Stereoscopic Monitoring Methods for Flood Disasters Based on ICESat-2 and Sentinel-2 Data
Abstract
:1. Introduction
2. Study Sites and Data Sources
2.1. Overview of the Study Area
2.2. Data Introduction
2.2.1. ICESat-2 Lidar Data
2.2.2. Sentinel-2 Remote Sensing Image Data
2.2.3. Auxiliary Data
3. Methods
3.1. Automatic Extraction Algorithm of Water Boundary Considering Water Characteristics
3.2. Flood Water Level Estimation Method Based on Satellite Laser Altimetry Data
3.3. Estimation of Flood Storage Capacity
3.4. Flood Loss Assessment
4. Results
4.1. Flood Inundation Range Analysis of Otsu Algorithm Based on Spectral Index Optimization
4.2. Analysis of Flood Level Based on Satellite Altimetry
4.3. Flood Storage Estimation
4.4. Estimation of Waterlogging Loss
5. Discussion
5.1. Factors Affecting Floods
5.2. Flood Disaster Management
5.3. Influence and Limitation
6. Conclusions
- (1)
- Development of an automatic extraction algorithm for flood boundaries that considers water body characteristics. The NDWSI was calculated based on the spectral index to highlight water body data from the remote sensing images. The Otsu algorithm was then applied to extract the water body boundaries. By combining the original water body data, we found that the flood-inundated area was 704.1 km2 and that the most seriously affected locations were relatively flat and low-lying areas around rivers and lakes. The Jiangtang Lake section of the Huaihe River and the southern part of Chengdong Lake were the most affected areas;
- (2)
- Use of ICESat-2 data for water-level inversion in the research area. The results showed that after the rainstorm and flood, the water level in the research area increased to 15.36 m–17.11 m, which was 4–6 m higher than the original water level. The greatest increase in the water level was observed in Chengdong Lake and the northern part of Chengxi Lake. The floodwater level ranged from 16.18 to 17.11 m, with the highest floodwater levels being in the Jiangtang Lake section of the Huaihe River and the flat area in the south of Chengdong Lake. These areas experienced the greatest flood inundation;
- (3)
- Estimation of the flood storage volume by calculating the flood storage capacity of each lake based on water level and flood area data. According to the statistics, we found that the overall degree of inundation of the flood area was high, with most inundation depths ranging from 4 to 7 m. The area around Jiangtang Lake on the Huaihe River had the highest inundation depth. The total flood storage capacity in the study area was 2833.47 million m3, with the largest to smallest flood storage capacity in Jiangtang Lake, Chengdong Lake, Nanrun section, Chengxi Lake, North Lake, and the Pi River;
- (4)
- Estimation of the economic impact of flood disasters using land use and population data combined with the flood inundation range and depth. The assessment showed that the flood disaster caused significant economic losses in the study area, with approximately 91,000 people affected, and direct economic losses of approximately CNY 7.5 billion.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xia, J.; Chen, J. A new era of flood control strategies from the perspective of managing the 2020 Yangtze River flood. Sci. China Earth Sci. 2021, 64, 1–9. [Google Scholar] [CrossRef]
- Wu, Y.; Li, X.; Gao, Y. The determination method of flood inundation range based on the coherence of Sentinel data. Bull. Surv. Mapp. 2022, 11, 96. [Google Scholar]
- Jamei, M.; Ali, M.; Malik, A.; Ramendra, P.; Shahab, A.; Zaher, M.Y. Forecasting Daily Flood Water Level Using Hybrid Advanced Machine Learning Based Time-Varying Filtered Empirical Mode Decomposition Approach. Water Resour. Manag. 2022, 36, 4637–4676. [Google Scholar] [CrossRef]
- Lu, Z.; Wang, D.; Deng, Z.; Shi, Y.; Ding, Z.; Ning, H.; Zhao, H.; Zhao, J.; Xu, H.; Zhao, X. Application of red edge band in remote sensing extraction of surface water body: A case study based on GF-6 WFV data in arid area. Hydrol. Res. 2021, 52, 1526–1541. [Google Scholar] [CrossRef]
- Wang, R.J.; Liu, B.K.; Du, Y.E.; Zhang, H.H.; Yu, Z.Y. Study on water area extraction method of typical lakes in Hoh Xil based on GF-6. Bull. Surv. Mapp. 2022, 32–37. [Google Scholar]
- Zhou, Y.; Dong, J.W. Research progress of remote sensing monitoring of land surface water. J. Geo-Inf. Sci. 2019, 21, 1768–1778. [Google Scholar]
- Wang, X.B.; Xie, S.P.; Zhang, X.L.; Chen, C.; Guo, H.; Du, J.K.; Duan, Z. A robust Multi-Band Water Index (MBWI) for automated extraction of surface water from Landsat 8 OLI imagery. Int. J. Appl. Earth Obs. Geoinf. 2018, 68, 73–91. [Google Scholar] [CrossRef]
- Choudhary, S.S.; Ghosh, S.K. Surface Water Area Extraction by Using Water Indices and DFPS Method Applied to Satellites Data. Sens. Imaging 2022, 23, 33. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Tan, J.; Tang, Y.; Liu, B.; Zhao, G.; Mu, Y.; Sun, M.; Wang, B. A Self-Adaptive Thresholding Approach for Automatic Water Extraction Using Sentinel-1 SAR Imagery Based on OTSU Algorithm and Distance Block. Remote Sens. 2023, 15, 2690. [Google Scholar] [CrossRef]
- Shi, X.; Dong, X.; Yang, J.; Zhang, Y. Study on Water Information Extraction Method Based on Tiangong-2 Interferometric Imaging Radar Altimeter Data. In Proceedings of the Photonics & Electromagnetics Research Symposium—Fall, Xiamen, China, 17–20 December 2019. [Google Scholar]
- Peng, J.; Wei, H.; Wu, W.H.; Liu, Y.X.; Wang, Y.L. Risk assessment of urban rainstorm and flood disaster based on land use change scenarios: A case study of Maozhou River Basin in Shenzhen City. Acta Ecol. Sin. 2018, 38, 3741–3755. [Google Scholar]
- Yang, S.Y.; Chang, C.H.; Hsu, C.T.; Wu, S.J. Variation of uncertainty of drainage density in flood hazard mapping assessment with coupled 1D–2D hydrodynamics model. Nat. Hazards 2022, 111, 2297–2315. [Google Scholar] [CrossRef]
- Melkamu, T.; Bagyaraj, M.; Adimaw, M.; Ngusie, A.; Karuppannan, S. Detecting and mapping flood inundation areas in Fogera-Dera Floodplain, Ethiopia during an extreme wet season using Sentinel-1 data. Phys. Chem. Earth Parts A/B/C 2022, 127, 103189. [Google Scholar] [CrossRef]
- Gabriels, K.; Willems, P.; Van Orshoven, J. A comparative flood damage and risk impact assessment of land use changes. Nat. Hazards Earth Syst. Sci. 2022, 22, 395–410. [Google Scholar] [CrossRef]
- Xie, J.; Li, B.; Jiao, H.; Zhou, Q.; Mei, Y.; Xie, D.; Wu, Y.; Sun, X.; Fu, Y. Water Level Change Monitoring Based on a New Denoising Algorithm Using Data from Landsat and ICESat-2: A Case Study of Miyun Reservoir in Beijing. Remote Sens. 2022, 14, 4344. [Google Scholar] [CrossRef]
- Kersten, T.; Mechelke, K.; Maziull, L. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science. Emergence 2018, 4, XL-5. [Google Scholar]
- Li, G.Y.; Yao, J.Q.; Tang, X.M.; Ding, B.S.; Guo, J.Q. Research on automatic extraction method of GF-7 satellite laser elevation control points. In Proceedings of the 8 “China High Resolution Earth Observation Conference CHREOC”, Beijing, China, 5–8 November 2022. [Google Scholar]
- Yao, J.Q.; Qu, H.R.; Liu, R.; Zhu, H.; Hu, L.R.; Tang, X.M. Analysis of atmospheric detection algorithm for photon system laser altimeter satellite. Laser Optoelectron. Prog. 2022, 59, 2228002. [Google Scholar]
- Sun, W.; Jin, J.W.; Li, G.Y.; Yao, J.Q. Accuracy evaluation of laser altimeter satellite ICESat-2 monitoring water level of Taihu Lake. Sci. Surv. Mapp. 2021, 46, 6. [Google Scholar]
- Parrish, C.E.; Magruder, L.A.; Neuenschwander, A.L.; Forfinski-Sarkozi, N.; Alonzo, M.; Jasinski, M. Validation of ICESat-2 ATLAS bathymetry and analysis of ATLAS’s bathymetric mapping performance. Remote Sens. 2019, 11, 1634. [Google Scholar] [CrossRef] [Green Version]
- Xi, X.H.; Wang, Z.J.; Wang, C. Nearshore water depth extraction based on ICESat-2/ATLAS data. J. Tongji Univ. (Nat. Sci.) 2022, 50, 940–946. [Google Scholar]
- Guo, X.Z.; Jin, S.G. ICESat-2 laser altimetry is used to monitor the water level changes in the Three Gorges of the Yangtze River. Sci. Surv. Mapp. 2022, 47, 21–26. [Google Scholar]
- Ma, Y.; Xu, N.; Liu, Z.; Yang, B.; Yang, F.; Wang, X.H.; Li, S. Satellite-derived bathymetry using the ICESat-2 lidar and Sentinel-2 imagery datasets. Remote Sens. Environ. 2020, 250, 112047. [Google Scholar] [CrossRef]
- Xu, N.; Ma, X.; Ma, Y.; Zhao, P.; Yang, J.; Wang, X.H. Deriving highly accurate shallow water bathymetry from Sentinel-2 and ICESat-2 datasets by a multitemporal stacking method. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 6677–6685. [Google Scholar] [CrossRef]
- Smith, B.; Fricker, H.A.; Holschuh, N.; Gardner, G.A.; Siegfried, M.R. Land ice height-retrieval algorithm for NASA’s ICESat-2 photon-counting laser altimeter. Remote Sens. Environ. 2019, 233, 111352. [Google Scholar] [CrossRef] [Green Version]
- Traganos, D.; Poursanidis, D.; Aggarwal, B.; Chrysoulakis, N.; Reinartz, P. Estimating satellite-derived bathymetry (SDB) with the google earth engine and sentinel-2. Remote Sens. 2018, 10, 859. [Google Scholar] [CrossRef] [Green Version]
- Melkamu, T.; Bagyaraj, M.; Adimaw, M.; Ngusie, A.; Karuppannan, S. Ice, Cloud, and Land Elevation Satellite–2 (ICESat-2) Project: Algorithm Theoretical Basis Document (ATBD) for Global Geolocated Photons (ATL03); National Aeronautics and Space Administration, Goddard Space Flight Center: Boulder, CO, USA, 2019; Volume 1. [Google Scholar]
- Zanaga, D.; Van, D.K.R.; De, K.W.; Souverijns, N.; Brockmann, C.; Quast, R.; Wevers, J.; Grosu, A.; Paccini, A.; Vergnaud, S.; et al. ESA WorldCover 10 m 2020 v100. Available online: https://ceos.org/gst/worldcover.html (accessed on 10 January 2022).
- Xin, L. Chinese Port Spatially Distributed Kilometers Grid Dataset. Resource and Environmental Science Data Registration and Publication System. Available online: https://www.resdc.cn/ (accessed on 10 January 2022).
- Feng, Q.; Wang, Q.; Huang, H.L.; Wang, Z.Q. Improved Otsu algorithm for water extraction based on Sentinel-1 dual-polarized data. Remote Sens. Technol. Appl. 2022, 37, 1003–1011. [Google Scholar]
- Tang, W.; Zhao, C.; Lin, J.; Jiao, C.; Zheng, G.; Zhu, J.; Pan, X.; Han, X. Improved Spectral Water Index Combined with Otsu Algorithm to Extract Muddy Coastline Data. Water 2022, 14, 855. [Google Scholar] [CrossRef]
- An, C.J.; Niu, Z.D.; Li, Z.J.; Chen, Z.P. Otsu threshold comparison and SAR water segmentation result analysis. J. Electron. Inf. Technol. 2010, 32, 2215–2219. [Google Scholar] [CrossRef]
- Stumpf, R.P.; Holderied, K.; Sinclair, M. Determination of water depth with high-resolution satellite imagery over variable bottom types. Limnol. Oceanogr. 2003, 48, 547–556. [Google Scholar] [CrossRef]
- Zhou, Z.B.; Zhou, H.; Ma, Y.; Song, Y.; Li, S. ICESat-2 lidar sea surface signal extraction and wave element calculation. Infrared Laser Eng. 2023, 52, 20220366-1. [Google Scholar]
- Han, Z.H.; Xu, B.S.; Yang, C.L.; Sun, Y.J. Research on water depth inversion of islands and reefs in the South China Sea based on Planet multi-spectral image. Geomat. Spat. Inf. Technol. 2020, 43, 139–142, 146. [Google Scholar]
- Qiao, B.; Zhu, L.; Wang, J.; Ju, J.; Ma, Q.; Liu, C. Estimation of lakes water storage and their changes on the northwestern Tibetan Plateau based on bathymetric and Landsat data and driving force analyses. Quat. Int. 2017, 454, 56–67. [Google Scholar] [CrossRef]
- Zhang, B.; Wu, Y.; Zhu, L.; Wang, J.; Li, J.; Chen, D. Estimation and trend detection of water storage at Nam Co Lake, central Tibetan Plateau. J. Hydrol. 2011, 405, 161–170. [Google Scholar] [CrossRef]
- Shi, R.Q.; Liu, N.; Li, L.; Ye, L.M.; Liu, X.D.; Guo, G.F. Application of rainstorm flood inundation model in flood loss assessment. Torrential Rain Disasters 2013, 32, 379–384. [Google Scholar]
- Yuan, C.; Gong, P.; Bai, Y. Performance assessment of ICESat-2 laser altimeter data for water-level measurement over lakes and reservoirs in China. Remote Sens. 2020, 12, 770. [Google Scholar] [CrossRef] [Green Version]
- Scawthorn, C.; Blais, N.; Seligson, H.; Tate, E.; Mifflin, E.; Thomas, W.; Murphy, J.; Jones, C. HAZUS-MH flood loss estimation methodology. I: Overview and flood hazard characterization. Nat. Hazards Rev. 2006, 7, 60–71. [Google Scholar] [CrossRef]
- Shi, Y. Vulnerability assessment of rainstorm waterlogging in urban residential buildings: A case study of Shanghai. J. Catastrophology 2015, 30, 94–98. [Google Scholar]
- Ouma, Y.O.; Tateishi, R. Urban flood vulnerability and risk mapping using integrated multi-parametric AHP and GIS: Methodological overview and case study assessment. Water 2014, 6, 1515–1545. [Google Scholar] [CrossRef] [Green Version]
- Dung, N.B.; Long, N.Q.; Goyal, R.; An, D.T.; Minh, D.T. The role of factors affecting flood hazard zoning using analytical hierarchy process: A review. Earth Syst. Environ. 2022, 6, 697–713. [Google Scholar] [CrossRef]
- Pradhan, B. Flood susceptible mapping and risk area delineation using logistic regression, GIS and remote sensing. J. Spat. Hydrol. 2010, 9, 4. [Google Scholar]
- Dung, N.B.; Minh, D.T.; Long, N.Q.; Ha, L.T.T. Weights of factors contributing to flood formation in the Lam River Basin, Vietnam. J. Southwest Jiaotong Univ. 2020, 55, 1–10. [Google Scholar] [CrossRef]
- Sepehri, M.; Malekinezhad, H.; Jahanbakhshi, F.; Ildoromi, A.R.; Chezgi, J.; Ghorbanzadeh, O.; Naghipour, E. Integration of interval rough AHP and fuzzy logic for assessment of flood prone areas at the regional scale. Acta Geophys. 2020, 68, 477–493. [Google Scholar] [CrossRef]
- Saini, S.S.; Kaushik, S.P. Risk and vulnerability assessment of flood hazard in part of Ghaggar Basin: A case study of Guhla block, Kaithal, Haryana, India. Int. J. Geomat. Geosci. 2012, 3, 42–54. [Google Scholar]
- Umar, N.K.; Abdullahi, H.S.; Usman, A.K. A multi-criteria decision support system in the analysis of flood risk and vulnerability mapping in Suleja, Niger state, Nigeria. In A Multi-Criteria Decision Support System in the Analysis of Flood Risk and Vulnerability Mapping in Suleja, Niger State, Nigeria, Proceedings of the ICA, Beijing, China, 10 July 2019; Copernicus GmbH: Göttingen, Germany, 2019; Volume 2, p. 137. [Google Scholar]
- Acosta-Coll, M.; Ballester-Merelo, F.; Martinez-Peiró, M.; De la Hoz-Franco, E. Real-time early warning system design for pluvial flash floods—A review. Sensors 2018, 18, 2255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henriksen, H.J.; Roberts, M.J.; van der Keur, P.; Harjanne, A.; Egilson, D.; Alfonso, L. Participatory early warning and monitoring systems: A Nordic framework for web-based flood risk management. Int. J. Disaster Risk Reduct. 2018, 31, 1295–1306. [Google Scholar] [CrossRef]
- Skilodimou, H.D.; Bathrellos, G.D.; Chousianitis, K.; Youssef, A.M.; Pradhan, B. Multi-hazard assessment modeling via multi-criteria analysis and GIS: A case study. Environ. Earth Sci. 2019, 78, 1–21. [Google Scholar] [CrossRef]
- Liu, Y.M.; Zhao, J.; Deng, R.R.; Liang, Y.H.; Gao, Y.K.; Chen, Q.D.; Xiong, L.H.; Liu, Y.F.; Tang, Y.M.; Tang, D.L. A downscaled bathymetric mapping approach combining multitemporal Landsat-8 and high spatial resolution imagery: Demonstrations from clear to turbid waters. ISPRS J. Photogramm. Remote Sens. 2021, 180, 65–81. [Google Scholar] [CrossRef]
- Zhou, W.N.; Tang, Y.M.; Jing, W.L.; Li, Y.; Yang, J.; Deng, Y.B.; Zhang, Y.M. A Comparison of Machine Learning and Empirical Approaches for Deriving Bathymetry from Multispectral Imagery. Remote Sens. 2023, 15, 393. [Google Scholar] [CrossRef]
- Guo, X.Z.; Jin, X.Y.; Jin, S.G. Shallow Water Bathymetry Mapping from ICESat-2 and Sentinel-2 Based on BP Neural Network Model. Water 2022, 14, 3862. [Google Scholar] [CrossRef]
Data Type | Dataset Name | Resolution | Source |
---|---|---|---|
Depth measurement data | ICEsat-2 | https://nsidc.org/data/icesat-2/data-sets (accessed on 20 December 2022) [28] | |
Sentinel-2 | 10 m | Google Earth Engine [27] | |
Water surface measurement data | Sentinel-2 | 10 m | Google Earth Engine [27] |
Topographic data | DEM | 12.5 m | NASA |
Land cover type data | Land use data | 10 m | https://ceos.org/gst/worldcover.html (accessed on 10 January 2022) [29] |
Population distribution data | China’s population spatial distribution km grid dataset | 1 km | https://www.resdc.cn/ (accessed on 10 January 2022) [30] |
Number | Flood Area | Depth/m | Area/km2 | Volume/Thousand m3 |
---|---|---|---|---|
1 | Jiangtang Lake | 6 | 283.32 | 1,699,920 |
2 | Nanrun Section | 3 | 117.79 | 353,370 |
3 | Chengxi Lake | 4 | 77.09 | 308,360 |
4 | Chengdong Lake | 3 | 152.14 | 456,420 |
5 | North Lake | 4 | 3.85 | 15,400 |
Land Cover Types | Inundated Area/km2 | Loss Rate% | Lost Area/km2 | Economic Losses/ CNY Billion |
---|---|---|---|---|
Cropland | 559.9 | 100 | 559.9 | 6.5 |
Trees | 3.2 | 30 | 0.96 | 0.01 |
Open water | 41.9 | 100 | 41.9 | 0.54 |
Grassland | 2.7 | 40 | 1.08 | 0.01 |
Building | 137.1 | 20 | 27.42 | 0.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Y.; Wang, M.; Yao, J.; Mo, F.; Zhu, H.; Hu, L.; Zhai, H. Stereoscopic Monitoring Methods for Flood Disasters Based on ICESat-2 and Sentinel-2 Data. Remote Sens. 2023, 15, 3015. https://doi.org/10.3390/rs15123015
Cao Y, Wang M, Yao J, Mo F, Zhu H, Hu L, Zhai H. Stereoscopic Monitoring Methods for Flood Disasters Based on ICESat-2 and Sentinel-2 Data. Remote Sensing. 2023; 15(12):3015. https://doi.org/10.3390/rs15123015
Chicago/Turabian StyleCao, Yongqiang, Mengran Wang, Jiaqi Yao, Fan Mo, Hong Zhu, Liuru Hu, and Haoran Zhai. 2023. "Stereoscopic Monitoring Methods for Flood Disasters Based on ICESat-2 and Sentinel-2 Data" Remote Sensing 15, no. 12: 3015. https://doi.org/10.3390/rs15123015
APA StyleCao, Y., Wang, M., Yao, J., Mo, F., Zhu, H., Hu, L., & Zhai, H. (2023). Stereoscopic Monitoring Methods for Flood Disasters Based on ICESat-2 and Sentinel-2 Data. Remote Sensing, 15(12), 3015. https://doi.org/10.3390/rs15123015