Space-Time Cascaded Processing-Based Adaptive Transient Interference Mitigation for Compact HFSWR
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sets Received by the Compact HFSWR
2.2. Signal Model of Transient Interference and Sea Echoes
2.3. Signal Model of Transient Interference Excision
2.4. Proposed Interference Mitigation Method
2.4.1. Adaptive Optimal Sample Selection
2.4.2. Rotating Spatial Beam Method
2.4.3. Optimal Weight Estimation Method
2.4.4. The Procedure of the Proposed Algorithm
- (1)
- Input: compact HFSWR original echo data preprocessed by pulse compression, coherent integration and digital beamforming (DBF), location index of the transient interferences in the slow-time region;
- (2)
- Initialize the allowed error , the number of auxiliary beams , and the corresponding directions ;
- (3)
- Suppose the range unit for the cell under test is , calculate the geometric distances for all the training data in the range domain using Equation (13);
- (4)
- Set two guard units to prevent the target self-elimination and sort in ascending order;
- (5)
- Select the , which indicates as the number of training samples that correspond to lowest values of ;
- (6)
- Calculate the self-correlation matrix and the crosscorrelation matrix ;
- (7)
- Calculate the DL level using equations from Equation (29) to Equation (31) until the predefined convergence criteria is satisfied;
- (8)
- Calculate the final optimal weight using Equation (32);
- (9)
- Calculate the final output using Equation (23);
- (10)
- Repeat step 2 to step 9 for processing the whole occupied range units, STD units and beam units;
- (11)
- Output: the same three-dimensional matrix as input echo data, but interferences have been removed.
3. Results
3.1. Simulation Data
3.2. Training Sample Selection for the Experimental Data
3.3. Doppler Profile of Transient Interference Suppression for the Experimental Data
3.4. Range-Doppler Map of Transient Interference Suppression for the Experimental Data
4. Discussion
4.1. SINR Improvement for the LCI Data
4.2. SINR Improvement for the STI Data
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, V.; Wyatt, L.R. Radio frequency interference cancellation for sea-state remote sensing by high-frequency radar. IET Radar Sonar Navig. 2010, 5, 405–415. [Google Scholar] [CrossRef]
- Li, X.D.; Yu, C.J.; Su, F.L.; Quan, T.F.; Chu, X.L.; Wang, S.Y. Significant wave height extraction using a low-frequency HFSWR system under low sea state. IET Radar Sonar Navig. 2018, 12, 671–677. [Google Scholar] [CrossRef]
- Li, M.Z.; He, S.; Li, W.C. Transient Interference Mitigation via Supervised Matrix Completion. IEEE Geosci. Remote Sens. Lett. 2016, 13, 907–911. [Google Scholar] [CrossRef]
- Ai, X.F.; Luo, Y.J.; Zhao, G.Q. Transient Interference Excision in Over-the-Horizon Radar by Robust Principal Component Analysis with a Structured Matrix. IEEE Geosci. Remote Sens. Lett. 2016, 13, 48–52. [Google Scholar]
- Chen, Z.F.; Xie, F.; Zhao, C.; He, C. Radio frequency interference mitigation in high frequency surface wave radar based on CEMD. IEEE Geosci. Remote Sens. Lett. 2017, 14, 764–768. [Google Scholar] [CrossRef]
- Xing, M.D.; Bao, Z.; Qiang, Y. Transient interference excision in OTHR. Acta Electron. Sin. 2002, 30, 823–826. [Google Scholar]
- Quan, Y.H.; Xing, M.D.; Zhang, L.; Bao, Z. Transient interference excision and spectrum reconstruction for OTHR. Electron. Lett. 2012, 48, 42–44. [Google Scholar] [CrossRef]
- Nazari, M.E.; Huang, W.M.; Zhao, C. Radio frequency interference suppression for HF surface wave radar using CEMD and temporal windowing methods. IEEE Geosci. Remote Sens. Lett. 2020, 17, 212–216. [Google Scholar] [CrossRef]
- Guo, X.; Sun, H.B.; Yeo, T.S. Transient interference excision in over-the horizon radar using adaptive time-frequency analysis. IEEE Trans. Geosci. Remote Sens. 2005, 43, 722–735. [Google Scholar]
- Xun, X.A.; Wu, X.B.; Chen, X.F.; Shen, Z.B. An instaneous interference suppression approach based on S transforms. ACTA Electron. Sin. 2014, 42, 602–606. [Google Scholar]
- Ai, X.F.; Luo, Y.J.; Zhao, G.Q. Transient interference excision and signal recovery in OTHR using robust principal component analysis. Electron. Lett. 2015, 51, 1363–1364. [Google Scholar] [CrossRef]
- Zhang, B.Q.; Xie, J.H.; Sun, M.L.; Zhou, W. Impulsive Noise Excision Using Robust Smoothing. IEEE Geosci. Remote Sens. Lett. 2022, 19, 8015205. [Google Scholar] [CrossRef]
- Liu, Z.W.; Su, H.T.; Hu, Q.Z. Method to suppress transient interference in skywave OTHR. Electron. Lett. 2015, 51, 1606–1607. [Google Scholar] [CrossRef]
- Liu, Z.W.; Su, H.T.; Hu, Q.Z.; Cheng, Z.Z. Computationally Efficient Transient Interference Excision Method for Skywave Over-the-Horizon Radar. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1017–1021. [Google Scholar] [CrossRef]
- Zhang, J.Z.; Zhang, X.; Deng, W.B.; Guo, L.; Yang, Q. A Novel Main-Lobe Cancellation Method Based on a Single Notch Space Filter and Optimized Correlation Analysis Strategy. Int. J. Antennas Propag. 2019, 2019, 1495097. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Sun, H.B.; Lu, Y.L. Joint suppression of radio frequency interference and lightning impulsive noise in HFSWR. In Proceedings of the 2009 International Radar Conference, Bordeaux, France, 12–16 October 2009. [Google Scholar]
- Ji, X.W.; Yang, Q.; Wang, L.W. A Self-Regulating Multi-Clutter Suppression Framework for Small Aperture HFSWR Systems. Remote Sens. 2022, 14, 1901. [Google Scholar] [CrossRef]
- Ji, X.W.; Li, J.M.; Yang, Q.; Wang, L.W.; Wu, X.C. Deep Learning Aided Time–Frequency Analysis Filter Framework for Suppressing Ionosphere Clutter. Remote Sens. 2022, 14, 3424. [Google Scholar] [CrossRef]
- Duan, J.; Zhang, L.; Xing, M.D.; Li, J. Transient interference excision and spectrum reconstruction with partial samples for over-the-horizon radar. IET Radar Sonar Navig. 2014, 8, 547–556. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, Q.; Yao, D.; Deng, W.B. Main-Lobe Cancellation of the Space Spread Clutter for Target Detection in HFSWR. IEEE J. Sel. Top. Signal Process. 2015, 9, 1632–1638. [Google Scholar] [CrossRef]
- Saleh, O.; Ravan, M.; Riddolls, R.; Adve, R. Fast Fully Adaptive Processing: A Multistage STAP Approach. IEEE Trans. Aerosp. Eletronic Syst. 2016, 52, 2168–2183. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.; Wen, B.Y.; Zhou, H. Ionospheric clutter suppression in HF surface wave radar. J. Electromagn. Waves Appl. 2009, 23, 1265–1272. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.Z.; Zhang, X.; Deng, W.B.; Ye, L.; Yang, Q. A Geometric Barycenter-Based Clutter Suppression Method for Ship Detection in HF Mixed-Mode Surface Wave Radar. Remote Sens. 2019, 1, 1141. [Google Scholar] [CrossRef] [Green Version]
- Yao, D.; Deng, W.B.; Zhang, X.; Yang, Q.; Zhang, J.Z.; Li, J.M. Main-lobe clutter suppression algorithm based on rotating beam method and optimal sample selection for small-aperture HFSWR. IET Radar Sonar Navig. 2019, 13, 1162–1170. [Google Scholar] [CrossRef]
- Ye, L.; Yang, Q.; Chen, Q.S.; Deng, W.B. Multidimensional Joint Domain Localized Matrix Constant False Alarm Rate Detector Based on Information Geometry Method with Applications to High Frequency Surface Wave Radar. IEEE Access 2019, 7, 722–735. [Google Scholar] [CrossRef]
- Aubry, A.; Maio, A.D.; Pallotta, L.; Farina, A. Covariance matrix estimation via geometric barycenters and its application to radar training data selection. IET Radar Sonar Navig. 2013, 7, 600–614. [Google Scholar] [CrossRef]
- Yao, D.; Zhang, X.; Yang, Q.; Deng, W.B. Radio and Clutter Suppression Algorithm Based on Spatial Multiple Beams for Small-Aperture HFSWR. Int. J. Antennas Propag. 2018, 2018, 1574870. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Li, W.X.; Li, Y.Y.; Mao, Y.L. Robust Adaptive Beamforming based on Automatic Variable Loading in Array Antenna. ACES J. 2021, 36, 908–913. [Google Scholar] [CrossRef]
- Ma, X.F.; Lu, L.; Sheng, W.X.; Han, Y.B.; Zhang, R.L. Adaptive interference nulling with pattern maintaining under mainlobe subspace and quadratic constraints. IET Microw. Antennas Propag. 2018, 12, 40–48. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, D.; Chen, Q.; Tian, Q. Space-Time Cascaded Processing-Based Adaptive Transient Interference Mitigation for Compact HFSWR. Remote Sens. 2023, 15, 651. https://doi.org/10.3390/rs15030651
Yao D, Chen Q, Tian Q. Space-Time Cascaded Processing-Based Adaptive Transient Interference Mitigation for Compact HFSWR. Remote Sensing. 2023; 15(3):651. https://doi.org/10.3390/rs15030651
Chicago/Turabian StyleYao, Di, Qiushi Chen, and Qiyan Tian. 2023. "Space-Time Cascaded Processing-Based Adaptive Transient Interference Mitigation for Compact HFSWR" Remote Sensing 15, no. 3: 651. https://doi.org/10.3390/rs15030651
APA StyleYao, D., Chen, Q., & Tian, Q. (2023). Space-Time Cascaded Processing-Based Adaptive Transient Interference Mitigation for Compact HFSWR. Remote Sensing, 15(3), 651. https://doi.org/10.3390/rs15030651