Use of ICEsat-2 and Sentinel-2 Open Data for the Derivation of Bathymetry in Shallow Waters: Case Studies in Sardinia and in the Venice Lagoon
Abstract
:1. Introduction
2. Areas of Operation
3. Materials and Methods
3.1. Data Collection
3.1.1. Copernicus S-2 Imagery
3.1.2. NASA ICESat-2 Datasets
3.1.3. In Situ Datasets
3.2. ICESat-2 Bathymetry Extraction Algorithm
3.2.1. Data Automatic Download and Preparation
3.2.2. Waterline Detection and Water Column Depth Identification
3.2.3. Noise Cleaning and Seabed Identification
3.2.4. Refraction Correction
3.3. Tide Correction
3.4. S-2-Satellite-Derived Bathymetry Algorithm
3.4.1. Pre-Processing
3.4.2. Seabed Classification
3.4.3. Data Processing
4. Results
4.1. Congianus
4.1.1. ICESat-2 Bathymetry
4.1.2. S-2 Seabed Classification
4.1.3. Regression Analysis
4.1.4. SDB Validation and Error Analysis
4.1.5. SDB and BIAS Maps
4.2. Venice Lagoon
4.2.1. ICESat-2 Bathymetry
4.2.2. S-2 Seabed Classification
4.2.3. Regression Analysis
4.2.4. SDB Validation and Error Analysis
4.2.5. SDB and BIAS Map
5. Discussion
5.1. Comparing ICESat-2 and MBES Points in the Two AOOs
5.2. Comparing SDB with MBES in the Two AOOs
5.3. SDB Method Analysis and Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Criteria | Order 2 | Order 1b | Order 1a | Special Order | Exclusive Order |
---|---|---|---|---|---|
Depth THU [m] + [% of Depth] | 20 m + 10% of depth | 5 m + 5% of depth | 5 m + 5% of depth | 2 m | 1 m |
Depth TVU * (a) [m] and (b) | a = 1.0 m b = 0.023 | a = 0.5 m b = 0.013 | a = 0.5 m b = 0.013 | a = 0.25 m b = 0.0075 | a = 0.15 m b = 0.0075 |
Feature Detection [m] or [% of Depth] | Not Specified | Not Specified | Cubic features >2 m, in depths down to 40 m; 10% of depth beyond 40 m | Cubic features >1 m | Cubic features >0.5 m |
References
- OECD. Ocean Shipping and Shipbuilding. Available online: https://www.oecd.org/ocean/topics/ocean-shipping/ (accessed on 1 March 2023).
- UNCTAD. Review of Maritime Transport. 2022. Available online: https://unctad.org/topic/transport-and-trade-logistics/review-of-maritime-transport (accessed on 1 March 2023).
- Pascual, M. Cables and Pipelines. 16 February 2018. Available online: https://maritime-spatial-planning.ec.europa.eu/sites/default/files/sector/pdf/mspforbluegrowth_sectorfiche_cablespipelines.pdf (accessed on 27 February 2023).
- Díaz, H.; Guedes Soares, C. Review of the current status, technology and future trends of offshore wind farms. Ocean. Eng. 2020, 209, 107381. [Google Scholar] [CrossRef]
- NOAA. Introduction to Multibeam—NOAA Hydro Training 2009. Available online: https://slideplayer.com/slide/5974610/ (accessed on 28 January 2023).
- Khomsin, D.G.P.; Saputro, I. Comparative analysis of singlebeam and multibeam echosounder bathymetric data. IOP Conf. Mater. Sci. Eng. 2021, 1052, 012015. [Google Scholar] [CrossRef]
- IHO. S-44 IHO Standards for Hydrographic Surveys—Ed. 6. 2020. Available online: https://iho.int/uploads/user/pubs/standards/s-44/S-44_Edition_6.0.0_EN.pdf (accessed on 28 February 2023).
- Parrish, C.E.; Magruder, L.A.; Neuenschwander, A.L.; Forfinski-Sarkozi, N.; Alonzo, M.; Jasinski, M. Validation of ICESat-2 ATLAS Bathymetry and Analysis of ATLAS’s Bathymetric Mapping Performance. Remote Sens. 2019, 11, 1634. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Chen, Y.; Le, Y.; Zhang, D.; Yan, Q.; Dong, Y.; Han, W.; Wang, L. Nearshore Bathymetry Based on ICESat-2 and Multispectral Images: Comparison between Sentinel-2, Landsat-8, and Testing Gaofen-2. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 2449–2462. [Google Scholar] [CrossRef]
- Cahalane, C.; Magee, A.; Monteys, X.; Casal, G.; Hanafin, J.; Harris, P. A comparison of Landsat 8, RapidEye and Pleiades products for improving empirical predictions of satellite-derived bathymetry. Remote Sens. Environ. 2019, 233, 111414. [Google Scholar] [CrossRef]
- Poursanidis, D.; Traganos, D.; Reinartz, P.; Chrysoulakis, N. On the use of Sentinel-2 for coastal habitat mapping and satellite-derived bathymetry estimation using downscaled coastal aerosol band. Int. J. Appl. Earth Obs. Geoinf. 2019, 80, 58–70. [Google Scholar] [CrossRef]
- Casal, G.; Monteys, X.; Hedley, J.; Harris, P.; Cahalane, C.; McCarthy, T. Assessment of empirical algorithms for bathymetry extraction using Sentinel-2 data. Int. J. Remote Sens. 2019, 40, 2855–2879. [Google Scholar] [CrossRef]
- Casal, G.; Harris, P.; Monteys, X.; Hedley, J.; Cahalane, C.; McCarthy, T. Understanding satellite-derived bathymetry using Sentinel 2 imagery and spatial prediction models. GISci. Remote Sens. 2020, 57, 271–286. [Google Scholar] [CrossRef]
- Hochberg, E.; Andrefouet, S.; Tyler, M. Sea surface correction of high spatial resolution Ikonos images to improve bottom mapping in near-shore environments. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1724–1729. [Google Scholar] [CrossRef]
- Ohlendorf, S.; Müller, A.; Heege, T.; Cerdeira-Estrada, S.; Kobryn, H.T. Bathymetry mapping and sea floor classification using multispectral satellite data and standardized physics based data processing. In Proceedings of the Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions 2011, Prague, Czech Republic, 21–22 September 2011; Volume 8175, pp. 33–41. [Google Scholar]
- Lubac, B.; Burvingt, O.; Nicolae Lerma, A.; Sénéchal, N. Performance and Uncertainty of Satellite-Derived Bathymetry Empirical Approaches in an Energetic Coastal Environment. Remote Sens. 2022, 14, 2350. [Google Scholar] [CrossRef]
- Caballero, I.; Stumpf, R.P. Retrieval of nearshore bathymetry from Sentinel-2A and 2B satellites in South Florida coastal waters. Estuar. Coast. Shelf Sci. 2019, 226, 106277. [Google Scholar] [CrossRef]
- Brando, V.E.; Anstee, J.M.; Wettle, M.; Dekker, A.G.; Phinn, S.R.; Roelfsema, C. A physics based retrieval and quality assessment of bathymetry from suboptimal hyperspectral data. Remote Sens. Environ. 2009, 113, 755–770. [Google Scholar] [CrossRef]
- Stumpf, R.P.; Holderied, K.; Sinclair, M. Determination of water depth with high-resolution satellite imagery over variable bottom types. Limnol. Oceanogr. 2003, 48, 547–556. [Google Scholar] [CrossRef]
- Lyzenga, D.; Malinas, N.; Tanis, F. Multispectral bathymetry using a simple physically based algorithm. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2251–2259. [Google Scholar] [CrossRef]
- Xie, C.; Chen, P.; Pan, D.; Zhong, C.; Zhang, Z. Improved Filtering of ICESat-2 Lidar Data for Nearshore Bathymetry Estimation Using Sentinel-2 Imagery. Remote Sens. 2021, 13, 4303. [Google Scholar] [CrossRef]
- Apicella, L.; De Martino, M.; Ferrando, I.; Quarati, A.; Federici, B. Deriving Coastal Shallow Bathymetry from Sentinel 2-, Aircraft- and UAV-Derived Orthophotos: A Case Study in Ligurian Marinas. J. Mar. Sci. Eng. 2023, 11, 671. [Google Scholar] [CrossRef]
- Apicella, L.; De Martino, M.; Quarati, A. Copernicus User Uptake: From Data to Applications. ISPRS Int. J. Geo-Inf. 2022, 11, 121. [Google Scholar] [CrossRef]
- European Comission. General Presentations of the Copernicus Programme—What is the Copernicus Programme? 2016. Available online: https://www.youtube.com/playlist?list=PLNxdHvTE74JztZhhmA5A5GylDcIKPT0fD (accessed on 30 May 2023).
- ESA. Mission Objectives. Available online: https://sentinel.esa.int/web/sentinel/missions/sentinel-2/mission-objectives (accessed on 8 January 2023).
- Drusch, M.; Gascon, F. GMES Sentinel-2 Mission Requirement Document; ESA: Paris, France, 2010. [Google Scholar]
- ESA. Sentinel-2. Available online: https://sentinel.esa.int/web/sentinel/missions/sentinel-2 (accessed on 8 January 2023).
- Forfinski-Sarkozi, N.A.; Parrish, C. Analysis of MABEL Bathymetry in Keweenaw Bay and Implications for ICESat-2 ATLAS. Remote Sens. 2016, 8, 772. [Google Scholar] [CrossRef] [Green Version]
- Jasinski, M.F.; Stoll, J.D.; Cook, W.B.; Ondrusek, M.; Stengel, E.; Brunt, K. Inland and Near-Shore Water Profiles Derived from the High-Altitude Multiple Altimeter Beam Experimental Lidar (MABEL). J. Coast. Res. 2016, 76, 44–55. [Google Scholar] [CrossRef]
- Ma, Y.; Xu, N.; Liu, Z.; Yang, B.; Yang, F.; Wang, X.H.; Li, S. Satellite-derived bathymetry using the ICESat-2 lidar and Sentinel-2 imagery datasets. Remote Sens. Environ. 2020, 250, 112047. [Google Scholar] [CrossRef]
- Thomas, N.; Pertiwi, A.P.; Traganos, D.; Lagomasino, D.; Poursanidis, D.; Moreno, S.; Fatoyinbo, L. Space-borne cloud-native satellite-derived Bathymetry (SDB) models using ICESat-2 and sentinel-2. Geophys. Res. Lett. 2021, 48, e2020GL092170. [Google Scholar] [CrossRef]
- Albright, A.; Glennie, C. Nearshore bathymetry from fusion of Sentinel-2 and ICESat-2 observations. IEEE Geosci. Remote Sens. Lett. 2020, 18, 900–904. [Google Scholar] [CrossRef]
- Babbel, B.J.; Parrish, C.E.; Magruder, L.A. ICESat-2 elevation retrievals in support of satellite-derived bathymetry for global science applications. Geophys. Res. Lett. 2021, 48, e2020GL090629. [Google Scholar] [CrossRef]
- Ranndal, H.; Sigaard Christiansen, P.; Kliving, P.; Baltazar Andersen, O.; Nielsen, K. Evaluation of a Statistical Approach for Extracting Shallow Water Bathymetry Signals from ICESat-2 ATL03 Photon Data. Remote Sens. 2021, 13, 3548. [Google Scholar] [CrossRef]
- Niroumand-Jadidi, M.; Bovolo, F.; Bruzzone, L.; Gege, P. Physics-based Bathymetry and Water Quality Retrieval Using PlanetScope Imagery: Impacts of 2020 COVID-19 Lockdown and 2019 Extreme Flood in the Venice Lagoon. Remote Sens. 2020, 12, 2381. [Google Scholar] [CrossRef]
- Gianinetto, M.; Lechi, G. A DNA algorithm for the batimetric mapping in the lagoon of Venice using QuickBird multispectral data. In Proceedings of the 20th ISPRS Congress, Geo-Imagery Bridging Continents Volume: The International Archive of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Istanbul, Turkey, 12–23 July 2004; pp. 94–99. [Google Scholar]
- EO-Portal. ICESat-2. Available online: https://www.eoportal.org/satellite-missions/icesat-2 (accessed on 7 February 2023).
- NASA. ICESat-2, How it Works. Available online: https://icesat-2.gsfc.nasa.gov/how-it-works (accessed on 7 February 2023).
- NASA. ICESat-2, Technical Specs. Available online: https://icesat-2.gsfc.nasa.gov/science/specs (accessed on 7 February 2023).
- Neumann, A.; Brenner, D.H. ATLAS/ICESat-2 L2A Global Geolocated Photon Data, Version 2; NSIDC: Boulder, CO, USA, 2018. [Google Scholar] [CrossRef]
- Magruder, L.A.; Brunt, K.M. Performance Analysis of Airborne Photon- Counting Lidar Data in Preparation for the ICESat-2 Mission. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2911–2918. [Google Scholar] [CrossRef]
- NSIDC. Open Access NASA Data for Your Research and Studies. 2022. Available online: https://nsidc.org/data/data-programs/nsidc-daac (accessed on 7 February 2023).
- The icepyx Developers. icepyx: Python Tools for Obtaining and Working with ICESat-2 data. 2023. Available online: https://github.com/icesat2py/icepyx (accessed on 30 May 2023).
- Austin, R.W.; Halikas, G. The Index of Refraction of Seawater; Scripps Institution of Oceanography: San Diego, CA, USA, 1976. [Google Scholar]
- Sentinel Application Platform (SNAP). ESA. Brockmann Consult, Skywatch, Sensar and C-S. Available online: https://step.esa.int/main/toolboxes/snap (accessed on 30 May 2023).
- QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation. 2022. Available online: http://qgis.osgeo.org (accessed on 30 May 2023).
- GRASS Development Team. Geographic Resources Analysis Support System (GRASS) Software, Version 8.2. Open Source Geospatial Foundation. 2022. Available online: https://grass.osgeo.org (accessed on 30 May 2023).
- RUS Service. Nearshore Bathymetry Derivation with Sentinel-2. 2021. Available online: https://eo4society.esa.int/wp-content/uploads/2022/01/COAS01_BathymetryDerivation_Greece.pdf (accessed on 27 February 2023).
- Ivajnšič, D.; Kaligarič, M.; Fantinato, E.; Del Vecchio, S.; Buffa, G. The fate of coastal habitats in the Venice Lagoon from the sea level rise perspective. Appl. Geogr. 2018, 98, 34–42. [Google Scholar] [CrossRef] [Green Version]
- D’Alpaos, A.; Finotello, A.; Tognin, D.; Carniello, L.; Marani, M. The Venice Lagoon foreshadows the fate of coastal systems under climate change and increasing human pressure. In Proceedings of the GU General Assembly 2023, Vienna, Austria, 24–28 April 2023. EGU23-10125. [Google Scholar] [CrossRef]
- Regione del Veneto. Emergenza Crisi Idrica. 2022. Available online: https://www.regione.veneto.it/web/gestioni-commissariali-e-post-emergenze/crisiidrica2022/ (accessed on 3 March 2023).
- World Economic Forum. Italy Faces New Drought Alert as Venice Canals Run Dry. 2023. Available online: https://www.weforum.org/agenda/2023/02/heres-how-italys-dry-canals-in-venice-spell-trouble-for-this-year (accessed on 3 March 2023).
Site | Gulf of Congianus, Sardinia |
---|---|
Latitude | 40°58.8′N–41°8.4′N |
Longitude | 009°30.6′E–009°40.2′E |
ICESat-2 Track-beams (Tot.: 7) | ATL03_20200114165545_02900602_005_01—gt2r |
ATL03_20200114165545_02900602_005_01—gt3r | |
ATL03_20200613215507_12120706_005_01—gt1l | |
ATL03_20200613215507_12120706_005_01—gt2l | |
ATL03_20200613215507_12120706_005_01—gt3l | |
ATL03_20200912173455_12120806_005_01—gt1l | |
ATL03_20201111023110_07320902_005_01—gt1l | |
S-2 | 22 June 2020–S2B_MSIL2A |
In situ data | MBES Kongsberg EM 2040C (1 September 2016–31 October 2016) |
Oceanographic Data—Copernicus Marine Service | |
Tidal Data—Tide Gauge IIM in La Maddalena |
Site | Venice Lagoon, Veneto | |
---|---|---|
Latitude | 45°10.8′N–45°36′N | |
Longitude | 12°7.8′E–12°42′E | |
ICESat-2 Track-beams (Tot.: 73) | ATL03_20181128122207_09300102_005_01 | All beams |
ATL03_20181205002119_10290106_005_01 | 1l-3l-3r | |
ATL03_20190227080209_09300202_005_01 | 1r-2l-2r | |
ATL03_20190305200120_10290206_005_01 | 1l-2l-3l-3r | |
ATL03_20190730004527_04880402_005_01 | 3l-3r | |
ATL03_20190827232133_09300402_005_01 | 1l-2l | |
ATL03_20190903112043_10290406_005_01 | 1l | |
ATL03_20190925215739_13720402_005_01 | 1l-1r-2r | |
ATL03_20191225173726_13720502_005_01 | 1l | |
ATL03_20200101053635_00840606_005_01 | 2l-2r-3l-3r | |
ATL03_20200503234405_05870706_005_01 | 1l-1r | |
ATL03_20200601222008_10290706_005_01 | 1l-1r-2l-2r-3l | |
ATL03_20200630205609_00840806_005_01 | 3l-3r | |
ATL03_20200727072442_04880802_005_01 | All beams | |
ATL03_20201124014034_09300902_005_01 | 1l-1r-2r-3r | |
ATL03_20201130133944_10290906_005_01 | 1l-1r-2r-3r | |
ATL03_20210124224424_04881002_005_01 | 1l-3l-3r | |
ATL03_20210301091935_10291006_005_01 | 2l-2r-3l-3r | |
ATL03_20210629033531_00841206_005_01 | 3r | |
ATL03_20210927231529_00841306_005_01 | All beams | |
ATL03_20211024094406_04881302_005_01 | 2l-2r-3l-3r | |
S-2 | 19 March 2020 - S2A_MSIL2A | |
In situ data | Soundings from the IIM BathyDataBase (2013–2019) | |
Oceanographic data—ARPA (Venice) and Copernicus Marine Service | ||
Tidal data—ISPRA (Venice) |
Blue/Red | Blue/Green | ||||
---|---|---|---|---|---|
Sand | Rocks | Sand | Rocks | ||
0–5 m | N | 25 | 149 | 25 | 150 |
RMSE | 0.46 | 1.13 | 0.65 | 1.79 | |
MAE | 0.37 | 0.82 | 0.45 | 1.26 | |
BIAS_AVG | −0.01 | −0.04 | −0.03 | 0.04 | |
BIAS_STD | 0.47 | 1.14 | 0.67 | 1.79 | |
5–10 m | N | 40 | 12 | 40 | 12 |
RMSE | 5.71 | 4.59 | 0.78 | 4.95 | |
MAE | 4.89 | 3.38 | 0.61 | 4.17 | |
BIAS_AVG | 1.73 | 1.90 | 0.06 | 0.23 | |
BIAS_STD | 5.56 | 4.48 | 0.79 | 5.21 |
Blue/Red | Blue/Green | ||
---|---|---|---|
Lagoon | |||
0–3.5 m | N | 12,615 | 12,615 |
RMSE | 0.63 | 2.05 | |
MAE | 0.38 | 1.52 | |
BIAS_AVG | −0.04 | −0.05 | |
BIAS_STD | 0.63 | 2.05 | |
Open sea | |||
0–5 m | N | 776 | 776 |
RMSE | 0.48 | 1.10 | |
MAE | 0.37 | 0.74 | |
BIAS_AVG | −0.07 | −0.13 | |
BIAS_STD | 0.47 | 1.09 | |
5–10 m | N | 654 | 654 |
RMSE | 5.47 | 1.25 | |
MAE | 4.65 | 0.99 | |
BIAS_AVG | 0.31 | 0.03 | |
BIAS_STD | 5.48 | 1.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bernardis, M.; Nardini, R.; Apicella, L.; Demarte, M.; Guideri, M.; Federici, B.; Quarati, A.; De Martino, M. Use of ICEsat-2 and Sentinel-2 Open Data for the Derivation of Bathymetry in Shallow Waters: Case Studies in Sardinia and in the Venice Lagoon. Remote Sens. 2023, 15, 2944. https://doi.org/10.3390/rs15112944
Bernardis M, Nardini R, Apicella L, Demarte M, Guideri M, Federici B, Quarati A, De Martino M. Use of ICEsat-2 and Sentinel-2 Open Data for the Derivation of Bathymetry in Shallow Waters: Case Studies in Sardinia and in the Venice Lagoon. Remote Sensing. 2023; 15(11):2944. https://doi.org/10.3390/rs15112944
Chicago/Turabian StyleBernardis, Massimo, Roberto Nardini, Lorenza Apicella, Maurizio Demarte, Matteo Guideri, Bianca Federici, Alfonso Quarati, and Monica De Martino. 2023. "Use of ICEsat-2 and Sentinel-2 Open Data for the Derivation of Bathymetry in Shallow Waters: Case Studies in Sardinia and in the Venice Lagoon" Remote Sensing 15, no. 11: 2944. https://doi.org/10.3390/rs15112944
APA StyleBernardis, M., Nardini, R., Apicella, L., Demarte, M., Guideri, M., Federici, B., Quarati, A., & De Martino, M. (2023). Use of ICEsat-2 and Sentinel-2 Open Data for the Derivation of Bathymetry in Shallow Waters: Case Studies in Sardinia and in the Venice Lagoon. Remote Sensing, 15(11), 2944. https://doi.org/10.3390/rs15112944