fusion for Multi-Satellite Collaborative Observation. J. Astronaut. 2021, 42, 1–10. [Google Scholar]
- Vollmuller, G.; Algra, T.; Oving, B.; Wiegmink, K.; Bierens, L. On-Board Payload Data Processing, for SAR and Multispectral Data Processing, on-Board Satellites (LEON2/FFTC). In Proceedings of the 2nd International Workshop on OnBoard Payload Data Compression, Toulouse, France, 28–29 October 2010. [Google Scholar]
- Bierens, L.; Vollmuller, B.-J. On-Board Payload Data Processor (OPDP) and Its Application in Advanced Multi-Mode, Multi-Spectral and Interferometric Satellite SAR Instruments. In Proceedings of the EUSAR 2012, 9th European Conference on Synthetic Aperture Radar, Nuremberg, Germany, 23–26 April 2012; pp. 340–343. [Google Scholar]
- MacKinnon, J.; Crum, G.; Geist, A.; Wilson, C.; Middleton, E.; Cappelaere, P. SpaceCube 3.0: A Space Edge Computing Node for Future Science Missions. In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 9–13 December 2019; Volume 2019, p. IN41C-0878. [Google Scholar]
- SpaceCube v3.0 Mini NASA Next-Generation Data-Processing System for Advanced CubeSat Applications. Available online: https://ntrs.nasa.gov/api/citations/20190028775/downloads/20190028775.pdf (accessed on 29 August 2022).
- Launching Industry’s First 20nm Radiation Tolerant FPGA for Space Applications. Available online: https://www.xilinx.com/content/dam/xilinx/publications/presentations/rtkintex-press-presentation.pdf (accessed on 29 August 2022).
- Long, T.; Yang, Z.; Li, B.; Chen, L.; Ding, Z.; Chen, H.; Xie, Y. A Multi-mode SAR Imaging Chip Based on a Dynamically Reconfigurable SoC Architecture Consisting of Dual-Operation Engines and Multilayer Switching Network. Sensors 2018, 2018090550. [Google Scholar] [CrossRef]
- Lovelly, T.M.; Wise, T.W.; Holtzman, S.H.; George, A.D. Benchmarking Analysis of Space-Grade Central Processing Units and Field-Programmable Gate Arrays. J. Aerosp. Inf. Syst. 2018, 15, 518–529. [Google Scholar] [CrossRef]
- Schmidt, A.G.; French, M.; Flatley, T. Radiation Hardening by Software Techniques on FPGAs: Flight Experiment Evaluation and Results. In Proceedings of the 2017 IEEE Aerospace Conference, Big Sky, MT, USA, 4–11 March 2017; pp. 1–8. [Google Scholar]
- Yang, Z.; Long, T. Methods to Improve System Verification Efficiency in FPGA-Based Spaceborne SAR Image Processing System. In Proceedings of the IET International Radar Conference 2015, Hangzhou, China, 14–16 October 2015. [Google Scholar]
- Wang, S.; Zhang, S.; Huang, X.; An, J.; Chang, L. A Highly Efficient Heterogeneous Processor for SAR Imaging. Sensors 2019, 19, 3409. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhang, S.; Huang, X.; Lyu, H. On-Chip Data Organization and Access Strategy for Spaceborne SAR Real-Time Imaging Processor. Xibei Gongye Daxue Xuebao/J. Northwest. Polytech. Univ. 2021, 39, 126–134. [Google Scholar] [CrossRef]
- DDR3 SDRAM. Available online: https://www.micron.com/products/dram/ddr3-sdram (accessed on 29 August 2022).
- Double Data Rate (DDR) Memory Devices. Available online: https://ntrs.nasa.gov/api/citations/20180004227/downloads/20180004227.pdf (accessed on 29 August 2022).
- Wang, X.; Shen, L.; Jia, M. The Design and Optimization of DDR3 Controller Based on FPGA. In Proceedings of the International Conference in Communications, Signal Processing, and Systems, Harbin, China, 14–17 July 2017; pp. 1744–1750. [Google Scholar]
- Wang, B.; Du, J.; Bi, X.; Tian, X. High Bandwidth Memory Interface Design Based on DDR3 SDRAM and FPGA. In Proceedings of the 2015 International SoC Design Conference (ISOCC), Gyungju, Republic of Korea, 2–5 November 2015; pp. 253–254. [Google Scholar]
- Yang, C.; Li, B.; Chen, L.; Wei, C.; Xie, Y.; Chen, H.; Yu, W. A Spaceborne Synthetic Aperture Radar Partial Fixed-Point Imaging System Using a Field-Programmable Gate Array—Application-Specific Integrated Circuit Hybrid Heterogeneous Parallel Acceleration Technique. Sensors 2017, 17, 1493. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Xie, Y.; Li, B. Efficiency Balanced Matrix Transpose Method for Sliding Spotlight SAR Imaging Processing. J. Eng. 2019, 2019, 7775–7778. [Google Scholar] [CrossRef]
- Wang, G.; Chen, H.; Xie, Y. An Efficient Dual-Channel Data Storage and Access Method for Spaceborne Synthetic Aperture Radar Real-Time Processing. Electronics 2021, 10, 662. [Google Scholar] [CrossRef]
- Franceschetti, G.; Lanari, R. Synthetic Aperture Radar Processing; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Sun, T.; Xie, Y.; Li, B.; Chen, H.; Liu, X.; Chen, L. Efficient and flexible 2-d data controller for sar imaging system. In Proceedings of the 2018 IEEE High Performance extreme Computing Conference (HPEC), Waltham, MA, USA, 25–27 September 2018; pp. 1–6. [Google Scholar]
- Raney, R.K.; Runge, H.; Bamler, R.; Cumming, I.G.; Wong, F.H. Precision SAR Processing Using Chirp Scaling. IEEE Trans. Geosci. Remote Sens. 1994, 32, 786–799. [Google Scholar] [CrossRef]
- Sun, T.; Li, B.; Liu, X. An FPGA-Based Balanced and High-Efficiency Two-Dimensional Data Access Technology for Real-Time Spaceborne SAR. In Communications, Signal Processing, and Systems, Proceedings of the 2018 CSPS Volume III: Systems, Dalian, China, 14–16 July 2018, 7th ed.; Springer: Singapore, 2020; pp. 724–732. [Google Scholar]
- Zynq UltraScale+ MPSoC ZCU106. Available online: https://china.xilinx.com/products/boards-and-kits/zcu106.html (accessed on 8 September 2022).
- Xilinx Virtex-7 FPGA VC709. Available online: https://china.xilinx.com/products/boards-and-kits/dk-v7-vc709-g.html (accessed on 6 September 2022).
- Li, B.; Shi, H.; Chen, L.; Yu, W.; Yang, C.; Xie, Y.; Bian, M.; Zhang, Q.; Pang, L. Real-time spaceborne synthetic aperture radar float-point imaging system using optimized mapping methodology and a multi-node parallel accelerating technique. Sensors 2018, 18, 725. [Google Scholar] [CrossRef]
- Garrido, M.; Pirsch, P. Continuous-Flow Matrix Transposition Using Memories. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 3035–3046. [Google Scholar] [CrossRef]
- Taijing-4 01 satellite. Available online: https://space.skyrocket.de/doc_sdat/taijing-4.htm (accessed on 10 September 2022).
- Linchen, Z.; Jindong, Z.; Daiyin, Z. FPGA implementation of polar format algorithm for airborne spotlight SAR processing. In Proceedings of the 2013 IEEE 11th International Conference on Dependable, Autonomic and Secure Computing, Chengdu, China, 21–22 December 2013; pp. 143–147. [Google Scholar]
- Lou, Y.; Clark, D.; Marks, P.; Muellerschoen, R.J.; Wang, C.C. Onboard radar processor development for rapid response to natural hazards. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2770–2776. [Google Scholar] [CrossRef]
- Gong, J.L. Development of integrated electronic system for SAR based on UAV. In Proceedings of the 2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Xiamen, China, 26–29 November 2019; pp. 1–4. [Google Scholar]
- Chang, K.-W.; Chang, T.-S. Efficient accelerator for dilated and transposed convolution with decomposition. In Proceedings of the 2020 IEEE International Symposium on Circuits and Systems (ISCAS), Seville, Spain, 10–21 October 2020; pp. 1–5. [Google Scholar]
- Zhang, X.; Wei, X.; Sang, Q.; Chen, H.; Xie, Y. An efficient fpga-based implementation for quantized remote sensing image scene classification network. Electronics 2020, 9, 1344. [Google Scholar] [CrossRef]
- Zhang, N.; Wei, X.; Chen, H.; Liu, W. FPGA Implementation for CNN-based optical remote sensing object detection. Electronics 2021, 10, 282. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, G.; Wang, J.; Chen, H.; Liu, W.; Chen, L. All Adder Neural Networks for On-board Remote Sensing Scene Classification. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–16. [Google Scholar] [CrossRef]
- Yan, T.; Zhang, N.; Li, J.; Liu, W.; Chen, H. Automatic Deployment of Convolutional Neural Networks on FPGA for Spaceborne Remote Sensing Application. Remote Sens. 2022, 14, 3130. [Google Scholar] [CrossRef]
Performance | Range | Azimuth |
---|---|---|
Writing efficiency | 92.25% | 8.51% |
Reading efficiency | 94.64% | 12.12% |
Writing bandwidth | 11.53 GB/s | 1.06 GB/s |
Reading bandwidth | 11.83 GB/s | 1.52 GB/s |
Performance | Range | Azimuth |
---|---|---|
Writing efficiency | 66% | 66% |
Reading efficiency | 80% | 80% |
Writing bandwidth | 8.45 GB/s | 8.45 GB/s |
Reading bandwidth | 10.24 GB/s | 10.24 GB/s |
Signal Name | Input/Output | Bit Width | Description |
---|---|---|---|
Wreq | Input | 1 | Write request signal for register |
Waddr | Input | 14 | Write address signal for register |
Wdata | Input | 32 | Write data signal for register |
Wack | Output | 1 | Write response signal for register |
Rreq | Input | 1 | Read request signal for register |
Raddr | Input | 14 | Read address signal for register |
Rdata | Output | 32 | Read data signal for register |
Rack | Output | 1 | Read response signal for register |
Register | Register | Access | Description |
---|---|---|---|
Name | Address | Type | |
DDR3_op_conf_register | 14’h40 | W | Operation Flow Control Register |
DDR3A_state_register | 14’h44 | R | DDR3A Status Register |
DDR3B_state_register | 14’h48 | R | DDR3B Status Register |
DDR3_main_state_register | 14’h4C | R | DDR3 Operation Status Flag Register |
DDR3_start_x_register | 14’h50 | W | x Coordinate Start Configuration Register |
DDR3_start_y_register | 14’h54 | W | y Coordinate Start Configuration Register |
Granularity_Conf_Register | 14’h58 | W | Data Granularity Configuration Register |
Register | Register | Access | Description |
---|---|---|---|
Name | Address | Type | |
Dline_Buf_op_conf_register | 14’h80 | W | Operation Flow Control Register |
Dline_BufA_state_register | 14’h84 | R | Dline BufA Status Register |
Dline_BufB_state_register | 14’h88 | R | Dline BufB Status Register |
Dline_Buf_main_state_register | 14’h8C | R | Dline Buf Operation Status Flag Register |
Buffer_points_Conf_Register | 14’h90 | W | Data Buffer Points Configuration Register |
Range (Read) | Range (Write) | Azimuth (Read) | Azimuth (Write) | |
---|---|---|---|---|
Theoretical Bandwidth | 25.0 GB/s | 25.0 GB/s | 25.0 GB/s | 25.0 GB/s |
Measured Bandwidth | 16.6 GB/s | 16.0 GB/s | 20.0 GB/s | 18.3 GB/s |
Access Efficiency | 66% | 64% | 80% | 73% |
Ours | [35] | [34] | [42] | [33] | [43] | |
---|---|---|---|---|---|---|
Data Granularity | ||||||
FPGA | Xilinx XC7VX690T | Xilinx XC7VX690T | Xilinx XC7VX690T | Xilinx XC6VLX315T | Xilinx XC6VSX760T | Xilinx XC7VX330T |
DDR3 channel number | 2 | 2 | 2 | 1 | 1 | 1 |
Range access bandwidth | 16.6 GB/s | 10.24 GB/s | 8.3 GB/s | 4.8 GB/s | 6.0 GB/s | - |
Azimuth access bandwidth | 20.0 GB/s | 10.24 GB/s | 9.62 GB/s | 4.8 GB/s | 2.37 GB/s | - |
Range access efficiency | - | |||||
Azimuth access efficiency | - | |||||
Matrix transposition time | 0.225 s | 0.43 s | 0.45 s | 0.83 s | 1.18 s | 0.33 s |
Buffer RAM number | 8 | 4 | 4 | 4 | 8 | - |
Superscalar pipeline supported or not | Yes | No | No | No | No | No |
Resource | Utilization | Available | Utilization (%) |
---|---|---|---|
Slice LUTs | |||
LUT RAM | |||
Flip Flop | |||
Block RAM | 1283 | 1470 | |
DSPs | 580 | 3600 |
Resource | Utilization | Available | Utilization (%) |
---|---|---|---|
Slice LUTs | |||
LUT RAM | |||
Flip Flop | |||
Block RAM | 45 | 312 | |
DSPs | 0 | 1728 |
Parameters | Constant |
---|---|
Forward velocity | 7390.3 m/s |
Wavelength | 0.0312 m |
Bandwidth of LFM signal | 120 MHz |
Range sampling rate | 144 MHz |
PRF | 5403.2 Hz |
Pulse duration | 20.3 s |
Chirp rate of LFM signal | Hz/s |
SquintAngle | rad |
Result Source | Range PSLR/dB | Range ISLR/dB | Azimuth PSLR/dB | Azimuth ISLR/dB |
---|---|---|---|---|
MATLAB Imaging | −13.34 | −10.25 | −13.02 | −10.17 |
“CPU + FPGA” Imaging | −13.31 | −10.23 | −13.01 | −10.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, H.; Li, Y.; Xie, Y.; Qiao, T. An Efficient On-Chip Data Storage and Exchange Engine for Spaceborne SAR System. Remote Sens. 2023, 15, 2885. https://doi.org/10.3390/rs15112885
Lv H, Li Y, Xie Y, Qiao T. An Efficient On-Chip Data Storage and Exchange Engine for Spaceborne SAR System. Remote Sensing. 2023; 15(11):2885. https://doi.org/10.3390/rs15112885
Chicago/Turabian StyleLv, Hushan, Yongrui Li, Yizhuang Xie, and Tingting Qiao. 2023. "An Efficient On-Chip Data Storage and Exchange Engine for Spaceborne SAR System" Remote Sensing 15, no. 11: 2885. https://doi.org/10.3390/rs15112885
APA StyleLv, H., Li, Y., Xie, Y., & Qiao, T. (2023). An Efficient On-Chip Data Storage and Exchange Engine for Spaceborne SAR System. Remote Sensing, 15(11), 2885. https://doi.org/10.3390/rs15112885