Present-Day Three-Dimensional Deformation across the Ordos Block, China, Derived from InSAR, GPS, and Leveling Observations
Abstract
:1. Introduction
2. Data and Methods
2.1. InSAR Data Processing
2.2. Three-Dimensional Deformation Field Construction and Multiscale Decomposition
3. Three-Dimensional Deformation Characteristics
3.1. Horizontal Deformation Characteristics
3.2. Vertical Deformation Characteristics
4. Discussion
4.1. Ground Deformation Caused by Groundwater Extraction
4.2. Ground Deformation Caused by Oil, Gas, and Coal Mining
4.3. Ground Deformation Caused by Crustal Movement
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The Research Group on “Active Fault System around Ordos Massif”. State Seismological Bureau. In Active Fault System Around Ordos Massif; Seismology Press: Beijing, China, 1988. [Google Scholar]
- Hao, M.; Li, Y.; Zhuang, W. Crustal Movement and Strain Distribution in East Asia Revealed by GPS Observations. Sci. Rep. 2019, 9, 16797. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.-Z.; Wen, X.; Shen, Z.; Chen, J. Oblique High-Angle Listric-Reverse Faulting and Associated Straining Processes: The Wenchuan Earthquake of 12 May 2008, Sichuan, China. Annu. Rev. Earth Planet. Sci. 2010, 38, 353–382. [Google Scholar] [CrossRef]
- Zheng, W.; Wang, Q.; Yuan, D.; Zhang, D.; Zhang, Z.; Zhang, Y. The Concept, Review and New Insights of the Active-Tectonic Block Hypothesis. Seismol. Geol. 2020, 42, 245–270. [Google Scholar]
- Zheng, G.; Wang, H.; Wright, T.J.; Lou, Y.; Zhang, R.; Zhang, W.; Shi, C.; Huang, J.; Wei, N. Crustal Deformation in the India-Eurasia Collision Zone from 25 Years of GPS Measurements. J. Geophys. Res. Solid Earth 2017, 122, 9290–9312. [Google Scholar] [CrossRef]
- Wang, M.; Shen, Z.-K. Present-Day Crustal Deformation of Continental China Derived from GPS and Its Tectonic Implications. J. Geophys. Res. Solid Earth 2020, 125, e2019JB018774. [Google Scholar] [CrossRef]
- Hao, M.; Wang, Q.; Zhang, P.; Li, Z.; Li, Y.; Zhuang, W. “Frame Wobbling” Causing Crustal Deformation around the Ordos Block. Geophys. Res. Lett. 2021, 48, e2020GL091008. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, Q.; Zhao, C.; Wang, Q.; Ji, L. Monitoring Land Subsidence and Fault Deformation Using the Small Baseline Subset InSAR Technique: A Case Study in the Datong Basin, China. J. Geodyn. 2014, 75, 34–40. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, C.; Zhang, Q.; Lu, Z.; Yang, C. Deformation of Linfen-Yuncheng Basin (China) and Its Mechanisms Revealed by Π-RATE InSAR Technique. Remote Sens. Environ. 2018, 218, 221–230. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, C.; Zhang, Q.; Yang, C.; Zhang, J. Land Subsidence in Taiyuan, China, Monitored by InSAR Technique with Multisensor SAR Datasets from 1992 to 2015. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1509–1519. [Google Scholar] [CrossRef]
- Li, G.; Zhao, C.; Wang, B.; Peng, M.; Bai, L. Evolution of Spatiotemporal Ground Deformation over 30 Years in Xi’an, China, with Multi-Sensor SAR Interferometry. J. Hydrol. 2022, 616, 128764. [Google Scholar] [CrossRef]
- Hao, M.; Wang, Q.; Cui, D.; Liu, L.; Zhou, L. Present-Day Crustal Vertical Motion around the Ordos Block Constrained by Precise Leveling and GPS Data. Surv. Geophys. 2016, 37, 923–936. [Google Scholar] [CrossRef]
- Zhang, P.; Deng, Q.; Zhang, Z.; Li, H. Active Faults, Earthquake Hazards and Associated Geodynamic Processes in Continental China. Sci. Sin. Terrae 2013, 43, 1607–1620. (In Chinese) [Google Scholar]
- Jiang, M.; Ding, X.; Tian, X.; Malhotra, R.; Kong, W. A Hybrid Method for Optimization of the Adaptive Goldstein Filter. ISPRS J. Photogramm. Remote Sens. 2014, 98, 29–43. [Google Scholar] [CrossRef]
- Yu, C.; Li, Z.; Penna, N.T.; Crippa, P. Generic Atmospheric Correction Model for Interferometric Synthetic Aperture Radar Observations. J. Geophys. Res. Solid Earth 2018, 123, 9202–9222. [Google Scholar] [CrossRef]
- Ryu, J.-S.; Kim, M.-S.; Cha, K.-J.; Lee, T.H.; Choi, D.-H. Kriging Interpolation Methods in Geostatistics and DACE Model. KSME Int. J. 2002, 16, 619–632. [Google Scholar] [CrossRef]
- Samsonov, S.; Tiampo, K.; Rundle, J.; Li, Z. Application of DInSAR-GPS Optimization for Derivation of Fine-Scale Surface Motion Maps of Southern California. IEEE Trans. Geosci. Remote Sens. 2007, 45, 512–521. [Google Scholar] [CrossRef]
- Guglielmino, F.; Nunnari, G.; Puglisi, G.; Spata, A. Simultaneous and Integrated Strain Tensor Estimation from Geodetic and Satellite Deformation Measurements to Obtain Three-Dimensional Displacement Maps. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1815–1826. [Google Scholar] [CrossRef]
- Hu, J.; Li, Z.-W.; Sun, Q.; Zhu, J.-J.; Ding, X.-L. Three-Dimensional Surface Displacements from InSAR and GPS Measurements with Variance Component Estimation. IEEE Geosci. Remote Sens. Lett. 2012, 9, 754–758. [Google Scholar]
- Shen, Z.-K.; Liu, Z. Integration of GPS and InSAR Data for Resolving 3-dimensional Crustal Deformation. Earth Space Sci. 2020, 7, e2019EA001036. [Google Scholar] [CrossRef]
- Wang, H.; Wright, T.J. Satellite Geodetic Imaging Reveals Internal Deformation of Western Tibet. Geophys. Res. Lett. 2012, 39, L07303. [Google Scholar] [CrossRef]
- Gudmundsson, S.; Sigmundsson, F.; Carstensen, J.M. Three-Dimensional Surface Motion Maps Estimated from Combined Interferometric Synthetic Aperture Radar and GPS Data. J. Geophys. Res. Solid Earth 2002, 107, ETG-13. [Google Scholar] [CrossRef]
- Tape, C.; Musé, P.; Simons, M.; Dong, D.; Webb, F. Multiscale Estimation of GPS Velocity Fields. Geophys. J. Int. 2009, 179, 945–971. [Google Scholar] [CrossRef]
- Cheng, P.; Wen, H.; Sun, L.; Cheng, Y.; Zhang, P.; Bei, J.; Wang, H. The Spherical Wavelet Model and Multiscale Analysis of Characteristics of GPS Velocity Fields in Mainland China. Acta Geod. Cartogr. Sin. 2015, 44, 1063. [Google Scholar]
- Kreemer, C.; Hammond, W.C.; Blewitt, G. A Robust Estimation of the 3-D Intraplate Deformation of the North American Plate from GPS. J. Geophys. Res. Solid Earth 2018, 123, 4388–4412. [Google Scholar] [CrossRef]
- Yang, W.; Wang, Y.; Wang, C.; Sun, Y. Distribution and Co-Exploration of Multiple Energy Minerals in Ordos Basin. Acta Geol. Sin. 2010, 84, 579–586. [Google Scholar]
- Ji, L.; Zhang, Y.; Wang, Q.; Xin, Y.; Li, J. Detecting Land Uplift Associated with Enhanced Oil Recovery Using InSAR in the Karamay Oil Field, Xinjiang, China. Int. J. Remote Sens. 2016, 37, 1527–1540. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, D.; Huang, X.; Cao, X. Deformation of the Crust and Upper Mantle beneath the North China Craton and Its Adjacent Areas Constrained by Rayleigh Wave Phase Velocity and Azimuthal Anisotropy. Remote Sens. 2021, 14, 110. [Google Scholar] [CrossRef]
- Ai, S.; Zheng, Y.; Riaz, M.S.; Song, M.; Zeng, S.; Xie, Z. Seismic Evidence on Different Rifting Mechanisms in Southern and Northern Segments of the Fenhe-Weihe Rift Zone. J. Geophys. Res. Solid Earth 2019, 124, 609–630. [Google Scholar] [CrossRef]
- Sun, W.; Zhao, L.; Yuan, H.; Fu, L.-Y. Sharpness of the Midlithospheric Discontinuities and Craton Evolution in North China. J. Geophys. Res. Solid Earth 2020, 125, e2019JB018594. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, Q.; Zhao, G.; Guo, Z.; Chen, Y.J. Three-Dimensional Conductivity Model of Crust and Uppermost Mantle at the Northern Trans North China Orogen: Evidence for a Mantle Source of Datong Volcanoes. Earth Planet. Sci. Lett. 2016, 453, 182–192. [Google Scholar] [CrossRef]
- Li, S.; Guo, Z.; Chen, Y.J.; Yang, Y.; Huang, Q. Lithospheric Structure of the Northern Ordos from Ambient Noise and Teleseismic Surface Wave Tomography. J. Geophys. Res. Solid Earth 2018, 123, 6940–6957. [Google Scholar] [CrossRef]
- Zhang, C.; Guo, Z.; Yu, Y.; Yang, T.; Chen, Y.J. Distinct Lithospheric Structures of the Ordos Block and Its Margins from P and S Receiver Functions and Its Implications for the Cenozoic Lithospheric Reworking. Geophys. Res. Lett. 2022, 49, e2021GL097680. [Google Scholar] [CrossRef]
- Chang, L.; Ding, Z.; Wang, C.-Y. Upper Mantle Anisotropy beneath the Northern Segment of the North-South Tectonic Belt in China. Chin. J. Geophys. 2016, 59, 4035–4047. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Sandvol, E.; Zhu, L.; Lou, H.; Yao, Z.; Luo, X. Lateral Variation of Crustal Structure in the Ordos Block and Surrounding Regions, North China, and Its Tectonic Implications. Earth Planet. Sci. Lett. 2014, 387, 198–211. [Google Scholar] [CrossRef]
- Chen, Y.F.; Chen, J.H.; Guo, B.; Li, S.C.; Qi, S.H.; Zhao, P.; Li, X.S. Crustal structure and deformation between different blocks in the northern part of the western margin of Ordos. Chin. J. Geophys. 2020, 63, 886–896. [Google Scholar]
- Chen, J.; Chen, Y.J.; Guo, Z.; Yang, T. Crustal structure of the Ordos block and adjacent regions along an N-S profile of 107.6°E. Chin. J. Geophys. 2020, 63, 2592–2604. [Google Scholar]
- Royden, L.H.; Burchfiel, B.C.; King, R.W.; Wang, E.; Chen, Z.; Shen, F.; Liu, Y. Surface Deformation and Lower Crustal Flow in Eastern Tibet. Science 1997, 276, 788–790. [Google Scholar] [CrossRef]
- Clark, M.K.; Royden, L.H. Topographic Ooze: Building the Eastern Margin of Tibet by Lower Crustal Flow. Geology 2000, 28, 703–706. [Google Scholar] [CrossRef]
- Yu, Y.; Chen, Y.J. Seismic Anisotropy beneath the Southern Ordos Block and the Qinling-Dabie Orogen, China: Eastward Tibetan Asthenospheric Flow around the Southern Ordos. Earth Planet. Sci. Lett. 2016, 455, 1–6. [Google Scholar] [CrossRef]
- Yu, Y.; Chen, Y.J.; Feng, Y.; An, M.; Liang, X.; Guo, Z.; Qu, W.; Li, S.; Dong, S. Asthenospheric Flow Channel from Northeastern Tibet Imaged by Seismic Tomography between Ordos Block and Yangtze Craton. Geophys. Res. Lett. 2021, 48, e2021GL093561. [Google Scholar] [CrossRef]
- Li, M.; Li, J.; Wei, Y. Lithospheric Structure beneath the Qinling Orogenic Belt and Its Surrounding Regions: Implications for Regional Lithosphere Deformation. Terra Nova 2022, 34, 91–101. [Google Scholar] [CrossRef]
- Guo, Z.; Li, S.; Yu, Y.; Chen, Y.J.; Yang, Y.; Xu, B.; Liang, X. Eastward Asthenospheric Flow from NE Tibet Inferred by Joint Inversion of Teleseismic Body and Surface Waves: Insight into Widespread Continental Deformation in Eastern China. J. Geophys. Res. Solid Earth 2022, 127, e2022JB024410. [Google Scholar] [CrossRef]
- Wu, S.; Guo, Z.; Chen, Y.J.; Morgan, J.P. Seismic Constraints and Geodynamic Implications of Differential Lithosphere-Asthenosphere Flow Revealed in East Asia. Proc. Natl. Acad. Sci. USA 2022, 119, e2203155119. [Google Scholar] [CrossRef]
Number | Temporal Baselines ΔT | Spatial Baselines ΔB |
---|---|---|
1 | 275 d < ΔT < 455 d | ΔB < 100 m |
2 | 640 d < ΔT < 820 d | ΔB < 200 m |
Scale Factor q | Faces | Vertices | Side Length (km) |
---|---|---|---|
0 | 20 | 12 | 7053.6 km |
1 | 80 | 42 | 3526.8 km |
2 | 320 | 162 | 1763.4 km |
3 | 1280 | 642 | 881.7 km |
4 | 5120 | 2562 | 440.8 km |
5 | 20,480 | 10,242 | 220.4 km |
6 | 81,920 | 40,962 | 110.2 km |
7 | 327,680 | 163,842 | 55.1 km |
8 | 1,310,720 | 655,362 | 27.5 km |
9 | 5,242,880 | 2,621,442 | 13.8 km |
10 | 20,971,520 | 10,485,762 | 6.9 km |
11 | 83,886,080 | 41,943,042 | 3.4 km |
12 | 335,544,320 | 167,772,162 | 1.7 km |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Ji, L.; Zhu, L.; Xu, C.; Zhang, W.; Qiu, J.; Xiong, G. Present-Day Three-Dimensional Deformation across the Ordos Block, China, Derived from InSAR, GPS, and Leveling Observations. Remote Sens. 2023, 15, 2890. https://doi.org/10.3390/rs15112890
Liu C, Ji L, Zhu L, Xu C, Zhang W, Qiu J, Xiong G. Present-Day Three-Dimensional Deformation across the Ordos Block, China, Derived from InSAR, GPS, and Leveling Observations. Remote Sensing. 2023; 15(11):2890. https://doi.org/10.3390/rs15112890
Chicago/Turabian StyleLiu, Chuanjin, Lingyun Ji, Liangyu Zhu, Caijun Xu, Wenting Zhang, Jiangtao Qiu, and Guohua Xiong. 2023. "Present-Day Three-Dimensional Deformation across the Ordos Block, China, Derived from InSAR, GPS, and Leveling Observations" Remote Sensing 15, no. 11: 2890. https://doi.org/10.3390/rs15112890
APA StyleLiu, C., Ji, L., Zhu, L., Xu, C., Zhang, W., Qiu, J., & Xiong, G. (2023). Present-Day Three-Dimensional Deformation across the Ordos Block, China, Derived from InSAR, GPS, and Leveling Observations. Remote Sensing, 15(11), 2890. https://doi.org/10.3390/rs15112890