Contemporaneous Thick- and Thin-Skinned Seismotectonics in the External Zagros: The Case of the 2021 Fin Doublet, Iran
Abstract
:1. Introduction
2. Materials and Methods
2.1. InSAR Deformation and Fault Model
2.2. Analysis of Aftershocks
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IGUT Iranian Seismological Center (Institute of Geophysics, University of Tehran). Available online: http://irsc.ut.ac.ir (accessed on 7 April 2023).
- IIEES International Institute of Earthquake Engineering and Seismology. Available online: http://www.iiees.ac.ir/fa/recentevents (accessed on 7 April 2023).
- Hessami, K.; Jamali, F.; Tabasi, H. Map of Major Active Faults of Iran at 1:2500000; International Institute of Earthquake Engineering and Seismology (IIEES): Tehran, Iran, 2003. [Google Scholar]
- Molinaro, M.; Leturmy, P.; Guezou, J.-C.C.; Frizon de Lamotte, D.; Eshraghi, S.A. The Structure and Kinematics of the Southeastern Zagros Fold-Thrust Belt, Iran: From Thin-Skinned to Thick-Skinned Tectonics. Tectonics 2005, 24, 1–19. [Google Scholar] [CrossRef]
- Jahani, S.; Callot, J.P.; Letouzey, J.; De Lamotte, D.F. The Eastern Termination of the Zagros Fold-and-Thrust Belt, Iran: Structures, Evolution, and Relationships between Salt Plugs, Folding, and Faulting. Tectonics 2009, 28, 2418. [Google Scholar] [CrossRef]
- Berberian, M. Master “Blind” Thrust Faults Hidden under the Zagros Folds: Active Basement Tectonics and Surface Morphotectonics. Tectonophysics 1995, 241, 193–224. [Google Scholar] [CrossRef]
- Molinaro, M.; Zeyen, H.; Laurencin, X. Lithospheric Structure beneath the South-Eastern Zagros Mountains, Iran: Recent Slab Break-Off? Terra Nova 2005, 17, 1–6. [Google Scholar] [CrossRef]
- Jahani, S.; Callot, J.-P.; de Lamotte, D.F.; Letouzey, J.; Leturmy, P. The Salt Diapirs of the Eastern Fars Province (Zagros, Iran): A Brief Outline of Their Past and Present BT—Thrust Belts and Foreland Basins; Lacombe, O., Roure, F., Lavé, J., Vergés, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 289–308. [Google Scholar]
- Sattarzadeh, Y.; Cosgrove, J.W.; Vita-Finzi, C. The Interplay of Faulting and Folding during the Evolution of the Zagros Deformation Belt. Geol. Soc. Lond. Spec. Publ. 1999, 169, 187–196. [Google Scholar] [CrossRef]
- Molinaro, M.; Guezou, J.C.; Leturmy, P.; Eshraghi, S.A.; de Lamotte, D.F. The Origin of Changes in Structural Style across the Bandar Abbas Syntaxis, SE Zagros (Iran). Mar. Pet. Geol. 2004, 21, 735–752. [Google Scholar] [CrossRef]
- Sherkati, S.; Molinaro, M.; Frizon de Lamotte, D.; Letouzey, J. Detachment Folding in the Central and Eastern Zagros Fold-Belt (Iran): Salt Mobility, Multiple Detachments and Late Basement Control. J. Struct. Geol. 2005, 27, 1680–1696. [Google Scholar] [CrossRef]
- Callot, J.P.; Jahani, S.; Letouzey, J. The Role of Pre-Existing Diapirs in Fold and Thrust Belt Development BT—Thrust Belts and Foreland Basins; Lacombe, O., Roure, F., Lavé, J., Vergés, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 309–325. [Google Scholar]
- Asghari, A. Sedimentary Environment, Sequence Stratigraphy and Paleogeography of Paleozoic Pre-Khuff Succession in Southern Iran (Zagros and Persian Gulf); Université de Bourgogne: Dijon, France, 2014. [Google Scholar]
- Khorrami, F.; Vernant, P.; Masson, F.; Nilfouroushan, F.; Mousavi, Z.; Nankali, H.; Saadat, S.A.; Walpersdorf, A.; Hosseini, S.; Tavakoli, P.; et al. An Up-to-Date Crustal Deformation Map of Iran Using Integrated Campaign-Mode and Permanent GPS Velocities. Geophys. J. Int. 2019, 217, 832–843. [Google Scholar] [CrossRef]
- Agard, P.; Omrani, J.; Jolivet, L.; Whitechurch, H.; Vrielynck, B.; Spakman, W.; Monie, P.; Meyer, B.; Wortel, R. Zagros Orogeny: A Subduction-Dominated Process. Geol. Mag. 2011, 148, 692–725. [Google Scholar] [CrossRef] [Green Version]
- Masson, F.; Anvari, M.; Djamour, Y.; Walpersdorf, A.; Tavakoli, F.; Daignières, M.; Nankali, H.; Van Gorp, S. Large-Scale Velocity Field and Strain Tensor in Iran Inferred from GPS Measurements: New Insight for the Present-Day Deformation Pattern within NE Iran. Geophys. J. Int. 2007, 170, 436–440. [Google Scholar] [CrossRef] [Green Version]
- Masson, F.; Chéry, J.; Hatzfeld, D.; Martinod, J.; Vernant, P.; Tavakoli, F.; Ghafory-Ashtiani, M. Seismic versus Aseismic Deformation in Iran Inferred from Earthquakes and Geodetic Data. Geophys. J. Int. 2005, 160, 217–226. [Google Scholar] [CrossRef] [Green Version]
- Vernant, P.; Chéry, J. Mechanical Modelling of Oblique Convergence in the Zagros, Iran. Geophys. J. Int. 2006, 165, 991–1002. [Google Scholar] [CrossRef] [Green Version]
- Tavakoli-Shirazi, S.; Frizon de Lamotte, D.; Wrobel-Daveau, J.-C.; Ringenbach, J.-C. Pre-Permian Uplift and Diffuse Extensional Deformation in the High Zagros Belt (Iran): Integration in the Geodynamic Evolution of the Arabian Plate. Arab. J. Geosci. 2013, 6, 2329–2342. [Google Scholar] [CrossRef]
- Alavi, M. Structures of the Zagros Fold-Thrust Belt in Iran. Am. J. Sci. 2007, 307, 1064–1095. [Google Scholar] [CrossRef]
- Husseini, M.I. The Arabian Infracambrian Extensional System. Tectonophysics 1988, 148, 93–103. [Google Scholar] [CrossRef]
- Alavi, M. Regional Stratigraphy of the Zagros Fold-Thrust Belt of Iran and Its Proforeland Evolution. Am. J. Sci. 2004, 304, 1–20. [Google Scholar] [CrossRef]
- Blanc, E.; Allen, M.; Inger, S.; Hassani, H. Structural Styles in the Zagros Simple Folded Zone, Iran. J. Geol. Soc. Lond. 2003, 160, 401. [Google Scholar] [CrossRef]
- Berberian, M.; King, G.C.P. Towards a Paleogeography and Tectonic Evolution of Iran. Can. J. Earth Sci. 1981, 18, 210–265. [Google Scholar] [CrossRef]
- Colman-Sadd, S.P. Fold Development in Zagros Simply Folded Belt, Southwest Iran. Am. Ass. Petrol. Geol. Bull 1978, 62, 984–1003. [Google Scholar] [CrossRef]
- Razaghian, G.; Arian, M. The Emergent Salt Diapirs in the East Zagros, Iran. Open J. Geol. 2015, 05, 718–726. [Google Scholar] [CrossRef] [Green Version]
- Fialko, Y.; Sandwell, D.; Simons, M.; Rosen, P. Three-Dimensional Deformation Caused by the Bam, Iran, Earthquake and the Origin of Shallow Slip Deficit. Nature 2005, 435, 295–299. [Google Scholar] [CrossRef] [PubMed]
- Massonnet, D.; Rossi, M.; Carmona, C.; Adragna, F.; Peltzer, G.; Feigl, K.; Rabaute, T. The Displacement Field of the Landers Earthquake Mapped by Radar Interferometry. Nature 1993, 364, 138–142. [Google Scholar] [CrossRef]
- Svigkas, N.; Atzori, S.; Kiratzi, A.; Tolomei, C.; Salvi, S. Isolation of Swarm Sources Using InSAR: The Case of the February 2017 Seismic Swarm in Western Anatolia (Turkey). Geophys. J. Int. 2019, 217, 1479–1495. [Google Scholar] [CrossRef]
- Golshadi, Z.; Rezapour, M.; Atzori, S.; Salvi, S. Multiple Source Analysis from InSAR Data and New Insights into Fault Activation: The 2005 Zarand, Iran, Earthquake. Terra Nova 2021, 33, 274–283. [Google Scholar] [CrossRef]
- Tolomei, C.; Caputo, R.; Polcari, M.; Famiglietti, N.A.; Maggini, M.; Stramondo, S. The Use of Interferometric Synthetic Aperture Radar for Isolating the Contribution of Major Shocks: The Case of the March 2021 Thessaly, Greece, Seismic Sequence. Geosciences 2021, 11, 191. [Google Scholar] [CrossRef]
- Goldstein, R.M.; Werner, C.L. Radar Interferogram Filtering for Geophysical Applications. Geophys. Res. Lett. 1998, 25, 4035–4038. [Google Scholar] [CrossRef] [Green Version]
- Galaktionov, I.; Sheldakova, J.; Toporovskiy, V.; Kudryashov, A. Modified Fizeau Interferometer with the Polynomial and FFT Smoothing Algorithm. In Interferometry XXI; SPIE: Bellingham, WA, USA, 2022; Volume 12223, pp. 175–179. [Google Scholar] [CrossRef]
- Soncco, D.-C.; Barbanson, C.; Nikolova, M.; Almansa, A.; Ferrec, Y. Fast and Accurate Multiplicative Decomposition for Fringe Removal in Interferometric Images. IEEE Trans. Comput. Imaging 2017, 3, 187–201. [Google Scholar] [CrossRef] [Green Version]
- Ri, S.; Takimoto, T.; Xia, P.; Wang, Q.; Tsuda, H.; Ogihara, S. Accurate Phase Analysis of Interferometric Fringes by the Spatiotemporal Phase-Shifting Method. J. Opt. 2020, 22, 105703. [Google Scholar] [CrossRef]
- Costantini, T.M.; Costantini, M. A Novel Phase Unwrapping Method Based on Network Programming. IEEE Trans. Geosci. Remote Sens. 1998, 36, 813–821. [Google Scholar] [CrossRef]
- Okada, Y. Surface Deformation Due to Shear and Tensile Faults in a Half-Space. Bull. Seismol. Soc. Am. 1985, 75, 1135–1154. [Google Scholar] [CrossRef]
- Atzori, S.; Manunta, M.; Fornaro, G.; Ganas, A.; Salvi, S. Postseismic Displacement of the 1999 Athens Earthquake Retrieved by the Differential Interferometry by Synthetic Aperture Radar Time Series. J. Geophys. Res. Solid Earth 2008, 113, 5504. [Google Scholar] [CrossRef]
- Atzori, S.; Hunstad, I.; Chini, M.; Salvi, S.; Tolomei, C.; Bignami, C.; Stramondo, S.; Trasatti, E.; Antonioli, A.; Boschi, E. Finite Fault Inversion of DInSAR Coseismic Displacement of the 2009 L’Aquila Earthquake (Central Italy). Geophys. Res. Lett. 2009, 36, 39293. [Google Scholar] [CrossRef]
- Foumelis, M.; Parcharidis, I.; Lagios, E.; Voulgaris, N. Evolution of Post-Seismic Ground Deformation of the Athens 1999 Earthquake Observed by SAR Interferometry. J. Appl. Geophys. 2009, 69, 16–23. [Google Scholar] [CrossRef]
- Marquardt, D.W. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. J. Soc. Ind. Appl. Math. 1963, 11, 431–441. [Google Scholar] [CrossRef]
- Chalup, S.; Maire, F. A Study on Hill Climbing Algorithms for Neural Network Training. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), Washington, DC, USA, 6–9 July 1999; Volume 3, pp. 2014–2021. [Google Scholar]
- Li, J.; Li, W.; Huang, R. An Efficient Method for Solving a Matrix Least Squares Problem over a Matrix Inequality Constraint. Comput. Optim. Appl. 2016, 63, 393–423. [Google Scholar] [CrossRef]
- Hernando, L.; Mendiburu, A.; Lozano, J.A. Hill-Climbing Algorithm: Let’s Go for a Walk Before Finding the Optimum. In Proceedings of the 2018 IEEE Congress on Evolutionary Computation (CEC), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–7. [Google Scholar]
- Funning, G.J.; Parsons, B.; Wright, T.J.; Jackson, J.A.; Fielding, E.J. Surface Displacements and Source Parameters of the 2003 Bam (Iran) Earthquake from Envisat Advanced Synthetic Aperture Radar Imagery. J. Geophys. Res. Solid Earth 2005, 110, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Wright, T.J.; Lu, Z.; Wicks, C. Source Model for the Mw 6.7, 23 October 2002, Nenana Mountain Earthquake (Alaska) from InSAR. Geophys. Res. Lett. 2003, 30, 18014. [Google Scholar] [CrossRef]
- Walters, R.J.; Gregory, L.C.; Wedmore, L.N.J.; Craig, T.J.; McCaffrey, K.; Wilkinson, M.; Chen, J.; Li, Z.; Elliott, J.R.; Goodall, H.; et al. Dual Control of Fault Intersections on Stop-Start Rupture in the 2016 Central Italy Seismic Sequence. Earth Planet Sci. Lett. 2018, 500, 1–14. [Google Scholar] [CrossRef]
- Harris, R.A. Introduction to Special Section: Stress Triggers, Stress Shadows, and Implications for Seismic Hazard. J. Geophys. Res. Solid Earth 1998, 103, 24347–24358. [Google Scholar] [CrossRef]
- Hatzfeld, D.; Tatar, M.; Priestley, K.; Ghafory-Ashtiany, M. Seismological Constraints on the Crustal Structure beneath the Zagros Mountain Belt (Iran). Geophys. J. Int. 2003, 155, 403–410. [Google Scholar] [CrossRef] [Green Version]
- Elliott, J.R.; Bergman, E.A.; Copley, A.C.; Ghods, A.R.; Nissen, E.K.; Oveisi, B.; Tatar, M.; Walters, R.J.; Yamini-Fard, F. The 2013 Mw 6.2 Khaki-Shonbe (Iran) Earthquake: Insights into Seismic and Aseismic Shortening of the Zagros Sedimentary Cover. Earth Space Sci. 2015, 2, 435–471. [Google Scholar] [CrossRef]
- Waldhauser, F. HypoDD-A Program to Compute Double-Difference Hypocenter Locations; Version 1; Columbia University Libraries: New York, NY, USA, 2001. [Google Scholar]
- Waldhauser, F.; Ellsworth, W. A Double-Difference Earthquake Location Algorithm: Method and Application to the Northern Hayward Fault, California. Bull. Seismol. Soc. Am. 2000, 90, 1353–1368. [Google Scholar] [CrossRef]
- Hanssen, R.F. Radar Interferometry: Data Interpretation and Error Analysis (Remote Sensing and Digital Image Processing); Springer: Amsterdam, The Netherlands, 2001; ISBN 9780792369455. [Google Scholar]
- Jackson, J.; Fitch, T. Basement Faulting and the Focal Depths of the Larger Earthquakes in the Zagros Mountains (Iran). Geophys. J. Int. 1981, 64, 561–586. [Google Scholar] [CrossRef] [Green Version]
- Baker, C.; Jackson, J.; Priestley, K. Earthquakes on the Kazerun Line in the Zagros Mountains of Iran: Strike-Slip Faulting within a Fold-and-Thrust Belt. Geophys. J. Int. 1993, 115, 41–61. [Google Scholar] [CrossRef] [Green Version]
- Maggi, A.; Jackson, J.A.; Priestley, K.; Baker, C. A Re-assessment of Focal Depth Distributions in Southern Iran, the Tien Shan and Northern India: Do Earthquakes Really Occur in the Continental Mantle? Geophys. J. Int. 2000, 143, 629–661. [Google Scholar] [CrossRef] [Green Version]
- Maggini, M.; Caputo, R. Seismological Data versus Rheological Modelling: Comparisons across the Aegean Region for Improving the Seismic Hazard Assessment. J. Struct. Geol. 2021, 145, 104312. [Google Scholar] [CrossRef]
- Tatar, M.; Hatzfeld, D.; Ghafory-Ashtiany, M. Tectonics of the Central Zagros (Iran) Deduced from Microearthquake Seismicity. Geophys. J. Int. 2004, 156, 255–266. [Google Scholar] [CrossRef] [Green Version]
- Jackson, J.A.; Fitch, T.J.; McKenzie, D.P. Active Thrusting and the Evolution of the Zagros Fold Belt. Geol Soc Spec Publ 1981, 9, 371–379. [Google Scholar] [CrossRef]
- Reasenberg, P.A.; Simpson, R.W. Response of Regional Seismicity to the Static Stress Change Produced by the Loma Prieta Earthquake. Science 1992, 255, 1687–1690. [Google Scholar] [CrossRef]
- Sherkati, S.; Letouzey, J.; de Lamotte, D. Central Zagros Fold-Thrust Belt (Iran): New Insights from Seismic Data, Field Observation, and Sandbox Modeling. Tectonics 2006, 25, 1766. [Google Scholar] [CrossRef]
- McQuarrie, N. Crustal Scale Geometry of the Zagros Fold–Thrust Belt, Iran. J. Struct. Geol. 2004, 26, 519–535. [Google Scholar] [CrossRef]
- Sherkati, S.; Letouzey, J. Variation of Structural Style and Basin Evolution in the Central Zagros (Izeh Zone and Dezful Embayment), Iran. Mar. Pet. Geol. 2004, 21, 535–554. [Google Scholar] [CrossRef]
- Hessami, K.; Koyi, H.A.; Talbot, C.J. The Significance of Strike-Slip Faulting in the Basement of the Zagros Fold and Thrust Belt. J. Pet. Geol. 2001, 24, 5–28. [Google Scholar] [CrossRef]
- Talebian, M.; Jackson, J. A Reappraisal of Earthquake Focal Mechanisms and Active Shortening in the Zagros Mountains of Iran. Geophys. J. Int. 2004, 156, 506–526. [Google Scholar] [CrossRef] [Green Version]
- Leturmy, P.; Molinaro, M.; de Lamotte, D.F. Structure, Timing and Morphological Signature of Hidden Reverse Basement Faults in the Fars Arc of the Zagros (Iran). Geol. Soc. Lond. Spec. Publ. 2010, 330, 121–138. [Google Scholar] [CrossRef]
- Bahroudi, A.; Talbot, C.J. The Configuration of the Basement beneath the Zagros Basin. J. Pet. Geol. 2003, 26, 257–282. [Google Scholar] [CrossRef]
- Mouthereau, F.; Lacombe, O.; Tensi, J.; Bellahsen, N.; Kargar, S.; Amrouch, K. Mechanical Constraints on the Development of the Zagros Folded Belt (Fars). In Proceedings of the Thrust Belts and Foreland Basins; Lacombe, O., Roure, F., Lavé, J., Vergés, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 247–266. [Google Scholar]
Event | Agency | Dataset | Magnitude | Plane n. | Strike (°) | Dip (°) | Rake (°) | Depth (km) | Lat. (°) | Lon. (°) |
---|---|---|---|---|---|---|---|---|---|---|
1 | USGS | Teleseismic | 6.0 (M) | 1 | 270 | 63 | 90 | 9 | 27.716 | 56.074 |
2 | 91 | 27 | 91 | |||||||
GCMT | Teleseismic | 6.1 (Mw) | 1 | 262 | 56 | 77 | 17.2 | 27.570 | 55.980 | |
2 | 105 | 36 | 108 | |||||||
IRSC | Regional seismic data | 6.2 (MN) | - | - | - | - | 19.5 | 27.568 | 56.084 | |
- | - | - | - | |||||||
IIEES | Regional seismic data | 6.3 (ML) | - | - | - | - | 14 | 27.668 | 56.075 | |
EMSC | Regional seismic data | 6.0 (MW) | - | - | - | - | 10 | 27.71 | 56.12 | |
GFZ | Teleseismic | 6.0 (MW) | - | - | - | - | 10 | 27.65 | 55.99 | |
2 | USGS | Teleseismic | 6.4 (M) | 1 | 289 | 85 | 101 | 10 | 27.727 | 56.072 |
2 | 41 | 12 | 22 | |||||||
GCMT | Teleseismic | 6.1 (Mw) | 1 | 276 | 65 | 99 | 13.8 | 27.54 | 56.03 | |
2 | 75 | 27 | 72 | |||||||
IRSC | Regional seismic data | 6.3 (MN) | - | - | - | - | 10.0 | 27.536 | 56.174 | |
IIEES | Regional seismic data | 6.4 (ML) | - | - | - | - | 15 | 27.565 | 56.367 | |
EMSC | Regional seismic data | 6.3 (MW) | - | - | - | - | 10 | 27.73 | 56.15 |
Interferogram Number | Master’s Date | Slave’s Date | Pass Direction | Orbit Number |
---|---|---|---|---|
1 | 13 November 2021 | 25 November 2021 | Ascending | 57 |
2 | 9 November 2021 | 21 November 2021 | Descending | 166 |
Layer | Vp (km/s) | Z (km) |
---|---|---|
1 | 4.20 | 0.0 |
2 | 5.40 | 2.0 |
3 | 5.70 | 4.0 |
4 | 5.90 | 10.0 |
5 | 6.10 | 14.0 |
6 | 6.50 | 19.0 |
7 | 8.20 | 46.0 |
Class | Horizontal Error (km) | Depth Error (km) | RMS (s) | Azimuthal Gap (°) | Number of Events |
---|---|---|---|---|---|
A | 2.0 | 4.0 | 0.3 | 180 | 20 |
B | 3.0 | 6.0 | 0.4 | 200 | 110 |
C | 5.0 | 8.0 | 0.5 | 200 | 225 |
No. | Date–Time | Lon (°) | Lat (°) | Depth (km) | Mw | Strike (°) | Dip (°) | Rake (°) |
---|---|---|---|---|---|---|---|---|
1 | 21 March 1977 21:19:04 | 56.44 | 27.47 | 18.8 | 6.7 | 267 | 27 | 98 |
2 | 22 March 1977 11:57:35 | 56.13 | 27.23 | 10.0 | 5.9 | 75 | 43 | 96 |
3 | 23 March 1977 23:51:19 | 56.44 | 27.25 | 10.0 | 5.5 | 261 | 41 | 92 |
4 | 1 April 1977 13:36:30 | 56.40 | 27.37 | 10.0 | 5.9 | 262 | 44 | 90 |
5 | 16 April 1981 10:27:18 | 56.25 | 27.31 | 15.0 | 5.1 | 221 | 42 | 8 |
6 | 12 July 1983 11:34:22 | 56.26 | 27.11 | 46.0 | 6.0 | 241 | 45 | 73 |
7 | 18 December 1987 16:24:05 | 56.42 | 27.90 | 15.0 | 5.8 | 155 | 39 | −149 |
8 | 9 June 1988 00:09:49 | 56.10 | 27.67 | 15.0 | 5.2 | 310 | 11 | 139 |
9 | 5 March 2006 09:40:08 | 56.40 | 27.61 | 33.0 | 5.4 | 290 | 45 | 106 |
10 | 25 March 2006 09:55:16 | 55.68 | 27.48 | 12.0 | 5.5 | 276 | 35 | 89 |
11 | 25 March 2006 10:00:38 | 55.66 | 27.41 | 12.0 | 5.2 | 267 | 30 | 70 |
12 | 24 July 2007 10:08:01 | 55.65 | 27.14 | 20.0 | 5.0 | 270 | 21 | 81 |
13 | 3 November 2009 23:26:53 | 56.16 | 27.04 | 13.2 | 5.0 | 246 | 30 | 63 |
14 | 10 November 2014 13:52:39 | 55.71 | 27.75 | 15.0 | 5.2 | 349 | 41 | 180 |
15 | 30 December 2019 13:49:46 | 56.50 | 27.13 | 18.0 | 5.2 | 223 | 28 | 41 |
16 | 14 November 2021 12:07:04 | 55.98 | 27.57 | 17.2 | 6.1 | 105 | 36 | 108 |
17 | 14 November 2021 12:08:39 | 56.03 | 27.54 | 13.8 | 6.1 | 75 | 27 | 72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golshadi, Z.; Famiglietti, N.A.; Caputo, R.; SoltaniMoghadam, S.; Karimzadeh, S.; Memmolo, A.; Falco, L.; Vicari, A. Contemporaneous Thick- and Thin-Skinned Seismotectonics in the External Zagros: The Case of the 2021 Fin Doublet, Iran. Remote Sens. 2023, 15, 2981. https://doi.org/10.3390/rs15122981
Golshadi Z, Famiglietti NA, Caputo R, SoltaniMoghadam S, Karimzadeh S, Memmolo A, Falco L, Vicari A. Contemporaneous Thick- and Thin-Skinned Seismotectonics in the External Zagros: The Case of the 2021 Fin Doublet, Iran. Remote Sensing. 2023; 15(12):2981. https://doi.org/10.3390/rs15122981
Chicago/Turabian StyleGolshadi, Zeinab, Nicola Angelo Famiglietti, Riccardo Caputo, Saeed SoltaniMoghadam, Sadra Karimzadeh, Antonino Memmolo, Luigi Falco, and Annamaria Vicari. 2023. "Contemporaneous Thick- and Thin-Skinned Seismotectonics in the External Zagros: The Case of the 2021 Fin Doublet, Iran" Remote Sensing 15, no. 12: 2981. https://doi.org/10.3390/rs15122981
APA StyleGolshadi, Z., Famiglietti, N. A., Caputo, R., SoltaniMoghadam, S., Karimzadeh, S., Memmolo, A., Falco, L., & Vicari, A. (2023). Contemporaneous Thick- and Thin-Skinned Seismotectonics in the External Zagros: The Case of the 2021 Fin Doublet, Iran. Remote Sensing, 15(12), 2981. https://doi.org/10.3390/rs15122981