An Improved Future Land-Use Simulation Model with Dynamically Nested Ecological Spatial Constraints
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. LSDNE Model for Future Land-Use Simulation
2.2.1. Quantitative Simulation Using Markov Model
2.2.2. Driving Factor Analysis Using RF Algorithm
2.2.3. Spatiotemporal Simulation Using MRPS-Based CA Model
2.2.4. Model Validation
2.3. Other Methods for Analyzing Land-Use Change Characteristics
2.3.1. Calculation of Land-Use Change Rate
2.3.2. Landscape Metrics Calculation
2.4. Data Sources
3. Results
3.1. Land-Use Evolution Characteristics
3.1.1. Land-Use Transition and Change Rate
3.1.2. Landscape Pattern
3.2. Driving Factors Analysis of Land Expansion
3.3. Land-Use Distribution under Five Scenarios
4. Discussion
4.1. An Improved Model for Future Land-Use Simulation
4.2. Simulation Results and Suggestions of the Study Area
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Abbreviations | Full Name |
CA | Cellular automata |
RF | Random forest |
TAS | Transition analysis strategy |
PAS | Pattern analysis strategy |
LSDNE | Land-use simulation model with dynamically nested ecological spatial constraints |
MRPS | Multitype random patch seeds |
UDLS | Urban development land-use suitability |
CF | Capital farmland |
EPRL | Ecological protection red line |
Appendix A
References
- Qin, Y.; Curmi, E.; Kopec, G.; Allwood, J.; Richards, K. China’s energy water nexus–assessment of the energy sector’s compliance with the “3 Red Lines” industrial water policy. Energy Pol. 2015, 82, 131–143. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Kong, L.; Zhang, L.; Ouyang, Z. The balance between economic development and ecosystem service value in the process of land urbanization: A case study of China’s land urbanization from 2000 to 2015. Land Use Pol. 2021, 108, 105536. [Google Scholar] [CrossRef]
- Luan, C.; Liu, R.; Peng, S.; Li, W. Improving integrated environmental zoning from the perspective of logic scoring of preference and comparative advantage: A case study of Liangjiang New Area, China. J. Clean. Prod. 2021, 325, 129350. [Google Scholar] [CrossRef]
- Zhang, S.; Zhong, Q.; Cheng, D.; Xu, C.; Chang, Y.; Lin, Y.; Li, B. Landscape ecological risk projection based on the PLUS model under the localized shared socioeconomic pathways in the Fujian Delta region. Ecol. Indic. 2022, 136, 108642. [Google Scholar] [CrossRef]
- Kaushal, S.; Duan, S.; Doody, T.; Haq, S.; Smith, R.; Johnson, T. Human-accelerated weathering increases salinization, major ions, and alkalinization in fresh water across land use. Appl. Geochem. 2017, 83, 121–135. [Google Scholar] [CrossRef]
- Tian, X.; Hu, Y.; Yin, H.; Geng, Y.; Bleischwitz, R. Trade impacts of China’s Belt and Road Initiative: From resource and environmental perspectives. Resour. Conserv. Recycl. 2019, 150, 104430. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Y.; Wang, R.; Zheng, P. Modeling and evaluating land-use/land-cover change for urban planning and sustainability: A case study of Dongying city, China. J. Clean. Prod. 2018, 172, 1529–1534. [Google Scholar] [CrossRef]
- Wang, J.; Bretz, M.; Dewan, M.; Delavar, M. Machine learning in modelling land-use and land cover-change (LULCC): Current status, challenges and prospects. Sci. Total Environ. 2022, 822, 153559. [Google Scholar] [CrossRef]
- Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Heisterman, M.; Muller, C.; Ronneburger, K. Land in sight? Achievements, deficits and potentials of continental to global scale land-use modeling. Agric. Ecosyst. Environ. 2006, 114, 141–158. [Google Scholar] [CrossRef]
- Schulp, C.; Nabuurs, G.; Verburg, P. Future carbon sequestration in Europe—Effects of land use change. Agric. Ecosyst. Environ. 2008, 127, 251–264. [Google Scholar] [CrossRef]
- Huang, J.; He, J.; Liu, D.; Li, C.; Qian, J. An ex-post evaluation approach to assess the impacts of accomplished urban structure shift on landscape connectivity. Sci. Total Environ. 2018, 622–623, 1143–1152. [Google Scholar] [CrossRef]
- Wang, Z.; Xie, P.; Lai, C.; Chen, X.; Wu, X.; Zeng, Z.; Li, J. Spatiotemporal variability of reference evapotranspiration and contributing climatic factors in China during 1961–2013. J. Hydrol. 2017, 544, 97–108. [Google Scholar] [CrossRef]
- Chen, G.; Li, X.; Liu, X.; Chen, Y.; Huang, K. Global projections of future urban land expansion under shared socioeconomic pathways. Nat. Commun. 2020, 11, 537. [Google Scholar] [CrossRef] [Green Version]
- White, R.; Engelen, G.; Uljee, I. The use of constrained cellular automata for high-resolution modelling of urban land-use dynamics. Environ. Plann. Des. 1997, 24, 323–343. [Google Scholar] [CrossRef]
- Clarke, K.; Gaydos, L. Loose-coupling a cellular automaton model and GIS: Long-term urban growth prediction for San Francisco and Washington/Baltimore. Int. J. Geo. Inf. Sci. 1998, 12, 699–714. [Google Scholar] [CrossRef] [Green Version]
- Batty, M.; Couclelis, H.; Eichen, M. Urban systems as cellular automata. Environ. Plann. Plann. Des. 1997, 24, 159–164. [Google Scholar] [CrossRef]
- Li, F.; Wang, L.; Chen, Z.; Clarke, K.; Li, M.; Jiang, P. Extending the SLEUTH model to integrate habitat quality into urban growth simulation. J. Environ. Manag. 2018, 217, 486–498. [Google Scholar] [CrossRef] [Green Version]
- Dai, E.; Wu, S.; Shi, W.; Cheung, C.; Shaker, A. Modeling change-pattern-value dynamics on land use: An integrated GIS and artificial neural networks approach. Environ. Manag. 2005, 36, 576–591. [Google Scholar] [CrossRef] [Green Version]
- Lukas, P.; Melesse, A.; Kenea, T. Prediction of Future Land Use/Land Cover Changes Using a Coupled CA-ANN Model in the Upper Omo–Gibe River Basin, Ethiopia. Remote Sens. 2023, 15, 1148. [Google Scholar] [CrossRef]
- Kamusoko, C.; Gamba, J. Simulating urban growth using a random forest-cellular automata (rf-ca) model. ISPRS Int. J. Geo-Inf. 2015, 4, 447–470. [Google Scholar] [CrossRef] [Green Version]
- Ke, X.; Zheng, W.; Zhou, T.; Liu, X. A CA-based land system change model: Landscape. Int. J. Geogr. Inf. Sci. 2017, 31, 1798–1817. [Google Scholar] [CrossRef]
- Gao, L.; Tao, F.; Liu, R.; Wang, Z.; Leng, H.; Zhou, T. Multi-scenario simulation and ecological risk analysis of land use based on the PLUS model: A case study of Nanjing. Sustain. Cities. Soc. 2022, 85, 104055. [Google Scholar] [CrossRef]
- Chen, Y.; Li, X.; Liu, X.; Ai, B. Modeling urban land-use dynamics in a fast developing city using the modified logistic cellular automaton with a patch-based simulation strategy. Int. J. Geogr. Inf. Sci. 2014, 2, 234–255. [Google Scholar] [CrossRef]
- Omrani, H.; Parmentier, B.; Helbich, M.; Pijanowski, B. The land transformation model-cluster framework: Applying k-means and the Spark computing environment for large scale land change analytics. Environ. Model. Softw. 2019, 111, 182–191. [Google Scholar] [CrossRef]
- Verburg, P.; Soepboer, W.; Veldkamp, A.; Limpiada, R.; Espaldon, V.; Mastura, S. Modeling the spatial dynamics of regional land use: The CLUE-S model. Environ. Manag. 2002, 30, 391–405. [Google Scholar] [CrossRef]
- Sohl, T.; Sayler, K. Using the FORE-SCE model to project land-cover change in the southeastern United States. Ecol. Model. 2008, 219, 49–65. [Google Scholar] [CrossRef] [Green Version]
- Luan, C.; Liu, R. A comparative study of various land use and land cover change models to predict ecosystem service value. Int. J. Environ. Res. Public Health 2022, 19, 16484. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, J.; Xiong, N.; Liang, B.; Wang, Z.; Cressey, E. Spatial and Temporal Variation, Simulation and Prediction of Land Use in Ecological Conservation Area of Western Beijing. Remote Sens. 2022, 14, 1452. [Google Scholar] [CrossRef]
- Jjumba, A.; Dragićević, S. High resolution urban land-use change modeling: Agent iCity approach. Appl. Spat. Anal. Policy 2012, 5, 291–315. [Google Scholar] [CrossRef]
- Li, X.; Yeh, A. Modelling sustainable urban development by the integration of constrained cellular automata and GIS. Int. J. Geogr. Inf. Sci. 2000, 14, 131–152. [Google Scholar] [CrossRef]
- Yang, Q.; Li, X.; Shi, X. Cellular automata for simulating land use changes based on support vector machines. Comput. Geosci. 2008, 34, 592–602. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.; Liu, S.; Wang, B.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Deng, Y.; Liu, Y.; Fu, B. Urban growth simulation guided by ecological constraints in Beijing city: Methods and implications for spatial planning. J. Environ. Manag. 2019, 243, 402–410. [Google Scholar] [CrossRef]
- Wang, W.; Jiao, L.; Jia, Q.; Mao, W.; Xu, Z.; Li, W. Land use optimization modelling with ecological priority perspective for large-scale spatial planning. Sustain. Cities. Soc. 2021, 65, 102575. [Google Scholar] [CrossRef]
- Liu, R.; Zhang, K.; Zhang, Z.; Borthwick, A. Land-use suitability analysis for urban development in Beijing. J. Environ. Manag. 2014, 145, 170–179. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Wong, C.; Jiang, B.; Hughes, A.; Wang, M.; Wang, Q. Developing China’s Ecological Redline Policy using ecosystem services assessments for land use planning. Nat. Commun. 2018, 9, 3034. [Google Scholar] [CrossRef] [Green Version]
- Luan, C.; Liu, R.; Peng, S. Land-use suitability assessment for urban development using a GIS-based soft computing approach: A case study of Ili valley, China. Ecol. Indic. 2021, 123, 107333. [Google Scholar] [CrossRef]
- Xie, L.; Wang, H.; Liu, S. The ecosystem service values simulation and driving force analysis based on land use/land cover: A case study in inland rivers in arid areas of the Aksu River Basin, China. Ecol. Indic. 2022, 138, 108828. [Google Scholar] [CrossRef]
- Beroho, M.; Briak, H.; Cherif, E.; Boulahfa, I.; Ouallali, A.; Mrabet, R.; Kebede, F.; Bernardino, A.; Aboumaria, K. Future Scenarios of Land Use/Land Cover (LULC) Based on a CA-Markov Simulation Model: Case of a Mediterranean Watershed in Morocco. Remote Sens. 2023, 15, 1162. [Google Scholar] [CrossRef]
- Fu, X.; Wang, X.; Yang, Y. Deriving suitability factors for CA-Markov land use simulation model based on local historical data. J. Environ. Manag. 2018, 206, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Long, H.; Zou, J.; Liu, Y. Differentiation of rural development driven by industrialization and urbanization in eastern coastal China. Habitat Int. 2009, 33, 454–462. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Y.; Shao, X.; Zhang, Y.; Cao, Y. Land-use changes and policy dimension driving forces in china: Present, trend and future. Land Use Pol. 2012, 29, 737–749. [Google Scholar] [CrossRef]
- Song, K.; Choi, Y.; Han, H.; Chon, J. Adaptation and transformation planning for resilient social-ecological system in coastal wetland using spatial-temporal simulation. Sci. Total Environ. 2021, 789, 148007. [Google Scholar] [CrossRef]
Category | Indicators | Explanation |
---|---|---|
Topographic and geologic data | Terrain elevation | The terrain elevation of the location, obtained directly from the DEM data |
Slope | The ratio of the vertical height of the slope to the distance in the horizontal direction, calculated from the terrain elevation data | |
Socioeconomic data | Population | Population per unit area |
GDP | Used to evaluate the economic status of a region, reflecting the ability of economic development | |
Proximity to highway | The distance from the location to the nearest railway, road or urban area | |
Proximity to railway | ||
Proximity to national road | ||
Proximity to provincial road | ||
Proximity to urban area | ||
Environmental and climate data | Soil type | The basic factor of land-use distribution, related to the production capacity and the availability of the land |
Annual mean temperature | Climatic indicators that affect human production and life, generated by calculation and spatial interpolation | |
Annual precipitation |
Indicators | Formula |
---|---|
Shannon’s diversity index (SHDI) | |
Shannon’s evenness index (SHEI) | |
Contagion (CONTAG) | |
Number of patches (NP) | |
Patch density (PD) | |
Aggregation index (AI) | |
Largest patch index (LPI) | |
Splitting index (SPLIT) |
2020 | Arable Land | Woodland | Grassland | Wetland | Open Water | Built-Up Land | Unused Land | Total | |
---|---|---|---|---|---|---|---|---|---|
2010 | |||||||||
Arable land | 18,654.06 | 127.99 | 159.55 | 200.66 | 88.75 | 1444.19 | 0.26 | 20,675.47 | |
Woodland | 121.86 | 578.88 | 116.81 | 1.48 | 3.42 | 13.57 | 0.16 | 836.19 | |
Grassland | 223.66 | 104.36 | 397.57 | 5.74 | 21.76 | 32.15 | 3.53 | 788.76 | |
Wetland | 2.77 | 0.07 | 16.83 | 7.40 | 8.13 | 0.18 | 0.01 | 35.38 | |
Open water | 27.94 | 1.65 | 19.00 | 20.07 | 278.20 | 3.75 | 0.01 | 350.61 | |
Built-up land | 465.06 | 4.57 | 4.62 | 1.16 | 2.00 | 1542.33 | 0.02 | 2019.75 | |
Unused land | 0.20 | 0.29 | 3.68 | 0.02 | 0.18 | 0.18 | 2.26 | 6.81 | |
Total | 19,495.56 | 817.81 | 718.04 | 236.53 | 402.42 | 3036.36 | 6.25 | 24,712.96 |
Land Use Type | Arable Land | Woodland | Grassland | Wetland | Open Water | Built-Up Land | Unused Land |
---|---|---|---|---|---|---|---|
Converted to other types (km2) | 2021.41 | 257.30 | 391.19 | 27.98 | 72.42 | 477.42 | 4.55 |
Newly generated (km2) | 841.50 | 238.92 | 320.48 | 229.13 | 124.23 | 1494.03 | 3.99 |
Area change (km2) | −1179.91 | −18.38 | −70.72 | 201.15 | 51.81 | 1016.61 | −0.56 |
Increasing rate () | 4.07% | 28.57% | 40.63% | 647.70% | 35.43% | 73.97% | 58.57% |
Transition rate () | 9.78% | 30.77% | 49.60% | 79.08% | 20.65% | 23.64% | 66.80% |
Change rate () | −5.71% | −2.20% | −8.97% | 568.61% | 14.78% | 50.33% | −8.24% |
Converted to other types (km2) | 2021.41 | 257.30 | 391.19 | 27.98 | 72.42 | 477.42 | 4.55 |
Landscape Indicators | SHDI | SHEI | CONTAG | |
---|---|---|---|---|
Year | ||||
2010 | 0.6504 | 0.3343 | 79.5058 | |
2020 | 0.7739 | 0.3977 | 75.5789 |
Landscape Indicators | Year | Arable Land | Woodland | Grassland | Wetland | Open Water | Built-Up Land | Unused Land |
---|---|---|---|---|---|---|---|---|
NP | 2010 | 909 | 8955 | 20,793 | 35 | 3129 | 9086 | 906 |
2020 | 1697 | 8455 | 20,291 | 286 | 2175 | 12,104 | 832 | |
PD | 2010 | 0.0367 | 0.362 | 0.8404 | 0.0014 | 0.1265 | 0.3673 | 0.0366 |
2020 | 0.0686 | 0.3417 | 0.8202 | 0.0116 | 0.0879 | 0.4892 | 0.0336 | |
LPI | 2010 | 65.3646 | 0.2899 | 0.2843 | 0.0327 | 0.2131 | 0.9196 | 0.002 |
2020 | 77.7899 | 0.2842 | 0.3543 | 0.3369 | 0.2267 | 2.7343 | 0.002 | |
AI | 2010 | 98.4647 | 87.6912 | 81.9546 | 94.4868 | 92.3743 | 90.0893 | 62.1687 |
2020 | 97.9674 | 87.3472 | 81.2893 | 94.632 | 91.7074 | 90.5103 | 61.3307 | |
SPLIT | 2010 | 2.1897 | 33,442.6383 | 80,343.1692 | 3,694,231.847 | 68,212.7968 | 8291.0848 | 580,493,477.7 |
2020 | 1.6525 | 39,683.4147 | 60,864.9965 | 72,208.3061 | 72,726.3506 | 1307.0577 | 707,709,449.4 |
Arable Land | Woodland | Grassland | Wetland | Open Water | Built-Up Land | Unused Land | |
---|---|---|---|---|---|---|---|
2010 | 20,675.47 | 836.19 | 788.76 | 35.38 | 350.61 | 2019.75 | 6.81 |
2020 | 19,495.56 | 817.81 | 718.04 | 236.53 | 402.42 | 3036.36 | 6.25 |
2030 | 18,662.23 | 791.33 | 771.24 | 270.15 | 483.63 | 3728.60 | 5.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luan, C.; Liu, R.; Sun, J.; Su, S.; Shen, Z. An Improved Future Land-Use Simulation Model with Dynamically Nested Ecological Spatial Constraints. Remote Sens. 2023, 15, 2921. https://doi.org/10.3390/rs15112921
Luan C, Liu R, Sun J, Su S, Shen Z. An Improved Future Land-Use Simulation Model with Dynamically Nested Ecological Spatial Constraints. Remote Sensing. 2023; 15(11):2921. https://doi.org/10.3390/rs15112921
Chicago/Turabian StyleLuan, Chaoxu, Renzhi Liu, Jing Sun, Shangren Su, and Zhenyao Shen. 2023. "An Improved Future Land-Use Simulation Model with Dynamically Nested Ecological Spatial Constraints" Remote Sensing 15, no. 11: 2921. https://doi.org/10.3390/rs15112921
APA StyleLuan, C., Liu, R., Sun, J., Su, S., & Shen, Z. (2023). An Improved Future Land-Use Simulation Model with Dynamically Nested Ecological Spatial Constraints. Remote Sensing, 15(11), 2921. https://doi.org/10.3390/rs15112921