RETRACTED: An Infrared Small Target Detection Method Based on a Weighted Human Visual Comparison Mechanism for Safety Monitoring
Abstract
:1. Introduction
2. Proposed Method
2.1. The Characteristics of the Target and Other Different Types of Backgrounds
- (1)
- A genuine infrared target typically exhibits a concentrated region where pixel values gradually diminish from the center outwards, with a relatively finite number of pixels distributed across the entire image. Leveraging the principles of thermal infrared images, moving targets tend to have higher pixel values compared to the stationary background.
- (2)
- In an infrared image, a normal background typically appears in large quantities, characterized by relatively low pixel values. Conversely, the target pixels exhibit a significantly larger value, rendering it more prominent when contrasted with the normal background.
- (3)
- A high-brightness background often manifests as a largely connected area with substantial pixel values. While these pixel values may exceed those of the real target, the differences in pixel values between highlighted backgrounds are relatively small. Consequently, it becomes easier to distinguish the genuine target from the highlighted backdrop.
- (4)
- When dealing with backgrounds that contain edges, a significant difference is usually noticeable in a particular direction. However, real targets differ from their neighboring elements in all surrounding directions.
- (5)
- The pixel value of PNHB may closely resemble that of a real target. However, PNHB occupies a very limited number of pixels, often just a single pixel, whereas the pixels corresponding to the real target form a circular area with a similar appearance [45].
2.2. Design of the Detection Algorithm
2.2.1. The Calculation of the Radio-Based Local Contrast Method (RLCM)
2.2.2. The Calculation of the Difference-Based Local Contrast Method (DLCM)
2.2.3. The Calculation of the RDLCM
2.2.4. Definition of the WLCM
- (1)
- The Improved RIL
- (2)
- The WLCM
Algorithm 1 WRDLCM computation at the pth scale |
Input: Raw IR image and the parameters N, K1, and K2. |
Output: The result of the WRDLCMp calculation is a matrix called WRDLCMp. |
1: Create a patch consisting of 9 cells, as depicted in Figure 2. |
2: Translate the patch horizontally in a left-to-right motion and vertically from top-to-bottom over the raw IR image. |
3: At every pixel, compute its corresponding RLCMp and DLCMp values using Formulas (1)–(6). |
4: Once the calculation is completed for the entire image, create two new matrices RLCMp and DLCMp to store the results. |
5: Standardize the constituents in RFLCMp to the range (0, 1). |
6: Standardize the elements in DFLCMp to the range (0, 1). |
7: Compute the RDLCMp of the raw IR image by taking the Hadamard consequence of RLCMp and DLCMp: |
8: Compute the WLCMp of the raw IR image using Formulas (8)–(12). |
9: Standardize the parts in WLCMp to the range (0, 1). |
10: Determine the WRDLCMp of the raw IR image by performing the Hadamard outcome of RDLCMp and WLCMp. |
2.2.5. Multi-scale WRDLCM Calculation
- (1)
- For the pth scale, suitable values of K1 and K2 are selected. In this paper, three scales are designed. For scale 1 (target size 3 × 3), the values of K1, K2, and N are configured to 2, 4, and 5, respectively; for scale 2 (target size 5 × 5), the values of K1, K2, and N are configured to 9, 18, and 7, respectively; for scale 3 (target size 7 × 7), the values of K1, K2, and N are configured to 16, 32, and 9, respectively.
- (2)
- For a given IR image, the output of the maximum WRDLCM at each pixel across different scales is determined using Formula (14). It can be easily demonstrated that performing multi-scale WRDLCM calculation yields the most appropriate detection results. Furthermore, this algorithm incorporates parallel operations during the contrast calculation, significantly optimizing the real-time performance of the detection system.
Algorithm 2 multi-scale WRDLCM determination |
Input: Raw IR image and the parameters N, K1, K2, …, KL. for L scales. |
Output: The resulting matrix of the WRDLCM calculation is called WRDLCM. |
1: for p = 1,2,…,L do |
Compute the using Kp based on Algorithm 1. |
2: end for |
3: For each pixel, output the highest WRDLCM value across all L scales as the final multi-scale WRDLCM value, denoted as: |
where (i, j) is the location of each pixel. |
3. Performance Analysis and Threshold Manipulation
3.1. Analysis of Detection Performance
3.2. Threshold Operation
4. Experimental Analysis and Results
4.1. Data and Performance Evaluation Indicators
4.2. Experimental Outcomes Using the Proposed Method
4.3. Comparisons with Popular Methods
4.4. Experiments against Random Noise
4.5. Testing of Multiple Targets
4.6. Detection of Small Inland UAV Targets Using Infrared Images
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Miasnikov, E. Threat of Terrorism Using Unmanned Aerial Vehicles: Technical Aspects; Center for Arms Control, Energy, and Environmental Studies, Moscow Institute of Physics and Technology: Moscow, Russia, 2005. [Google Scholar]
- Altawy, R.; Youssef, A.M. Security, privacy, and safety aspects of civilian drones: A survey. ACM Trans. Cyber-Phys. Syst. 2016, 1, 1–25. [Google Scholar] [CrossRef]
- Kim, K. An Analysis on Anti-Drone Technology Trends of Domestic Companies Using News Crawling on the Web. J. Adv. Navig. Technol. 2020, 24, 458–464. [Google Scholar]
- Jie, C. Research on intelligentized anti-UAV command control scheme technology. E3S Web Conf. EDP Sci. 2021, 233, 04020. [Google Scholar] [CrossRef]
- Rawat, S.S.; Verma, S.K.; Kumar, Y. Review on recent development in infrared small target detection algorithms. Procedia Comput. Sci. 2020, 167, 2496–2505. [Google Scholar] [CrossRef]
- Du, J.; Lu, H.; Zhang, L.; Hu, M.; Chen, S.; Deng, Y.; Shen, X.; Zhang, Y. A spatial-temporal feature-based detection framework for infrared dim small target. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–12. [Google Scholar] [CrossRef]
- Chen, C.L.P.; Li, H.; Wei, Y.; Xia, T.; Tang, Y.Y. A local contrast method for small infrared target detection. IEEE Trans. Geosci. Remote Sens. 2013, 52, 574–581. [Google Scholar] [CrossRef]
- Varatharasan, V.; Rao, A.S.S.; Toutounji, E.; Hong, J.-H.; Shin, H.-S. Target Detection, Tracking and Avoidance System for Low-cost UAVs using AI-Based Approaches. In Proceedings of the 2019 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED UAS), Cranfield, UK, 25–27 November 2019; IEEE: New York, NY, USA, 2019; pp. 142–147. [Google Scholar]
- Martian, A.; Chiper, F.L.; Craciunescu, R.; Vladeanu, C.; Fratu, O.; Marghescu, I. RF Based UAV Detection and Defense Systems: Survey and a Novel Solution. In Proceedings of the 2021 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom), Bucharest, Romania, 24–28 May 2021; pp. 1–4. [Google Scholar]
- Moradi, S.; Moallem, P.; Sabahi, M.F. Fast and robust small infrared target detection using absolute directional mean difference algorithm. Signal Process. 2020, 177, 107727. [Google Scholar] [CrossRef]
- Kwan, C.; Budavari, B. A high-performance approach to detecting small targets in long-range low-quality infrared videos. Signal Image Video Process. 2022, 16, 93–101. [Google Scholar] [CrossRef]
- Bae, T.W.; Zhang, F.; Kweon, I.S. Edge directional 2D LMS filter for infrared small target detection. Infrared Phys. Technol. 2012, 55, 137–145. [Google Scholar] [CrossRef]
- Kim, S. Target attribute-based false alarm rejection in small infrared target detection. Proc. SPIE 2012, 8537, 85370G. [Google Scholar] [CrossRef]
- Deshpande, S.D.; Meng, H.E.; Ronda, V. Max-mean and max-median filters for detection of small targets. Proc. SPIE 1999, 3809, 74–83. [Google Scholar]
- Gregoris, D.J.; Yu, S.K.; Tritchew, S.; Sevigny, L. Wavelet transform-based filtering for the enhancement of dim targets in FLIR images. Proc. SPIE 1994, 2242, 573–583. [Google Scholar] [CrossRef]
- Bai, X.; Zhou, F. Analysis of new top-hat transformation and the application for infrared dim small target detection. Pattern Recognit. 2010, 43, 2145–2156. [Google Scholar] [CrossRef]
- Hao, D.; Zhao, H. Adaptive method for the detection of infrared small target. Opt. Eng. 2015, 54, 113107. [Google Scholar]
- Bi, Y.; Bai, X.; Jin, T.; Guo, S. Multiple Feature Analysis for Infrared Small Target Detection. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1333–1337. [Google Scholar] [CrossRef]
- Wang, X.; Peng, Z.; Kong, D.; Zhang, P.; He, Y. Infrared dim target detection based on total variation regularization and principal component pursuit. Image Vis. Comput. 2017, 63, 1–9. [Google Scholar] [CrossRef]
- Shao, X.; Fan, H.; Lu, G.; Xu, J. An improved infrared dim and small target detection algorithm based on the contrast mechanism of human visual system. Infrared Phys. Technol. 2012, 55, 403–408. [Google Scholar] [CrossRef]
- Han, J.; Ma, Y.; Zhou, B.; Fan, F.; Liang, K.; Fang, Y. A robust infrared small target detection algorithm based on human visual system. IEEE Geosci. Remote Sens. Lett. 2014, 11, 2168–2172. [Google Scholar]
- Wang, X.; Lv, G.; Xu, L. Infrared Phys. Technol. Infrared Physics & Technology 2012, 55, 513–521. [Google Scholar]
- Han, J.; Liang, K.; Zhou, B.; Zhu, X.; Zhao, J.; Zhao, L. Infrared small target detection utilizing the multiscale relative local contrast measure. IEEE Geosci. Remote Sens. Lett. 2018, 15, 612–616. [Google Scholar] [CrossRef]
- Wei, Y.; You, X.; Li, H. Multiscale patch-based contrast measure for small infrared target detection. Pattern Recognit. 2016, 58, 216–226. [Google Scholar] [CrossRef]
- Han, J.; Liu, S.; Qin, G.; Zhao, Q.; Zhang, H.; Li, N. A Local Contrast Method Combined with Adaptive Background Estimation for Infrared Small Target Detection. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1442–1446. [Google Scholar] [CrossRef]
- Han, J.; Moradi, S.; Faramarzi, I.; Liu, C.; Zhang, H.; Zhao, Q. A Local Contrast Method for Infrared Small-Target Detection Utilizing a Tri-Layer Window. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1822–1826. [Google Scholar] [CrossRef]
- Deng, H.; Sun, X.; Liu, M.; Ye, C.; Zhou, X. Small infrared target detection based on weighted local difference measure. IEEE Trans Geosci Remote Sens. 2016, 54, 4204–4214. [Google Scholar] [CrossRef]
- Qin, Y.; Li, B. Effective infrared small target detection utilizing a novel local contrast method. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1890–1894. [Google Scholar] [CrossRef]
- Nie, J.; Qu, S.; Wei, Y.; Zhang, L.; Deng, L. An infrared small target detection method based on multiscale local homogeneity measure. Infrared Phys. Technol. 2018, 90, 186–194. [Google Scholar] [CrossRef]
- Chen, Y.; Song, B.; Wang, D.; Guo, L. An effective infrared small target detection method based on the human visual attention. Infrared Phys. Technol. 2018, 95, 128–135. [Google Scholar] [CrossRef]
- Qi, H.; Mo, B.; Liu, F.; He, Y.; Liu, S. Small infrared target detection utilizing local region similarity difference map. Infrared Phys. Technol. 2015, 71, 131–139. [Google Scholar] [CrossRef]
- Chen, Y.; Xin, Y. An efficient infrared small target detection method based on visual contrast mechanism. IEEE Geosci. Remote Sens. Lett. 2016, 13, 962–966. [Google Scholar] [CrossRef]
- Bai, X.; Bi, Y. Derivative entropy-based contrast measure for infrared small-target detection. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2452–2466. [Google Scholar] [CrossRef]
- Nasiri, M.; Chehresa, S. Infrared small target enhancement based on variance difference. Infrared Phys. Technol. 2017, 82, 107–119. [Google Scholar] [CrossRef]
- Gao, J.; Guo, Y.; Lin, Z.; An, W.; Li, J. Robust infrared small target detection using multiscale gray and variance difference measures. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 5039–5052. [Google Scholar] [CrossRef]
- Liu, J.; He, Z.; Chen, Z.; Shao, L. Tiny and dim infrared target detection based on weighted local contrast. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1780–1784. [Google Scholar] [CrossRef]
- Lv, P.; Sun, S.; Lin, C.; Liu, G. A method for weak target detection based on human visual contrast mechanism. IEEE Geosci. Remote Sens. Lett. 2019, 16, 261–265. [Google Scholar] [CrossRef]
- Dai, Y.; Wu, Y. Reweighted infrared patch-tensor model with both nonlocal and local priors for single-frame small target detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3752–3767. [Google Scholar] [CrossRef]
- Zhang, L.; Peng, Z. Infrared small target detection based on partial sum of the tensor nuclear norm. Remote Sens. 2019, 11, 382. [Google Scholar] [CrossRef]
- Gupta, M.; Chan, J.; Krouss, M.; Furlich, G.; Martens, P.; Chan, M.W.; Comer, M.L.; Delp, E.J. Infrared Small Target Detection Enhancement Using a Lightweight Convolutional Neural Network. IEEE Geosci. Remote Sens. Lett. 2022, 19, 3513405. [Google Scholar] [CrossRef]
- Dai, Y.; Wu, Y.; Zhou, F.; Barnard, K. Attentional Local Contrast Networks for Infrared Small Target Detection. IEEE Trans. Geosci. Remote. 2021, 59, 9813–9824. [Google Scholar] [CrossRef]
- Hou, Q.; Wang, Z.; Tan, F.; Zhao, Y.; Zheng, H.; Zhang, W. RISTDNet: Robust infrared small target detection network. IEEE Geosci. Remote Sens. Lett. 2021, 19, 7000805. [Google Scholar] [CrossRef]
- Du, J.; Lu, H.; Hu, M.; Zhang, L.; Shen, X. CNN-based infrared dim small target detection algorithm using target-oriented shallow-deep features and effective small anchor. IET. Image Process. 2021, 15, 1–15. [Google Scholar] [CrossRef]
- Miezianko, R. Terravic Research Infrared Database. IEEE OTCBVS WS Series Bench. Available online: http://vcipl-okstate.org/pbvs/bench/index.html (accessed on 30 January 2020).
- Cui, Z.; Yang, J.; Jiang, S.; Li, J. An infrared small target detection algorithm based on high-speed local contrast method. Infrared Phys. Technol. 2016, 76, 474–481. [Google Scholar] [CrossRef]
- Xia, C.; Li, X.; Zhao, L.; Xia, C.; Shu, R. Infrared small target detection based on multiscale local contrast measure using local energy factor. IEEE Geosci. Remote Sens. Lett. 2019, 17, 157–161. [Google Scholar] [CrossRef]
- Khaledian, P.; Moradi, S.; Khaledian, E. A new method for detecting variable-size infrared targets. In Proceedings of the Sixth International Conference on Digital Image Processing (ICDIP 2014), SPIE, Athens, Greece, 5–6 April 2014; Volume 9159, pp. 299–304. [Google Scholar]
- Zhang, W.; Cong, M.; Wang, L. Algorithms for optical weak small targets detection and tracking: Review. In Proceedings of the 2003 IEEE International Conference on Neural Networks and Signal Processing, Nanjing, China, 14–17 December 2003; Volume 1, pp. 643–647. [Google Scholar] [CrossRef]
- Wang, L.; Li, Z.; Deng, X. An infrared small target detection method based on visual spatio-temporal local contrast measure. Proc. SPIE 2017, 10255, 102552Z. [Google Scholar] [CrossRef]
- Sun, S.G.; Kim, K.T.; Kim, S. Highly efficient supersonic small infrared target detection using temporal contrast filter. Electronics Letters. 2014, 50, 81–83. [Google Scholar]
- Deng, L.; Zhu, H.; Tao, C.; Wei, Y. Infrared moving point target detection based on spatial-temporal filter. Infrared Phys. Technol. 2016, 76, 168–173. [Google Scholar] [CrossRef]
- Han, J.; Liu, C.; Liu, Y.; Luo, Z.; Zhang, X.; Niu, Q. Infrared Small Target Detection Utilizing the Enhanced Closest-Mean Background Estimation. IEEE J. STARS 2021, 14, 645–662. [Google Scholar] [CrossRef]
- Han, J.; Moradi, S.; Faramarzi, I.; Zhang, H.; Zhao, Q.; Zhang, X.; Li, N. Infrared small target detection based on the weighted strengthened local contrast measure. IEEE Geosci. Remote Sens. Lett. 2021, 18, 1670–1674. [Google Scholar] [CrossRef]
- Dai, Y.; Wu, Y.; Zhou, F.; Barnard, K. Asymmetric contextual modulation for infrared small target detection. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 3–8 January 2021; pp. 950–959. [Google Scholar]
- Hui, B.; Song, Z.; Fan, H.; Zhong, P.; Hu, W.; Zhang, X.; Lin, J.; Su, H.; Jin, W.; Zhang, Y.; et al. Infrared dim and small aircraft target detection and tracking dataset from infrared image in ground/air background. Chin. Sci. Data 2020, 5, 286–297. [Google Scholar]
- Sun, Y.; Yang, J.; An, W. Infrared Dim and Small Target Detection via Multiple Subspace Learning and Spatial-Temporal Patch-Tensor Model. IEEE Trans. Geosci. Remote Sens. 2021, 59, 5. [Google Scholar] [CrossRef]
Sequence | Frames | Size | Target Number | Target Size | Target Type |
---|---|---|---|---|---|
Seq. 1 | 200 | 320 × 256 | 1 | 2 × 3~3 × 4 | Plane |
Seq. 2 | 300 | 256 × 256 | 1 | 3 × 3~3 × 4 | Drone |
Seq. 3 | 300 | 256 × 256 | 1 | 3 × 5 | Truck |
Seq. 4 | 200 | 320 × 256 | 1 | 3 × 5 | Plane |
Seq. 5 | 200 | 320 × 256 | 1 | 4 × 5 | Plane |
Seq. 6 | 200 | 320 × 256 | 1 | 3 × 3 | Plane |
Seq | VAR-DIFF | ILCM | NLCM | MPCM | RLCM | WLDM | MDTDLMS | SBE | WSLCM | Proposed |
---|---|---|---|---|---|---|---|---|---|---|
1 | 81.0621 | 46.9499 | 44.121 | 8.3706 | 20.1072 | 96.6349 | 134.0081 | 141.6602 | 158.2621 | 187.4666 |
2 | 28.589 | 3.9251 | 7.8695 | 1.5108 | 3.3806 | 8.1257 | 11.9812 | 13.9991 | 23.7546 | 27.4135 |
3 | 7.9416 | 1.9404 | 1.6612 | 2.0665 | 1.5181 | 19.0926 | 3.6358 | 8.3069 | 9.7639 | 12.43 |
4 | 24.4902 | 13.0714 | 18.8765 | 2.8125 | 11.8627 | 46.2286 | 48.9359 | 102.9054 | 91.9173 | 150.8203 |
5 | 69.4871 | 7.4718 | 10.3798 | 6.2368 | 13.2762 | 75.9957 | 59.4319 | 56.0565 | 52.0043 | 67.2493 |
6 | 67.6344 | 8.8442 | 11.6066 | 6.2767 | 15.3084 | 124.8624 | 66.1583 | 81.0356 | 79.2109 | 141.4133 |
Seq | VAR-DIFF | ILCM | NLCM | MPCM | RLCM | WLDM | MDTDLMS | SBE | WSLCM | Proposed |
---|---|---|---|---|---|---|---|---|---|---|
1 | 5.04 × 10−10 | 46.3694 | 0.022 | 0.0192 | 15.1353 | 22.8578 | 3.89 × 105 | 6.33 × 105 | 0.0366 | 5.54 × 105 |
2 | 3.77 × 10−5 | 7.9812 | 0.0943 | 0.1349 | 2.4911 | 37.9672 | 1.64 × 103 | 2.03 × 103 | 0.0218 | 3.91 × 103 |
3 | 7.45 × 10−9 | 9.1742 | 0.0344 | 0.1368 | 2.1982 | 16.5951 | 4.24 × 103 | 1.13 × 104 | 0.1694 | 7.67 × 103 |
4 | 2.85 × 10−10 | 49.5869 | 0.0361 | 0.0202 | 11.12 | 15.1272 | 1.35 × 105 | 3.12 × 105 | 0.0638 | 4.09 × 105 |
5 | 2.49 × 10−11 | 25.8584 | 0.0052 | 0.0107 | 7.7217 | 12.5982 | 3.69 × 105 | 5.94 × 105 | 3.61 × 10−4 | 4.16 × 105 |
6 | 8.00 × 10−11 | 34.5385 | 0.0059 | 0.0261 | 9.1028 | 18.5719 | 4.70 × 105 | 3.89 × 105 | 0.002 | 4.08 × 105 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Wang, H.; Pang, Y.; Han, J.; Mou, E.; Cao, E. RETRACTED: An Infrared Small Target Detection Method Based on a Weighted Human Visual Comparison Mechanism for Safety Monitoring. Remote Sens. 2023, 15, 2922. https://doi.org/10.3390/rs15112922
Chen Y, Wang H, Pang Y, Han J, Mou E, Cao E. RETRACTED: An Infrared Small Target Detection Method Based on a Weighted Human Visual Comparison Mechanism for Safety Monitoring. Remote Sensing. 2023; 15(11):2922. https://doi.org/10.3390/rs15112922
Chicago/Turabian StyleChen, Yuanyuan, Huiqian Wang, Yu Pang, Jinhui Han, En Mou, and Enling Cao. 2023. "RETRACTED: An Infrared Small Target Detection Method Based on a Weighted Human Visual Comparison Mechanism for Safety Monitoring" Remote Sensing 15, no. 11: 2922. https://doi.org/10.3390/rs15112922
APA StyleChen, Y., Wang, H., Pang, Y., Han, J., Mou, E., & Cao, E. (2023). RETRACTED: An Infrared Small Target Detection Method Based on a Weighted Human Visual Comparison Mechanism for Safety Monitoring. Remote Sensing, 15(11), 2922. https://doi.org/10.3390/rs15112922