HF Radar Wind Direction: Multiannual Analysis Using Model and HF Network
Abstract
:1. Introduction
2. Materials and Methods
2.1. HFr Network
2.2. ISPRA Weather Station
2.3. Mediterranean Wave Model
2.4. Statistical Methods
3. Results
3.1. MWM/ERA5@2km Wind Speed and Wind Direction Comparisons
3.2. MWM/ISPRA Wind Speed and Wind Direction Comparisons
3.3. Wind Direction Analysis: MWM, ISPRA and HFr
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roarty, H.; Cook, T.; Hazard, L.; George, D.; Harlan, J.; Cosoli, S.; Wyatt, L.; Alvarez Fanjul, E.; Terrill, E.; Otero, M.; et al. The Global High Frequency Radar Network. Front. Mar. Sci. 2019, 6, 164. [Google Scholar] [CrossRef]
- Huang, W.; Gill, E.W. (Eds.) Ocean Remote Sensing Technologies—High-Frequency, Marine and GNSS-Based Radar; SciTech Publishing: Luxembourg, 2021. [Google Scholar]
- Tseng, Y.H.; Lu, C.Y.; Zheng, Q.; Ho, C.R. Characteristic analysis of sea surface currents around Taiwan Island from CODAR observations. Remote Sens. 2021, 13, 3025. [Google Scholar] [CrossRef]
- Rubio, A.; Mader, J.; Corgnati, L.; Mantovani, C.; Griffa, A.; Novellino, A.; Quentin, C.; Wyatt, L.; Schulz-Stellenfleth, J.; Horstmann, J.; et al. HF radar activity in European coastal seas: Next steps toward a pan-European HF radar network. Front. Mar. Sci. 2017, 4, 8. [Google Scholar] [CrossRef] [Green Version]
- Gurgel, K.-W.; Antonischki, G.; Essen, H.-H.; Schlick, T. Wellen radar WERA: A new ground-wave HF radar for ocean remote sensing. Coast. Eng. 1999, 37, 219–234. [Google Scholar] [CrossRef]
- Barrick, D.E. Extraction of wave parameters from measured HF radar sea-echo Doppler spectra. Radio Sci. 1977, 12, 415–424. [Google Scholar] [CrossRef]
- Lorente, P.; Aguiar, E.; Bendoni, M.; Berta, M.; Brandini, C.; Cáceres-Euse, A.; Capodici, F.; Cianelli, D.; Ciraolo, G.; Corgnati, L.; et al. Coastal high-frequency radars in the Mediterranean—Part 1: Status of operations and a framework for future development. Ocean Sci. 2022, 18, 761–795. [Google Scholar] [CrossRef]
- Reyes, E.; Aguiar, E.; Bendoni, M.; Berta, M.; Brandini, C.; Cáceres-Euse, A.; Capodici, F.; Cardin, V.; Cianelli, D.; Ciraolo, G.; et al. Coastal high-frequency radars in the Medi-terranean—Part 2: Applications in support of science priorities and societal needs. Ocean Sci. 2022, 18, 797–837. [Google Scholar] [CrossRef]
- Wyatt, L. Ocean wave measurement. In Ocean Remote Sensing Technologies—High-Frequency, Marine and GNSS-Based Radar; Huang, W., Gill, E.W., Eds.; SciTech Publishing: Raleigh, NC, USA, 2021; pp. 145–178. [Google Scholar]
- Saviano, S.; Kalampokis, A.; Zambianchi, E.; Uttieri, M. A year-long assessment of wave measurements retrieved from an HF radar network in the Gulf of Naples (Tyrrhenian Sea, Western Mediterranean Sea). J. Oper. Oceanogr. 2019, 12, 1–15. [Google Scholar] [CrossRef]
- Saviano, S.; De Leo, F.; Besio, G.; Zambianchi, E.; Uttieri, M. HF Radar Measurements of Surface Waves in the Gulf of Naples (Southeastern Tyrrhenian Sea): Comparison With Hindcast Results at Different Scales. Front. Mar. Sci. 2020, 7, 492. [Google Scholar] [CrossRef]
- Basañez, A.; Lorente, P.; Montero, P.; Álvarez-Fanjul, E.; Pérez-Muñuzuri, V. Quality Assessment and practical interpretation of the wave parameters estimated by HF Radars in NW Spain. Remote Sens. 2020, 12, 598. [Google Scholar] [CrossRef] [Green Version]
- Bué, I.; Semedo, Á.; Catalão, J. Evaluation of HF Radar Wave Measurements in Iberian Peninsula by Comparison with Satellite Altimetry and in Situ Wave Buoy Observations. Remote Sens. 2020, 12, 3623. [Google Scholar] [CrossRef]
- Lorente, P.; Lin-Ye, J.; García-León, M.; Reyes, E.; Fernandes, M.; Sotillo, M.G.; Espino, M.; Ruiz, M.I.; Gracia, V.; Perez, S.; et al. On the Performance of High Frequency Radar in the Western Mediterranean During the Record-Breaking Storm Gloria. Front. Mar. Sci. 2021, 8, 205. [Google Scholar] [CrossRef]
- Ludeno, G.; Uttieri, M. Editorial for Special Issue “Radar Technology for Coastal Areas and Open Sea Monitoring”. J. Mar. Sci. Eng. 2020, 8, 560. [Google Scholar] [CrossRef]
- Wyatt, L.R. Progress towards an HF Radar Wind Speed Measurement Method Using Machine Learning. Remote Sens. 2022, 14, 2098. [Google Scholar] [CrossRef]
- Wyatt, L.R.; Green, J.J. Swell and wind-sea partitioning of HF radar directional spectra. J. Oper. Oceanogr. 2022. [Google Scholar] [CrossRef]
- Lopez, G.; Conley, D.C. Comparison of HF Radar Fields of Directional Wave Spectra Against In Situ Measurements at Multiple Locations. J. Mar. Sci. Eng. 2019, 7, 271. [Google Scholar] [CrossRef] [Green Version]
- Wyatt, L.R. A comparison of scatterometer and HF radar wind direction measurements. J. Oper. Oceanogr. 2018, 11, 54–63. [Google Scholar] [CrossRef]
- Falco, P.; Buonocore, B.; Cianelli, D.; De Luca, L.; Giordano, A.; Iermano, I.; Kalampokis, A.; Saviano, S.; Uttieri, M.; Zambardino, G. Dynamics and sea state in the Gulf of Naples: Potential use of high-frequency radar data in an operational oceanographic context. J. Oper. Oceanogr. 2016, 9, 33–45. [Google Scholar] [CrossRef] [Green Version]
- Mali, M.; Di Leo, A.; Giandomenico, S.; Spada, L.; Cardellicchio, N.; Calò, M.; Fedele, A.; Ferraro, L.; Milia, A.; Renzi, M.; et al. Multivariate tools to investigate the spatial contaminant distribution in a highly anthropized area (Gulf of Naples, Italy). Environ. Sci. Pollut. Res. 2022, 29, 62281–62298. [Google Scholar] [CrossRef]
- Del Gaizo, G.; Russo, L.; Abagnale, M.; Buondonno, A.; Furia, M.; Saviano, S.; Vargiu, M.; Conversano, F.; Margiotta, F.; Saggiomo, M.; et al. An autumn biodiversity survey on heterotrophic and mixotrophic protists along a coast-to-offshore transect in the Gulf of Naples (Italy). Adv. Oceanogr. Limnol. 2021, 12. [Google Scholar] [CrossRef]
- Uttieri, M.; Cianelli, D.; Buongiorno Nardelli, B.; Buonocore, B.; Falco, P.; Colella, S.; Zambianchi, E. Multiplatform observation of the surface circulation in the Gulf of Naples (Southern Tyrrhenian Sea). Ocean Dyn. 2011, 61, 779–796. [Google Scholar] [CrossRef]
- Cianelli, D.; D’Alelio, D.; Uttieri, M.; Sarno, D.; Zingone, A.; Zambianchi, E.; Ribera d’Alcalà, M. Disentangling physical and biological drivers of phytoplankton dynamics in a coastal system. Sci. Rep. 2017, 7, 15868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kokoszka, F.; Saviano, S.; Botte, V.; Iudicone, D.; Zambianchi, E.; Cianelli, D. Gulf of Naples Advanced Model (GNAM): A Multiannual Comparison with Coastal HF Radar Data and Hydrological Measurements in a Coastal Tyrrhenian Basin. J. Mar. Sci. Eng. 2022, 10, 1044. [Google Scholar] [CrossRef]
- Iermano, I.; Moore, A.M.; Zambianchi, E. Impacts of a 4-dimensional variational data assimilation in a coastal ocean model of southern Tyrrhenian Sea. J. Mar. Syst. 2016, 154, 157–171. [Google Scholar] [CrossRef]
- Saviano, S.; Cianelli, D.; Zambianchi, E.; Conversano, F.; Uttieri, M. An Integrated Reconstruction of the Multiannual Wave Pattern in the Gulf of Naples (South-Eastern Tyrrhenian Sea, Western Mediterranean Sea). J. Mar. Sci. Eng. 2020, 8, 372. [Google Scholar] [CrossRef]
- Saviano, S.; Biancardi, A.A.; Uttieri, M.; Zambianchi, E.; Cusati, L.A.; Pedroncini, A.; Contento, G.; Cianelli, D. Sea Storm Analysis: Evaluation of Multiannual Wave Parameters Retrieved from HF Radar and Wave Model. Remote Sens. 2022, 14, 1696. [Google Scholar] [CrossRef]
- Saviano, S.; Esposito, G.; Di Lemma, R.; de Ruggiero, P.; Zambianchi, E.; Pierini, S.; Falco, P.; Buonocore, B.; Cianelli, D.; Uttieri, M. Wind Direction Data from a Coastal HF Radar System in the Gulf of Naples (Central Mediterranean Sea). Remote Sens. 2021, 13, 1333. [Google Scholar] [CrossRef]
- Menna, M.; Mercatini, A.; Uttieri, M.; Buonocore, B.; Zambianchi, E. Wintertime transport processes in the Gulf of Naples investigated by HF radar measurements of surface currents. II Nuovo Cim. C 2007, 30, 605–622. [Google Scholar]
- Prati, M.V.; Costagliola, M.A.; Quaranta, F.; Murena, F. Assessment of ambient air quality in the port of Naples. J. Air Waste Manag. Assoc. 2015, 65, 970–979. [Google Scholar] [CrossRef] [Green Version]
- Montuori, A.; de Ruggiero, P.; Migliaccio, M.; Pierini, S.; Spezie, G. X-band COSMO- SkyMedc wind field retrieval, with application to coastal circulation modeling. Ocean Sci. 2013, 9, 121–132. [Google Scholar] [CrossRef] [Green Version]
- de Ruggiero, P. A high-resolution ocean circulation model of the Gulf of Naples and adjacent areas. II Nuovo Cim. C 2013, 36, 143–150. [Google Scholar]
- Hatzaki, M.; Flocas, H.A.; Simmonds, I.; Kouroutzoglou, J.; Keay, K.; Rudeva, I. Seasonal aspects of an objective climatology of anticyclones affecting the Mediterranean. J. Clim. 2014, 27, 9272–9289. [Google Scholar] [CrossRef]
- de Ruggiero, P.; Esposito, G.; Napolitano, E.; Iacono, R.; Pierini, S.; Zambianchi, E. Modelling the marine circulation of the Campania coastal system (Tyrrhenian Sea) for the year 2016: Analysis of the dynamics. J. Mar. Syst. 2020, 210, 103388. [Google Scholar] [CrossRef]
- Castagno, P.; de Ruggiero, P.; Pierini, S.; Zambianchi, E.; De Alteris, A.; De Stefano, M.; Budillon, G. Hydrographic and dynamical characterisation of the Bagnoli-Coroglio Bay (Gulf of Naples, Tyrrhenian Sea). Chem. Ecol. 2020, 36, 598–618. [Google Scholar] [CrossRef]
- De Maio, A.; Moretti, M.; Sansone, E.; Spezie, G.; Vultaggio, M. Outline of marine currents in the Bay of Naples and some considerations on pollutant transport. II Nuovo Cim. C 1985, 8, 955–969. [Google Scholar] [CrossRef]
- Cianelli, D.; Uttieri, M.; Buonocore, B.; Falco, P.; Zambardino, G.; Zambianchi, E. Dynamics of a Very Special Mediterranean Coastal Area: The Gulf of Naples, in Mediterranean Ecosystems: Dynamics, Management and Conservation; Williams, G., Ed.; Nova Science Publishers: New York, NY, USA, 2012; pp. 129–150. [Google Scholar]
- Landberg, L.; Giebel, G.; Nielsen, H.A.; Nielsen, T.; Madsen, H. Short-term prediction—An overview. Wind Energy 2003, 6, 273–280. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Reder, A.; Raffa, M.; Padulano, R.; Rianna, G.; Mercogliano, P. Characterizing extreme values of precipitation at very high resolution: An experiment over twenty European cities. Weather. Clim. Extrem. 2022, 35, 100407. [Google Scholar] [CrossRef]
- Lipa, B.; Daugharty, M.; Fernandes, M.; Barrick, D.; Alonso-Martinera, A.; Roarty, H.; Dicopoulos, J.; Whelan, C. Developments in compact HF-radar ocean wave measurement. In Advances in Sensors: Reviews; Yurish, S.Y., Ed.; IFSA Publishing: Barcelona, Spain, 2018; Volume 5, pp. 469–495. [Google Scholar]
- Lipa, B.; Barrick, D.; Alonso-Martirena, A.; Fernandes, M.; Ferrer, M.I.; Nyden, B. Brahan project high frequency radar ocean measurements: Currents, winds, waves and their interactions. Remote Sens. 2014, 6, 12094–12117. [Google Scholar] [CrossRef] [Green Version]
- Laws, K.; Paduan, J.D.; Vesecky, J. Estimation and assessment of errors related to antenna pattern distortion in CODAR SeaSonde high-frequency radar ocean current measurements. J. Atmos. Ocean. Technol. 2010, 27, 1029–1043. [Google Scholar] [CrossRef] [Green Version]
- Lipa, B.; Nyden, B.; Barrick, D.; Kohut, J. HF radar sea-echo from shallow water. Sensors 2008, 8, 4611–4635. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.; Moorthi, S.; Pan, H.-L.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Kistler, R.; Woollen, J.; Behringer, D.; et al. NCEP Climate Forecast System Reanalysis (CFSR) Selected Hourly Time-Series Products, January 1979 to December 2010. Bull. Am. Meteorol. Soc. 2010, 91, 1015–1058. [Google Scholar] [CrossRef] [Green Version]
- Skamarock, W.C.; Klemp, J.B. A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys. 2008, 227, 3465–3485. [Google Scholar] [CrossRef]
- Michalakes, J.; Chen, S.; Dudhia, J.; Hart, L.; Klemp, J.; Middlecoff, J.; Skamarock, W. Development of a Next Generation RegionalWeather Research and Forecast Model. Developments in Teracomputing. In Developments in Teracomputing, Proceedings of the 9th ECMWF Workshop on the Use of High Performance Computing in Meteorology; Reading, UK, 13–17 November 2000; Zwieflhofer, W., Kreitz, N., Eds.; World Scientific: Singapore, 2001; pp. 269–276. [Google Scholar]
- Sorensen, O.R.; Kofoed-Hansen, H.; Rugbjerg, M.; Sorensen, L.S. A Third Generation Spectral Wave Model Using an Unstructured Finite Volume Technique. In Proceedings of the 29th International Conference of Coastal Engineering, Lisbon, Portugal, 19–24 September 2004. [Google Scholar]
- Technical Report SEAPOL Project. Sistema modellistico ad Elevata risoluzione per l’Analisi storica e la Previsione del moto Ondoso nel mar Ligure POR-FESR (2007–2010)—Asse 1 Innovazione e Competitività, Bando DLTM, Azione 1.2.2 “Ricerca industriale e sviluppo sperimentale a favore delle imprese del Distretto Ligure per le Tecnologie Marine (DLTM), Pos. n° 47”. DHI Italia.
- Ranalli, M.; Lagona, F.; Picone, M.; Zambianchi, E. Segmentation of sea current fields by cylindrical hidden Markov models: A composite likelihood approach. J. R. Stat. Soc. Ser. C 2018, 67, 575–598. [Google Scholar] [CrossRef]
- Hanna, S.; Heinold, D. Development and Application of a Simple Method for Evaluating Air Quality; Technical Report; American Petroleum Institute, Health and Environmental Affairs Department, Pennsylvania State University: State College, PA, USA, 1985. [Google Scholar]
- Mentaschi, L.; Besio, G.; Cassola, F.; Mazzino, A. Problems in RMSE-based wave model validations. Ocean Modell. 2013, 72, 53–58. [Google Scholar] [CrossRef]
- Shen, W.; Gurgel, K.-W. Wind direction inversion from narrow-beam HF Radar backscatter signals in low and high wind conditions at different radar frequencies. Remote Sens. 2018, 10, 1480. [Google Scholar] [CrossRef] [Green Version]
2010 | MWM vs. ERA5@2km | ||||||||
---|---|---|---|---|---|---|---|---|---|
Trimester | PORT | CAST | SORR | ||||||
CC | RMSE | HH | CC | RMSE | HH | CC | RMSE | HH | |
JFM | 0.71 | 2.68 | 0.44 | 0.67 | 2.88 | 0.44 | 0.73 | 2.83 | 0.38 |
AMJ | 0.64 | 2.14 | 0.51 | 0.62 | 2.26 | 0.5 | 0.67 | 2.43 | 0.49 |
JAS | 0.63 | 1.83 | 0.46 | 0.6 | 1.95 | 0.46 | 0.63 | 2.15 | 0.48 |
OND | 0.71 | 2.6 | 0.41 | 0.66 | 2.98 | 0.45 | 0.76 | 2.65 | 0.35 |
MWM vs. ERA5@2km | |||||||||
---|---|---|---|---|---|---|---|---|---|
2010 | PORT | CAST | SORR | ||||||
ρcc | RMSE | θ | ρcc | RMSE | θ | ρcc | RMSE | θ | |
0.38 | 42.15 | 83.9 | 0.22 | 81.9 | 97.3 | 0.63 | 67.05 | 67.9 |
ISPRA vs. MWM Wind Speed | RC3 | RC5 | RC7 | ||||||
---|---|---|---|---|---|---|---|---|---|
2010 Trimester | CC | RMSE (m/s) | HH | CC | RMSE (m/s) | HH | CC | RMSE (m/s) | HH |
Winter (JFM) | 0.51 | 3.65 | 0.76 | 0.49 | 3.93 | 0.8 | 0.47 | 4.29 | 0.86 |
Spring (AMJ) | 0.5 | 2.21 | 0.58 | 0.49 | 2.35 | 0.6 | 0.47 | 2.54 | 0.64 |
Summer (JAS) | 0.47 | 2.12 | 0.61 | 0.44 | 2.26 | 0.64 | 0.4 | 2.46 | 0.68 |
Autumn (OND) | 0.62 | 3.3 | 0.63 | 0.61 | 3.55 | 0.67 | 0.59 | 3.87 | 0.71 |
MWM vs. ISPRA | |||
---|---|---|---|
PORT | |||
ρcc | RMSE | θ | |
2010 | 0.41 | 41.6 | 58 |
2010 (U > 5 m/s) | 0.67 | 33.3 | 32 |
2010 | RC3 | |||||
---|---|---|---|---|---|---|
HF vs. ISPRA | HF vs. MWM | |||||
Event | ρcc | θ (°) | RMSE (°) | ρcc | θ (°) | RMSE (°) |
Jan_1_3 | 0.64 | 36.3 | 47.3 | 0.52 | 21.3 | 36.9 |
Feb_5_7 | 0.87 | −7.9 | 431 | 0.93 | −10.4 | 39.8 |
Apr_1_6 | 0.82 | 16.1 | 58.28 | 0.74 | −3.15 | 42.8 |
Apr_19_21 | 0.78 | 20.9 | 43.9 | 0.96 | −10 | 35.7 |
May_5_8 | 0.68 | −10.9 | 54.5 | 0.61 | −28.8 | 59.9 |
May_13_18 | 0.61 | 40.7 | 57.4 | 0.36 | 23.9 | 35.4 |
Aug_28_30 | 0.49 | −16 | 41.8 | 0.25 | −47.7 | 56.8 |
Sep_25_29 | 0.66 | 16 | 48.4 | 0.39 | 5.4 | 37.3 |
Nov_18_23 | 0.69 | −26 | 43.7 | 0.64 | −44.1 | 56.8 |
Dic_1_5 | 0.84 | −11.1 | 48.8 | 0.77 | −26.9 | 48.5 |
Dic_23_26 | 0.69 | −32.6 | 48.2 | 0.56 | −46.6 | 56.2 |
Mean | 0.71 | 2.33 | 48.7 | 0.61 | −15.2 | 46.01 |
RC5 | ||||||
Jan_1_3 | 0.69 | 23.65 | 43.23 | 0.57 | 9.1 | 35.14 |
Feb_5_7 | 0.91 | −3.83 | 35.77 | 0.89 | −6.66 | 37.77 |
Apr_1_6 | 0.8 | 24.53 | 58.81 | 0.72 | 4.24 | 39.27 |
Apr_19_21 | 0.79 | 7.56 | 51.27 | 0.94 | −22.7 | 48.73 |
May_5_8 | 0.55 | −28.4 | 54.58 | 0.54 | −46 | 62.23 |
May_13_18 | 0.56 | 34.39 | 57.09 | 0.46 | −46.5 | 28.35 |
Aug_28_30 | 0.58 | −6.57 | 35.54 | 0.33 | 14.3 | 51.79 |
Sep_25_29 | 0.59 | 26.1 | 46.88 | 0.35 | 16.37 | 28.68 |
Nov_18_23 | 0.71 | −29.5 | 41.65 | 0.67 | −47.2 | 55.32 |
Dic_1_5 | 0.79 | −19.7 | 40.61 | 0.65 | −37.1 | 44.37 |
Dic_23_26 | 0.86 | −31.5 | 44.74 | 0.8 | −42.7 | 52.58 |
Mean | 0.71 | −0.36 | 46.4 | 0.63 | −18.6 | 44.02 |
RC7 | ||||||
Jan_1_3 | 0.66 | −21.6 | 46.5 | 0.73 | −37.8 | 51.7 |
Feb_5_7 | 0.88 | −17.3 | 34.2 | 0.9 | −22.2 | 39.8 |
Apr_1_6 | 0.82 | −2.55 | 48.53 | 0.7 | −20.5 | 32.6 |
Apr_19_21 | 0.8 | 11.85 | 46.83 | 0.94 | −22.8 | 45.07 |
May_5_8 | 0.63 | −43.7 | 52.22 | 0.67 | −62.4 | 67.7 |
May_13_18 | 0.7 | −17.3 | 49.5 | 0.27 | −41.4 | 31.2 |
Aug_28_30 | 0.81 | −16.6 | 39.1 | 0.56 | −38.4 | 49.3 |
Sep_25_29 | 0.89 | −5.45 | 38.17 | 0.44 | −19.4 | 28.3 |
Nov_18_23 | 0.85 | −31.5 | 36.53 | 0.76 | −51.9 | 56.2 |
Dic_1_5 | 0.76 | −29.3 | 34.55 | 0.69 | −48.7 | 47.9 |
Dic_23_26 | 0.81 | −28.7 | 35.05 | 0.82 | −41.9 | 46.65 |
Mean | 0.78 | −18.4 | 41.9 | 0.68 | −37.1 | 45.13 |
Comparison Event 4–8 December 2008 | Observation Number (h) | ρcc | RMSE (°) | θ (°) | Observation Number (U > 5 m/s) | ρcc (U > 5 m/s) | RMSE (°) (U > 5 m/s) | θ (°) (U > 5 m/s) |
---|---|---|---|---|---|---|---|---|
RC3 | ||||||||
HFr-ISPRA | 109 | −0.04 | 48.85 | 71 | 28 | 0.74 | 50.88 | 47 |
HFr-MWM | 109 | 0.13 | 47.96 | 74.01 | 28 | 0.84 | 61.9 | 56.47 |
RC5 | ||||||||
HFr-ISPRA | 109 | −0.18 | 39.65 | 75 | 28 | 0.69 | 49.7 | 47 |
HFr-MWM | 109 | 0 | 53.99 | 71.23 | 28 | 0.77 | 65.4 | 62.43 |
RC7 | ||||||||
HFr-ISPRA | 109 | −0.59 | 34.85 | 62 | 28 | 0.73 | 38.99 | 36 |
HFr-MWM | 109 | −0.52 | 55.04 | 70.17 | 28 | 0.84 | 58.91 | 57.99 |
Comparison Event 4–8 December 2008 | Observation Number (h) | ρcc | RMSE (°) | θ (°) | Observation Number (U > 5 m/s) | ρcc (U > 5 m/s) | RMSE (°) (U > 5 m/s) | θ (°) (U > 5 m/s) |
---|---|---|---|---|---|---|---|---|
RC3 | ||||||||
CAST-MWM | 109 | −0.65 | 49.98 | 77.52 | 28 | 0.64 | 71.14 | 73.17 |
SORR-MWM | 109 | 0.6 | 23.87 | 45.82 | 28 | −0.38 | 23.45 | 19.68 |
RC5 | ||||||||
CAST-MWM | 109 | −0.59 | 47.37 | 59.11 | 28 | 0.30 | 60.5 | 61.89 |
SORR-MWM | 109 | −0.9 | 32.03 | 41.98 | 28 | −0.67 | 24.7 | 18.99 |
RC7 | ||||||||
CAST-MWM | 109 | 0.58 | 45.52 | 61.32 | 28 | 0.05 | 52.37 | 17.37 |
SORR-MWM | 109 | −0.83 | 31.82 | 46.29 | 28 | −0.7 | 28.1 | 26.12 |
Comparison Event 5–8 May 2010 | Observation Number (h) | ρcc | RMSE (°) | θ (°) | Observation Number (U > 5 m/s) | ρcc (U > 5 m/s) | RMSE (°) (U > 5 m/s) | θ (°) (U > 5 m/s) |
---|---|---|---|---|---|---|---|---|
RC3 | ||||||||
HFr-ISPRA | 96 | 0.49 | 55.7 | 61 | 39 | 0.68 | 54.5 | 50 |
HFr-MWM | 96 | 0.31 | 63.5 | 69.04 | 39 | 0.61 | 59.9 | 57.93 |
RC5 | ||||||||
HFr-ISPRA | 96 | 0.44 | 53.4 | 60 | 39 | 0.55 | 54.6 | 49 |
HFr-MWM | 96 | 0.33 | 63.9 | 65.9 | 39 | 0.54 | 62.2 | 58.48 |
RC7 | ||||||||
HFr-ISPRA | 96 | 0.39 | 52.7 | 61 | 39 | 0.63 | 52.2 | 47 |
HFr-MWM | 96 | 0.41 | 67.5 | 70.98 | 39 | 0.67 | 67.7 | 63.65 |
Comparison Event 5–8 May 2010 | Observation Number (h) | ρcc | RMSE (°) | θ (°) | Observation Number (U > 5 m/s) | ρcc (U > 5 m/s) | RMSE (°) (U > 5 m/s) | θ (°) (U > 5 m/s) |
---|---|---|---|---|---|---|---|---|
RC3 | ||||||||
CAST-MWM | 96 | −0.08 | 66.3 | 72.45 | 39 | 0.31 | 62.8 | 55.4 |
SORR-MWM | 96 | −0.32 | 34.7 | 81.02 | 39 | −0.43 | 21.9 | 43.75 |
RC5 | ||||||||
CAST-MWM | 96 | 0.05 | 55.02 | 65.73 | 39 | 0.35 | 53 | 49.07 |
SORR-MWM | 96 | −0.36 | 22.7 | 56.2 | 39 | −0.58 | 26.7 | 29.08 |
RC7 | ||||||||
CAST-MWM | 96 | −0.22 | 30.5 | 82.86 | 39 | −0.41 | 44.4 | 68.78 |
SORR-MWM | 96 | −0.36 | 26.2 | 50.58 | 39 | −0.54 | 24.2 | 28.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saviano, S.; Biancardi, A.A.; Kokoszka, F.; Uttieri, M.; Zambianchi, E.; Cusati, L.A.; Pedroncini, A.; Cianelli, D. HF Radar Wind Direction: Multiannual Analysis Using Model and HF Network. Remote Sens. 2023, 15, 2991. https://doi.org/10.3390/rs15122991
Saviano S, Biancardi AA, Kokoszka F, Uttieri M, Zambianchi E, Cusati LA, Pedroncini A, Cianelli D. HF Radar Wind Direction: Multiannual Analysis Using Model and HF Network. Remote Sensing. 2023; 15(12):2991. https://doi.org/10.3390/rs15122991
Chicago/Turabian StyleSaviano, Simona, Anastasia Angela Biancardi, Florian Kokoszka, Marco Uttieri, Enrico Zambianchi, Luis Alberto Cusati, Andrea Pedroncini, and Daniela Cianelli. 2023. "HF Radar Wind Direction: Multiannual Analysis Using Model and HF Network" Remote Sensing 15, no. 12: 2991. https://doi.org/10.3390/rs15122991
APA StyleSaviano, S., Biancardi, A. A., Kokoszka, F., Uttieri, M., Zambianchi, E., Cusati, L. A., Pedroncini, A., & Cianelli, D. (2023). HF Radar Wind Direction: Multiannual Analysis Using Model and HF Network. Remote Sensing, 15(12), 2991. https://doi.org/10.3390/rs15122991