Consensus Techniques for Unsupervised Binary Change Detection Using Multi-Scale Segmentation Detectors for Land Cover Vegetation Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset Description
2.2. Methodology
- and are the spectrum of the representatives of the segment k in Images 1 and 2.
- is the dot product and the module of the vector.
- is the spectral angle between the spectra and .
- Scale fusion: The techniques listed in Table 2 were used to merge the change intensity maps obtained after applying the same segmentation algorithm at different scales. Figure 9 shows an example of scale fusion for three scales of a Hermiston cropping, showing the difference map obtained after fusion and the subsequent thresholded map (fusion map in the figure).In the case of weighted fusion, a weight inversely proportional to the segment size was assigned to each difference map as shown in Equation (3), where indicates the weight of the map corresponding to the i-th scale segmentation. This implied that the smaller the segment size corresponding to a difference map, the higher the weight assigned to the map was.
- Consensus technique: A final decision was made based on multiple binary change maps. Figure 10 illustrates the process considering that SLIC, watershed, and waterpixels denote the change maps produced by the three different multi-level detectors. Two types of pixels were considered: controversial and uncontested pixels [100]. An uncontested pixel was one for which all of the input maps matched the class to which it belonged (change or no change), whereas controversial pixels were those for which there was no consensus between the input maps and, therefore, required a reclassification to make a final decision. After the reclassification, the reclassified pixels were combined with the uncontested pixels, generating a change map. The reclassification or consensus techniques used are shown below:
- -
- Majority vote fusion (MV): For each pixel, each detector took a vote with its result, so if the majority of detectors detected a change, the final map would classify that pixel as a change.
- -
- OR fusion (OR): If a single detector had classified a pixel as a change, this pixel was classified as a change in the final map.
As the objective of this application was to detect all of the changes in vegetation, even at the cost of having some false positives, OR fusion was the best solution, as it could be confirmed by the experimental results.
2.3. Experimental Methodology
- Completeness (CP) or recall: is the percentage of positives (change pixels) correctly detected by the technique.
- No change accuracy (NCA): is the percentage of negatives (no change pixels) correctly detected by the technique.
- Correctness (CR) or precision: is the percentage of changes correctly detected over the number of changes detected by the algorithm.
- Overall accuracy (OA): is the percentage of hits of the algorithm. This is the metric most commonly used for measuring the performance of classification algorithms. Nevertheless, it does not describe correctly the results of change detection as the percentage of hits in change and no change are jointly measured even if the percentages of changed and unchanged pixels in the reference data are very different.
- -score: is a generalisation of the -score, which computes the harmonic mean between the recall (CP) and the precision (CR); this is useful for comparing the performance of different change detection algorithms.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AP | Attribute profile |
CD | Change detection |
CNN | Convolutional neural network |
CP | Completeness |
CR | Correctness |
CVA | Change vector analysis |
DS | Dempster–Shafer |
ED | Euclidean distance |
EM | Expectation–maximisation |
EMP | Extended morphological profile |
FI | Fuzzy integral |
FN | False negative |
FP | False positive |
GM | Geometry mean |
HM | Harmonic mean |
KPVD | Key point vector distance |
MN | Mean |
MP | Morphological profile |
MRS | Multiresolution segmentation |
MV | Majority vote |
NCA | No change accuracy |
NCI | Neighbourhood correlation image |
OA | Overall accuracy |
OBCD | Object-based change detection |
PCA | Principal component analysis |
pp | Percentage points |
RCMG | Robust colour morphological gradient |
SAM | Spectral angle mapper |
SE | Structural element |
SLIC | Simple linear iterative clustering |
SVM | Support vector machine |
TN | True negative |
TP | True positive |
UAV | Unmanned aerial vehicle |
USGS | United States Geological Survey |
VHR | Very high spatial resolution |
WG | Weighted mean |
References
- Liu, S.; Marinelli, D.; Bruzzone, L.; Bovolo, F. A review of change detection in multitemporal hyperspectral images: Current techniques, applications, and challenges. IEEE Geosci. Remote Sens. Mag. 2019, 7, 140–158. [Google Scholar] [CrossRef]
- Panuju, D.R.; Paull, D.J.; Griffin, A.L. Change Detection Techniques Based on Multispectral Images for Investigating Land Cover Dynamics. Remote Sens. 2020, 12, 1781. [Google Scholar] [CrossRef]
- Afaq, Y.; Manocha, A. Analysis on change detection techniques for remote sensing applications: A review. Ecol. Inform. 2021, 63, 101310. [Google Scholar] [CrossRef]
- Lv, Z.; Liu, T.; Benediktsson, J.A.; Falco, N. Land Cover Change Detection Techniques: Very-high-resolution optical images: A review. IEEE Geosci. Remote Sens. Mag. 2022, 10, 44–63. [Google Scholar] [CrossRef]
- Xie, Y.; Sha, Z.; Yu, M. Remote sensing imagery in vegetation mapping: A review. J. Plant Ecol. 2008, 1, 9–23. [Google Scholar] [CrossRef]
- Kumar, S.; Anouncia, M.; Johnson, S.; Agarwal, A.; Dwivedi, P. Agriculture change detection model using remote sensing images and GIS: Study area Vellore. In Proceedings of the 2012 International Conference on Radar, Communication and Computing (ICRCC), Tiruvannamalai, India, 21–22 December 2012; pp. 54–57. [Google Scholar] [CrossRef]
- Gandhi, G.M.; Parthiban, S.; Thummalu, N.; Christy, A. Ndvi: Vegetation Change Detection Using Remote Sensing and Gis—A Case Study of Vellore District. Procedia Comput. Sci. 2015, 57, 1199–1210. [Google Scholar] [CrossRef]
- Walter, V. Object-based classification of remote sensing data for change detection. ISPRS J. Photogramm. Remote Sens. 2004, 58, 225–238. [Google Scholar] [CrossRef]
- De Castro, A.I.; Shi, Y.; Maja, J.M.; Peña, J.M. UAVs for Vegetation Monitoring: Overview and Recent Scientific Contributions. Remote Sens. 2021, 13, 2139. [Google Scholar] [CrossRef]
- Zhang, N.; Yang, G.; Pan, Y.; Yang, X.; Chen, L.; Zhao, C. A Review of Advanced Technologies and Development for Hyperspectral-Based Plant Disease Detection in the Past Three Decades. Remote Sens. 2020, 12, 3188. [Google Scholar] [CrossRef]
- Blanco, S.R.; Heras, D.B.; Argüello, F. Texture Extraction Techniques for the Classification of Vegetation Species in Hyperspectral Imagery: Bag of Words Approach Based on Superpixels. Remote Sens. 2020, 12, 2633. [Google Scholar] [CrossRef]
- Longbotham, N.; Chaapel, C.; Bleiler, L.; Padwick, C.; Emery, W.J.; Pacifici, F. Very High Resolution Multiangle Urban Classification Analysis. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1155–1170. [Google Scholar] [CrossRef]
- Wen, D.; Huang, X.; Bovolo, F.; Li, J.; Ke, X.; Zhang, A.; Benediktsson, J.A. Change Detection from Very-High-Spatial-Resolution Optical Remote Sensing Images: Methods, applications, and future directions. IEEE Geosci. Remote Sens. Mag. 2021, 9, 68–101. [Google Scholar] [CrossRef]
- Dalla Mura, M.; Prasad, S.; Pacifici, F.; Gamba, P.; Chanussot, J.; Benediktsson, J.A. Challenges and Opportunities of Multimodality and Data Fusion in Remote Sensing. Proc. IEEE 2015, 103, 1585–1601. [Google Scholar] [CrossRef]
- Huang, X.; Wen, D.; Li, J.; Qin, R. Multi-level monitoring of subtle urban changes for the megacities of China using high-resolution multi-view satellite imagery. Remote Sens. Environ. 2017, 196, 56–75. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, L.; Li, P. A multiscale feature fusion approach for classification of very high resolution satellite imagery based on wavelet transform. Int. J. Remote Sens. 2008, 29, 5923–5941. [Google Scholar] [CrossRef]
- Huang, X.; Cao, Y.; Li, J. An automatic change detection method for monitoring newly constructed building areas using time-series multi-view high-resolution optical satellite images. Remote Sens. Environ. 2020, 244, 111802. [Google Scholar] [CrossRef]
- Bovolo, F.; Bruzzone, L. A theoretical framework for unsupervised change detection based on change vector analysis in the polar domain. IEEE Trans. Geosci. Remote Sens. 2007, 45, 218–236. [Google Scholar] [CrossRef]
- Liu, S.; Bruzzone, L.; Bovolo, F.; Zanetti, M.; Du, P. Sequential spectral change vector analysis for iteratively discovering and detecting multiple changes in hyperspectral images. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4363–4378. [Google Scholar] [CrossRef]
- Thonfeld, F.; Feilhauer, H.; Braun, M.; Menz, G. Robust Change Vector Analysis (RCVA) for multi-sensor very high resolution optical satellite data. Int. J. Appl. Earth Obs. Geoinf. 2016, 50, 131–140. [Google Scholar] [CrossRef]
- Singh, S.; Talwar, R. Review on different change vector analysis algorithms based change detection techniques. In Proceedings of the 2013 IEEE Second International Conference on Image Information Processing (ICIIP-2013), Shimla, India, 9–11 December 2013; pp. 136–141. [Google Scholar] [CrossRef]
- Marinelli, D.; Bovolo, F.; Bruzzone, L. A Novel Change Detection Method for Multitemporal Hyperspectral Images Based on Binary Hyperspectral Change Vectors. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4913–4928. [Google Scholar] [CrossRef]
- Saha, S.; Bovolo, F.; Bruzzone, L. Unsupervised deep change vector analysis for multiple-change detection in VHR images. IEEE Trans. Geosci. Remote Sens. 2019, 57, 3677–3693. [Google Scholar] [CrossRef]
- Wang, X.; Du, P.; Liu, S.; Senyshen, M.; Zhang, W.; Fang, H.; Fan, X. A novel multiple change detection approach based on tri-temporal logic-verified change vector analysis in posterior probability space. Int. J. Appl. Earth Obs. Geoinf. 2022, 111, 102852. [Google Scholar] [CrossRef]
- Chen, H.; Wu, C.; Du, B.; Zhang, L. Change Detection in Multi-temporal VHR Images Based on Deep Siamese Multi-scale Convolutional Networks. arXiv 2019. [Google Scholar] [CrossRef]
- Huo, C.; Zhou, Z.; Lu, H.; Pan, C.; Chen, K. Fast Object-Level Change Detection for VHR Images. IEEE Geosci. Remote Sens. Lett. 2010, 7, 118–122. [Google Scholar] [CrossRef]
- Xian, G.; Homer, C. Updating the 2001 National Land Cover Database Impervious Surface Products to 2006 using Landsat Imagery Change Detection Methods. Remote Sens. Environ. 2010, 114, 1676–1686. [Google Scholar] [CrossRef]
- Hussain, M.; Chen, D.; Cheng, A.; Wei, H.; Stanley, D. Change detection from remotely sensed images: From pixel-based to object-based approaches. ISPRS J. Photogramm. Remote Sens. 2013, 80, 91–106. [Google Scholar] [CrossRef]
- Xu, Y.; Huo, C.; Xiang, S.; Pan, C. Robust VHR image change detection based on local features and multi-scale fusion. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 1991–1995. [Google Scholar] [CrossRef]
- Huang, J.; Liu, Y.; Wang, M.; Zheng, Y.; Wang, J.; Ming, D. Change Detection of High Spatial Resolution Images Based on Region-Line Primitive Association Analysis and Evidence Fusion. Remote Sens. 2019, 11, 2484. [Google Scholar] [CrossRef]
- Bansal, P.; Vaid, M.; Gupta, S. OBCD-HH: An object-based change detection approach using multi-feature non-seed-based region growing segmentation. Multimed. Tools Appl. 2022, 81, 8059–8091. [Google Scholar] [CrossRef]
- Song, A.; Kim, Y.; Han, Y. Uncertainty Analysis for Object-Based Change Detection in Very High-Resolution Satellite Images Using Deep Learning Network. Remote Sens. 2020, 12, 2345. [Google Scholar] [CrossRef]
- Malila, W.A. Change vector analysis: An approach for detecting forest changes with Landsat. In Proceedings of the LARS Symposia, Malmo, Sweden, 30–31 May 1980; p. 385. [Google Scholar]
- Bruzzone, L.; Prieto, D. Automatic analysis of the difference image for unsupervised change detection. IEEE Trans. Geosci. Remote Sens. 2000, 38, 1171–1182. [Google Scholar] [CrossRef]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybernet. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Seydi, S.T.; Shah-Hosseini, R.; Hasanlou, M. New framework for hyperspectral change detection based on multi-level spectral unmixing. Appl. Geomat. 2021, 13, 763–780. [Google Scholar] [CrossRef]
- Seydi, S.T.; Shah-Hosseini, R.; Amani, M. A Multi-Dimensional Deep Siamese Network for Land Cover Change Detection in Bi-Temporal Hyperspectral Imagery. Sustainability 2022, 14, 12597. [Google Scholar] [CrossRef]
- Xing, H.; Zhu, L.; Chen, B.; Liu, C.; Niu, J.; Li, X.; Feng, Y.; Fang, W. A comparative study of threshold selection methods for change detection from very high-resolution remote sensing images. Earth Sci. Inform. 2022, 15, 369–381. [Google Scholar] [CrossRef]
- Liu, S.; Du, Q.; Tong, X.; Samat, A.; Bruzzone, L.; Bovolo, F. Multiscale morphological compressed change vector analysis for unsupervised multiple change detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 4124–4137. [Google Scholar] [CrossRef]
- Han, Y.; Javed, A.; Jung, S.; Liu, S. Object-Based Change Detection of Very High Resolution Images by Fusing Pixel-Based Change Detection Results Using Weighted Dempster–Shafer Theory. Remote Sens. 2020, 12, 983. [Google Scholar] [CrossRef]
- Shao, P.; Shi, W.; Liu, Z.; Dong, T. Unsupervised Change Detection Using Fuzzy Topology-Based Majority Voting. Remote Sens. 2021, 13, 3171. [Google Scholar] [CrossRef]
- Shafer, G. A Mathematical Theory of Evidence; Princeton University Press: Princeton, NJ, USA, 1976. [Google Scholar]
- Du, P.; Liu, S.; Gamba, P.; Tan, K.; Xia, J. Fusion of Difference Images for Change Detection Over Urban Areas. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 1076–1086. [Google Scholar] [CrossRef]
- Zhang, Y.; Peng, D.; Huang, X. Object-based change detection for VHR images based on multiscale uncertainty analysis. IEEE Geosci. Remote Sens. Lett. 2018, 15, 13–17. [Google Scholar] [CrossRef]
- Hao, M.; Shi, W.; Deng, K.; Zhang, H.; He, P. An Object-Based Change Detection Approach Using Uncertainty Analysis for VHR Images. J. Sens. 2016, 2016, 9078364. [Google Scholar] [CrossRef]
- Zhang, X.; He, L.; Qin, K.; Dang, Q.; Si, H.; Tang, X.; Jiao, L. SMD-Net: Siamese Multi-Scale Difference-Enhancement Network for Change Detection in Remote Sensing. Remote Sens. 2022, 14, 1580. [Google Scholar] [CrossRef]
- Chen, H.; Wu, C.; Du, B.; Zhang, L. Deep Siamese Multi-scale Convolutional Network for Change Detection in Multi-Temporal VHR Images. In Proceedings of the 2019 10th International Workshop on the Analysis of Multitemporal Remote Sensing Images, MultiTemp 2019, Shanghai, China, 5–7 August 2019. [Google Scholar] [CrossRef]
- Song, A.; Choi, J. Fully Convolutional Networks with Multiscale 3D Filters and Transfer Learning for Change Detection in High Spatial Resolution Satellite Images. Remote Sens. 2020, 12, 799. [Google Scholar] [CrossRef]
- Volpi, M.; Tuia, D.; Bovolo, F.; Kanevski, M.; Bruzzone, L. Supervised change detection in VHR images using contextual information and support vector machines. Int. J. Appl. Earth Obs. Geoinf. 2013, 20, 77–85. [Google Scholar] [CrossRef]
- Wang, C.; Xu, M.; Wang, X.; Zheng, S.; Ma, Z. Object-oriented change detection approach for high-resolution remote sensing images based on multiscale fusion. J. Appl. Remote Sens. 2013, 7, 073696. [Google Scholar] [CrossRef]
- Guo, Q.; Zhang, J.; Li, T.; Lu, X. Change detection for high-resolution remote sensing imagery based on multi-scale segmentation and fusion. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 1919–1922. [Google Scholar] [CrossRef]
- Cui, B.; Zhang, Y.; Yan, L.; Wei, J.; Wu, H. An Unsupervised SAR Change Detection Method Based on Stochastic Subspace Ensemble Learning. Remote Sens. 2019, 11, 1314. [Google Scholar] [CrossRef]
- Wang, X.; Liu, S.; Du, P.; Liang, H.; Xia, J.; Li, Y. Object-Based Change Detection in Urban Areas from High Spatial Resolution Images Based on Multiple Features and Ensemble Learning. Remote Sens. 2018, 10, 276. [Google Scholar] [CrossRef]
- Lim, K.; Jin, D.; Kim, C.S. Change Detection in High Resolution Satellite Images Using an Ensemble of Convolutional Neural Networks. In Proceedings of the 2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2018, Honolulu, HI, USA, 12–15 November 2018; pp. 509–515. [Google Scholar] [CrossRef]
- Sagi, O.; Rokach, L. Ensemble learning: A survey. In Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery; Wiley: Hoboken, NJ, USA, 2018; Volume 8. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, X.; Le, X. Segmentation on multispectral remote sensing image using watershed transformation. In Proceedings of the 2008 Congress on Image and Signal Processing, Las Vegas, NV, USA, 30 March–4 April 2008; Volume 4, pp. 773–777. [Google Scholar]
- Tarabalka, Y.; Chanussot, J.; Benediktsson, J.A. Segmentation and classification of hyperspectral images using watershed transformation. Pattern Recognit. 2010, 43, 2367–2379. [Google Scholar] [CrossRef]
- Ren, M. Learning a classification model for segmentation. In Proceedings of the Ninth IEEE International Conference on Computer Vision, Washington, DC, USA, 13–16 October 2003; Volume 1, pp. 10–17. [Google Scholar] [CrossRef]
- Stutz, D.; Hermans, A.; Leibe, B. Superpixels: An evaluation of the state-of-the-art. Comput. Vis. Image Underst. 2018, 166, 1–27. [Google Scholar] [CrossRef]
- Machairas, V.; Faessel, M.; Cárdenas-Peña, D.; Chabardes, T.; Walter, T.; Decencière, E. Waterpixels. IEEE Trans. Image Process. 2015, 24, 3707–3716. [Google Scholar] [CrossRef]
- Benesova, W.; Kottman, M. Fast superpixel segmentation using morphological processing. In Proceedings of the Conference on Machine Vision and Machine Learning, Prague, Czech Republic, 28–31 July 2014; pp. 67-1–67-9. [Google Scholar]
- Vedaldi, A.; Soatto, S. Quick shift and kernel methods for mode seeking. In Proceedings of the Computer Vision—ECCV 2008: 10th European Conference on Computer Vision, Marseille, France, 12–18 October 2008; pp. 705–718. [Google Scholar]
- Yao, J.; Boben, M.; Fidler, S.; Urtasun, R. Real-time coarse-to-fine topologically preserving segmentation. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 2947–2955. [Google Scholar] [CrossRef]
- Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Süsstrunk, S. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2274–2282. [Google Scholar] [CrossRef]
- Liu, M.Y.; Tuzel, O.; Ramalingam, S.; Chellappa, R. Entropy rate superpixel segmentation. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Colorado Springs, CO, USA, 20–25 June 2011; pp. 2097–2104. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Q.; Jing, C. Multi-resolution segmentation parameters optimization and evaluation for VHR remote sensing image based on meanNSQI and discrepancy measure. J. Spat. Sci. 2021, 66, 253–278. [Google Scholar] [CrossRef]
- Kavzoglu, T.; Tonbul, H. A comparative study of segmentation quality for multi-resolution segmentation and watershed transform. In Proceedings of the 2017 8th International Conference on Recent Advances in Space Technologies (RAST), Istanbul, Turkey, 19–22 June 2017; pp. 113–117. [Google Scholar] [CrossRef]
- Tzotsos, A.; Argialas, D. MSEG: A generic region-based multi-scale image segmentation algorithm for remote sensing imagery. In Proceedings of the ASPRS 2006 Annual Conference, Reno, NV, USA, 1–5 May 2006; pp. 1–13. [Google Scholar]
- Hall, O.; Hay, G.J. A Multiscale Object-Specific Approach to Digital Change Detection. Int. J. Appl. Earth Obs. Geoinf. 2003, 4, 311–327. [Google Scholar] [CrossRef]
- Xue, Y.; Zhao, J.; Zhang, M. A Watershed-Segmentation-Based Improved Algorithm for Extracting Cultivated Land Boundaries. Remote Sens. 2021, 13, 939. [Google Scholar] [CrossRef]
- Bovolo, F.; Bruzzone, L. The time variable in data fusion: A change detection perspective. IEEE Geosci. Remote Sens. Mag. 2015, 3, 8–26. [Google Scholar] [CrossRef]
- Jiang, H.; Peng, M.; Zhong, Y.; Xie, H.; Hao, Z.; Lin, J.; Ma, X.; Hu, X. A Survey on Deep Learning-Based Change Detection from High-Resolution Remote Sensing Images. Remote Sens. 2022, 14, 1552. [Google Scholar] [CrossRef]
- Ling, F.; Li, W.; Du, Y.; Li, X. Land Cover Change Mapping at the Subpixel Scale With Different Spatial-Resolution Remotely Sensed Imagery. IEEE Geosci. Remote Sens. Lett. 2011, 8, 182–186. [Google Scholar] [CrossRef]
- Kempeneers, P.; Sedano, F.; Strobl, P.; McInerney, D.O.; San-Miguel-Ayanz, J. Increasing robustness of postclassification change detection using time series of land cover maps. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3327–3339. [Google Scholar] [CrossRef]
- Zhu, Q.; Guo, X.; Deng, W.; Guan, Q.; Zhong, Y.; Zhang, L.; Li, D. Land-Use/Land-Cover change detection based on a Siamese global learning framework for high spatial resolution remote sensing imagery. ISPRS J. Photogramm. Remote Sens. 2022, 184, 63–78. [Google Scholar] [CrossRef]
- Song, W.; Quan, H.; Chen, Y.; Zhang, P. SAR Image Feature Selection and Change Detection Based on Sparse Coefficient Correlation. In Proceedings of the 2022 17th International Conference on Control, Automation, Robotics and Vision (ICARCV), Singapore, 11–13 December 2022; pp. 326–329. [Google Scholar] [CrossRef]
- Demir, B.; Bovolo, F.; Bruzzone, L. Detection of Land-Cover Transitions in Multitemporal Remote Sensing Images with Active-Learning-Based Compound Classification. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1930–1941. [Google Scholar] [CrossRef]
- Zhang, C.; Feng, Y.; Hu, L.; Tapete, D.; Pan, L.; Liang, Z.; Cigna, F.; Yue, P. A domain adaptation neural network for change detection with heterogeneous optical and SAR remote sensing images. Int. J. Appl. Earth Obs. Geoinf. 2022, 109, 102769. [Google Scholar] [CrossRef]
- López-Fandiño, J.; Heras, D.B.; Argüello, F. Multiclass change detection for multidimensional images in the presence of noise. In Proceedings of the High-Performance Computing in Geoscience and Remote Sensing VIII. International Society for Optics and Photonics, Berlin, Germany, 12–13 September 2018; Volume 10792, p. 1079204. [Google Scholar]
- Pirrone, D.; Bovolo, F.; Bruzzone, L. A Novel Framework Based on Polarimetric Change Vectors for Unsupervised Multiclass Change Detection in Dual-Pol Intensity SAR Images. IEEE Trans. Geosci. Remote Sens. 2020, 58, 4780–4795. [Google Scholar] [CrossRef]
- Zhu, Q.; Guo, X.; Li, Z.; Li, D. A review of multi-class change detection for satellite remote sensing imagery. Geo-Spat. Inf. Sci. in press. 2022. [Google Scholar] [CrossRef]
- Chen, J.; Fan, J.; Zhang, M.; Zhou, Y.; Shen, C. MSF-Net: A Multiscale Supervised Fusion Network for Building Change Detection in High-Resolution Remote Sensing Images. IEEE Access 2022, 10, 30925–30938. [Google Scholar] [CrossRef]
- Liu, M.; Chai, Z.; Deng, H.; Liu, R. A CNN-Transformer Network With Multiscale Context Aggregation for Fine-Grained Cropland Change Detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 4297–4306. [Google Scholar] [CrossRef]
- Yang, M.; Jiao, L.; Liu, F.; Hou, B.; Yang, S.; Jian, M. DPFL-Nets: Deep Pyramid Feature Learning Networks for Multiscale Change Detection. IEEE Trans. Neural Netw. Learn. Syst. 2022, 33, 6402–6416. [Google Scholar] [CrossRef] [PubMed]
- Manninen, T.; Jaaskelainen, E.; Tomppo, E. Nonlocal Multiscale Single Image Statistics From Sentinel-1 SAR Data for High Resolution Bitemporal Forest Wind Damage Detection. IEEE Geosci. Remote Sens. Lett. 2022, 19, 2504705. [Google Scholar] [CrossRef]
- Lv, Z.; Liu, T.; Benediktsson, J.A. Object-oriented key point vector distance for binary land cover change detection using vhr remote sensing images. IEEE Trans. Geosci. Remote Sens. 2020, 58, 6524–6533. [Google Scholar] [CrossRef]
- López-Fandiño, J.; Heras, D.B.; Argüello, F.; Dalla Mura, M. GPU framework for change detection in multitemporal hyperspectral images. Int. J. Parallel Program. 2019, 47, 272–292. [Google Scholar] [CrossRef]
- Earth Resources Observation and Science (EROS) Center. Earth Observing One (EO-1)—Hyperion. Available online: https://www.usgs.gov/centers/eros/science/usgs-eros-archive-earth-observing-one-eo-1-hyperion (accessed on 14 March 2023).
- AVIRIS. Airborne Visible/Infrared Imaging Spectrometer. Available online: https://aviris.jpl.nasa.gov/dataportal/ (accessed on 14 March 2023).
- AgEagle Sensor Systems Inc., d/b/a MicaSense. RedEdge—MX | MicaSense. 2021. Available online: https://micasense.com/rededge-mx/ (accessed on 14 March 2023).
- Argüello, F.; Heras, D.B.; Garea, A.S.; Quesada-Barriuso, P. Watershed Monitoring in Galicia from UAV Multispectral Imagery Using Advanced Texture Methods. Remote Sens. 2021, 13, 2687. [Google Scholar] [CrossRef]
- Jing, R.; Gong, Z.; Guan, H. Land Cover Change Detection with VHR Satellite Imagery Based on Multi-Scale SLIC-CNN and SCAE Features. IEEE Access 2020, 8, 228070–228087. [Google Scholar] [CrossRef]
- Gong, M.; Zhan, T.; Zhang, P.; Miao, Q. Superpixel-Based Difference Representation Learning for Change Detection in Multispectral Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2658–2673. [Google Scholar] [CrossRef]
- Dennison, P.E.; Halligan, K.Q.; Roberts, D.A. A comparison of error metrics and constraints for multiple endmember spectral mixture analysis and spectral angle mapper. Remote Sens. Environ. 2004, 93, 359–367. [Google Scholar] [CrossRef]
- Renza, D.; Martinez, E.; Molina, I.; Ballesteros, L.D.M. Unsupervised change detection in a particular vegetation land cover type using spectral angle mapper. Adv. Space Res. 2017, 59, 2019–2031. [Google Scholar] [CrossRef]
- Carvalho Júnior, O.A.; Guimarães, R.F.; Gillespie, A.R.; Silva, N.C.; Gomes, R.A.T. A New Approach to Change Vector Analysis Using Distance and Similarity Measures. Remote Sens. 2011, 3, 2473–2493. [Google Scholar] [CrossRef]
- Im, J.; Jensen, J.R. A change detection model based on neighborhood correlation image analysis and decision tree classification. Remote Sens. Environ. 2005, 99, 326–340. [Google Scholar] [CrossRef]
- Le Hegarat-Mascle, S.; Bloch, I.; Vidal-Madjar, D. Application of Dempster-Shafer evidence theory to unsupervised classification in multisource remote sensing. IEEE Trans. Geosci. Remote Sens. 1997, 35, 1018–1031. [Google Scholar] [CrossRef]
- Hao, M.; Shi, W.; Zhang, H.; Wang, Q.; Deng, K. A Scale-Driven Change Detection Method Incorporating Uncertainty Analysis for Remote Sensing Images. Remote Sens. 2016, 8, 745. [Google Scholar] [CrossRef]
- Feng, Y.; Shen, X.; Chen, H.; Zhang, X. Segmentation fusion based on neighboring information for MR brain images. Multimed. Tools Appl. 2017, 76, 23139–23161. [Google Scholar] [CrossRef]
- Jin, D.; Lim, K.; Kim, C.S. Robust Change Detection in High Resolution Satellite Images with Geometric Distortions. In Proceedings of the 2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Lanzhou, China, 18–21 November 2019; pp. 572–577. [Google Scholar] [CrossRef]
Datasets | City | Scenes | Change Pixels | Dimensions | Spectral Bands | Resolution | Sensor |
---|---|---|---|---|---|---|---|
Hermiston | Hermiston, Oregon, USA | 2004, 2007 | 10,035 | 390 × 200 | 242 | 30 m/pixel | HYPERION |
Bay Area | Patterson, California, USA | 2013, 2015 | 38,425 | 600 × 500 | 224 | 20 m/pixel | AVIRIS |
Santa Barbara | Santa Barbara, California, USA | 2013, 2014 | 52,134 | 984 × 740 | 224 | 20 m/pixel | AVIRIS |
Oitavén | Pontevedra, Galicia, Spain | 2018, synthetic | 590,129 | 6722 × 6689 | 5 | 0.01 m/pixel | MicaSense RedEdge-MX |
Ermidas | Pontevedra, Galicia, Spain | 2018, synthetic | 2,766,246 | 11,924 × 18,972 | 5 | 0.01 m/pixel | MicaSense RedEdge-MX |
Harmonic Mean | Geometry Mean | Mean | Weighted Mean | Euclidean Distance |
---|---|---|---|---|
(HM) | (GM) | (MN) | (WG) | (ED) |
Dataset | SLIC | Waterpixels | Watershed | ||||||
---|---|---|---|---|---|---|---|---|---|
L0 | L1 | L2 | L0 | L1 | L2 | L0 | L1 | L2 | |
Hermiston | 2/17 | 4/24 | 6/38 | 5/28 | 7/58 | 9/118 | 0.04/95 | 0.07/109 | 0.10/195 |
Bay Area | 8/72 | 10/105 | 12/142 | 5/34 | 7/59 | 9/114 | 0.011/149 | 0.013/152 | 0.015/168 |
Santa Barbara | 5/92 | 10/114 | 15/221 | 8/32 | 10/57 | 12/114 | 0.03/151 | 0.05/171 | 0.07/236 |
Oitavén | 50/945 | 60/1076 | 70/1182 | 50/186 | 53/526 | 56/1313 | 0.03/313 | 0.05/344 | 0.07/450 |
Ermidas | 50/1154 | 70/1345 | 90/1501 | 50/170 | 70/439 | 90/1438 | 0.03/539 | 0.05/601 | 0.07/642 |
Dataset | Segmentation Algorithm | Seg. Scale | Single | Scale Fusion | Consensus Fusion | |||||
---|---|---|---|---|---|---|---|---|---|---|
HM | GM | MN | WG | ED | MV | OR | ||||
Hermiston | SLIC | L0 | 94.68 | 94.43 | 94.90 | 96.03 | 95.74 | 96.75 | 98.22 | 99.29 |
L1 | 96.15 | |||||||||
L2 | 95.80 | |||||||||
Waterpixels | L0 | 96.70 | 96.90 | 96.98 | 97.23 | 97.07 | 97.42 | |||
L1 | 96.67 | |||||||||
L2 | 96.31 | |||||||||
Watershed | L0 | 97.83 | 88.67 | 91.74 | 96.35 | 97.24 | 98.64 | |||
L1 | 90.42 | |||||||||
L2 | 95.32 | |||||||||
Bay Area | SLIC | L0 | 92.28 | 89.95 | 90.70 | 92.56 | 92.00 | 92.85 | 92.84 | 96.13 |
L1 | 91.19 | |||||||||
L2 | 87.93 | |||||||||
Waterpixels | L0 | 91.27 | 90.81 | 90.80 | 91.41 | 91.88 | 91.56 | |||
L1 | 91.15 | |||||||||
L2 | 89.81 | |||||||||
Watershed | L0 | 90.46 | 86.77 | 87.95 | 90.23 | 91.52 | 91.54 | |||
L1 | 87.39 | |||||||||
L2 | 89.11 | |||||||||
Santa Barbara | SLIC | L0 | 90.53 | 90.02 | 92.13 | 92.72 | 92.72 | 93.87 | 94.26 | 97.70 |
L1 | 91.14 | |||||||||
L2 | 91.65 | |||||||||
Waterpixels | L0 | 89.31 | 89.97 | 90.42 | 91.32 | 90.22 | 91.91 | |||
L1 | 89.35 | |||||||||
L2 | 90.94 | |||||||||
Watershed | L0 | 90.13 | 88.52 | 91.56 | 93.34 | 94.05 | 94.95 | |||
L1 | 91.67 | |||||||||
L2 | 90.17 | |||||||||
Oitavén | SLIC | L0 | 82.34 | 82.99 | 83.64 | 86.83 | 86.78 | 90.61 | 91.59 | 97.11 |
L1 | 83.54 | |||||||||
L2 | 81.11 | |||||||||
Waterpixels | L0 | 84.76 | 87.50 | 86.76 | 87.70 | 86.74 | 90.29 | |||
L1 | 84.15 | |||||||||
L2 | 86.43 | |||||||||
Watershed | L0 | 85.21 | 86.52 | 87.59 | 88.10 | 87.47 | 88.53 | |||
L1 | 84.24 | |||||||||
L2 | 85.82 | |||||||||
Ermidas | SLIC | L0 | 78.65 | 77.39 | 78.44 | 78.54 | 81.56 | 82.58 | 86.02 | 94.20 |
L1 | 79.65 | |||||||||
L2 | 79.15 | |||||||||
Waterpixels | L0 | 80.30 | 84.04 | 84.73 | 88.86 | 88.01 | 89.22 | |||
L1 | 81.65 | |||||||||
L2 | 82.60 | |||||||||
Watershed | L0 | 81.78 | 79.14 | 79.55 | 79.41 | 81.96 | 82.69 | |||
L1 | 81.05 | |||||||||
L2 | 83.15 |
Multi-Scale ED Fusion | Consensus Fusion MV | Consensus Fusion OR | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Dataset | Segmentation | CP | NCA | OA | CP | NCA | OA | CP | NCA | OA |
Hermiston | SLIC | 93.87 | 95.74 | 95.60 | 98.22 | 98.84 | 98.76 | 99.29 | 97.38 | 97.62 |
Waterpixels | 91.91 | 95.67 | 95.40 | |||||||
Watershed | 98.64 | 97.67 | 97.80 | |||||||
Bay Area | SLIC | 96.75 | 99.05 | 98.75 | 92.84 | 90.92 | 91.17 | 96.13 | 86.24 | 87.51 |
Waterpixels | 97.42 | 98.91 | 98.72 | |||||||
Watershed | 91.54 | 89.96 | 90.16 | |||||||
Santa Barbara | SLIC | 92.85 | 90.11 | 90.46 | 94.26 | 96.15 | 96.01 | 97.70 | 93.16 | 93.49 |
Waterpixels | 91.56 | 90.92 | 91.01 | |||||||
Watershed | 94.95 | 95.68 | 95.63 | |||||||
Oitavén | SLIC | 90.61 | 99.93 | 99.80 | 91.59 | 99.98 | 99.87 | 97.11 | 99.89 | 99.85 |
Waterpixels | 90.29 | 99.96 | 99.84 | |||||||
Watershed | 88.53 | 99.97 | 99.82 | |||||||
Ermidas | SLIC | 82.58 | 99.94 | 99.73 | 86.02 | 99.94 | 99.77 | 94.20 | 99.77 | 99.71 |
Waterpixels | 89.22 | 99.81 | 99.69 | |||||||
Watershed | 82.69 | 99.95 | 99.74 |
Reclassification of the Controversial Pixels | ||||||||
---|---|---|---|---|---|---|---|---|
Dataset | Pixel Types | MV | OR | |||||
Uncontested | Controversial | No Change | Change | CP (%) | No Change | Change | CP (%) | |
Hermiston | 9964 | 1782 | 1099 | 683 | 98.22 | 0 | 1782 | 99.29 |
Bay Area | 49,518 | 23,406 | 13,511 | 9895 | 92.84 | 0 | 23,406 | 96.13 |
Santa Barbara | 61,337 | 35,830 | 21,988 | 13,842 | 94.26 | 0 | 35,830 | 97.70 |
Oitavén | 473,272 | 148,108 | 70,445 | 77,663 | 91.59 | 0 | 148,108 | 97.11 |
Ermidas | 2,072,680 | 1,038,520 | 608,593 | 429,927 | 86.02 | 0 | 1,038,520 | 94.20 |
DS | MCVA | KPVD | Proposed Technique | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Datasets | CP | NCA | -Score | CP | NCA | -Score | CP | NCA | -Score | CP | NCA | -Score |
Hermiston | 93.61 | 98.70 | 93.16 | 62.76 | 92.79 | 61.34 | 95.02 | 97.77 | 93.14 | 99.29 | 97.38 | 96.02 |
Bay Area | 80.67 | 99.96 | 89.16 | 79.21 | 86.80 | 69.59 | 68.53 | 90.23 | 64.04 | 96.13 | 86.24 | 81.50 |
Santa Barbara | 64.03 | 97.88 | 66.89 | 82.01 | 84.49 | 60.02 | 87.74 | 83.55 | 62.58 | 97.70 | 93.16 | 83.31 |
Oitavén | 65.97 | 100.00 | 79.47 | 71.13 | 100.00 | 75.48 | 75.59 | 100.00 | 79.42 | 97.11 | 99.89 | 96.09 |
Ermidas | 78.76 | 100.00 | 88.09 | 80.04 | 100.00 | 83.36 | 84.76 | 99.97 | 87.05 | 94.20 | 99.77 | 91.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardama, F.J.; Heras, D.B.; Argüello, F. Consensus Techniques for Unsupervised Binary Change Detection Using Multi-Scale Segmentation Detectors for Land Cover Vegetation Images. Remote Sens. 2023, 15, 2889. https://doi.org/10.3390/rs15112889
Cardama FJ, Heras DB, Argüello F. Consensus Techniques for Unsupervised Binary Change Detection Using Multi-Scale Segmentation Detectors for Land Cover Vegetation Images. Remote Sensing. 2023; 15(11):2889. https://doi.org/10.3390/rs15112889
Chicago/Turabian StyleCardama, F. Javier, Dora B. Heras, and Francisco Argüello. 2023. "Consensus Techniques for Unsupervised Binary Change Detection Using Multi-Scale Segmentation Detectors for Land Cover Vegetation Images" Remote Sensing 15, no. 11: 2889. https://doi.org/10.3390/rs15112889
APA StyleCardama, F. J., Heras, D. B., & Argüello, F. (2023). Consensus Techniques for Unsupervised Binary Change Detection Using Multi-Scale Segmentation Detectors for Land Cover Vegetation Images. Remote Sensing, 15(11), 2889. https://doi.org/10.3390/rs15112889