Predicting Grassland Fire-Occurrence Probability in Inner Mongolia Autonomous Region, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Pre-Processing
2.2.1. Dependent Variable
2.2.2. Explanatory Variables
- Meteorological factors
- Anthropogenic factors
- Vegetation factors
- Topographic factors
Factors | Variables | Abbreviation | Data Source | Units | Resolution |
---|---|---|---|---|---|
Meteorological factors | Mean annual temperature | Temp | China Meteorological Forcing Data (1979–2018) [61] | K | 0.1° |
Mean annual precipitation | Prec | mm/h | 0.1° | ||
Daily average specific humidity | Humi_dy | kg/kg | 0.1° | ||
Daily cumulative precipitation | Prec_dy | mm/h | 0.1° | ||
Daily average temperature | Temp_dy | K | 0.1° | ||
Daily average wind speed | Wind_dy | m/s | 0.1° | ||
Anthropogenic factors | Distance to nearest settlement | D_resp | National Catalogue Service for Geographic Information https://www.webmap.cn (accessed on 21 May 2021) | km | 500 m |
Distance to nearest road | D_road | km | 500 m | ||
Distance to nearest river | D_river | km | 500 m | ||
Distance to nearest railway | D_rail | km | 500 m | ||
Population density | P_density | National Bureau of Statistics of China http://www.stats.gov.cn (accessed on 12 February 2021) | per/km2 | 500 m | |
Vegetation factors | Global vegetation moisture index | GVMI | Level-1 and Atmosphere Archive & Distribution System Distributed Active Archive Center https://ladsweb.modaps.eosdis.nasa.gov/ (accessed on 22 April 2021) | - | 500 m |
Normalized Difference Vegetation Index | NDVI | Resource and Environment Science and Data Center [70] | - | 1000 m | |
Topographic factors | elevation | Elev | Geospatial Data Cloud http://www.gscloud.cn (accessed on 16 April 2021) | Meter | 500 m |
aspect index | Aspect | - | 500 m | ||
slope | Slope | degree | 500 m |
2.3. Data Analysis Methods
2.3.1. Multicollinearity Diagnosis between Explanatory Variables
2.3.2. Trend Analysis of Grassland Fires
2.3.3. Modelling Methods
- Global logistic regression (GLR)
- Geographically weighted logistic regression (GWLR)
- Random forest (RF)
2.3.4. Model Evaluation Methods
3. Results
3.1. Temporal and Spatial Distribution Patterns of Fire Occurrences
3.2. Model Fitting
3.3. Model Validation
3.4. Model Application
4. Discussion
4.1. Temporal and Spatial Distribution Patterns of Historical Grassland Fires
4.2. Model Validation
4.3. Model Comparison in Predictive Ability
4.4. Factors Affecting Grassland-Fire Occurrences
4.5. Implications for Grassland Fire Management
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Steiner, J.L.; Wetter, J.; Robertson, S.; Teet, S.; Wang, J.; Wu, X.; Zhou, Y.; Brown, D.; Xiao, X. Grassland Wildfires in the Southern Great Plains: Monitoring Ecological Impacts and Recovery. Remote Sens. 2020, 12, 619. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Yu, S.; Wulantuya; Duwala. Summary of Grassland Fire Research. Acta Agrestia Sin. 2018, 26, 791–803. [Google Scholar]
- Thomson, D.M.; Bonapart, A.D.; King, R.A.; Schultz, E.L.; Startin, C.R.; Ward, D. Long-term monitoring of a highly invaded annual grassland community through drought, before and after an unintentional fire. J. Veg. Sci. 2020, 31, 307–318. [Google Scholar] [CrossRef]
- Bond, W.J.; Keeley, J.E. Fire as a global ‘herbivore’: The ecology and evolution of flammable ecosystems. Trends Ecol. Evol. 2005, 20, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Lamont, B.B.; He, T. Fire-Proneness as a Prerequisite for the Evolution of Fire-Adapted Traits. Trends Plant Sci. 2017, 22, 278–288. [Google Scholar] [CrossRef] [Green Version]
- Chandra, K.K.; Bhardwaj, A.K. Incidence of forest fire in India and its effect on terrestrial ecosystem dynamics, nutrient and microbial status of soil. Int. J. Agric. For. 2015, 5, 69–78. [Google Scholar]
- Jolly, W.M.; Cochrane, M.A.; Freeborn, P.H.; Holden, Z.A.; Brown, T.J.; Williamson, G.J.; Bowman, D.M.J.S. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 2015, 6, 7537. [Google Scholar] [CrossRef] [Green Version]
- Mohajane, M.; Costache, R.; Karimi, F.; Pham, Q.B.; Essahlaoui, A.; Nguyen, H.; Laneve, G.; Oudija, F. Application of remote sensing and machine learning algorithms for forest fire mapping in a Mediterranean area. Ecol. Indic. 2021, 129, 107869. [Google Scholar] [CrossRef]
- Yu, T.; Zhuang, Q. Quantifying global N2O emissions from natural ecosystem soils using trait-based biogeochemistry models. Biogeosciences 2019, 16, 207–222. [Google Scholar] [CrossRef] [Green Version]
- Podur, J.; Martell, D.L.; Csillag, F. Spatial patterns of lightning-caused forest fires in Ontario, 1976–1998. Ecol. Model. 2003, 164, 1–20. [Google Scholar] [CrossRef]
- Adámek, M.; Jankovská, Z.; Hadincová, V.; Kula, E.; Wild, J. Drivers of forest fire occurrence in the cultural landscape of Central Europe. Landsc. Ecol. 2018, 33, 2031–2045. [Google Scholar] [CrossRef]
- Zheng, W.; Shao, J.; Wang, M.; Liu, C. Dynamic monitoring and analysis of grassland fire based on multi-source satellite remote sensing data. J. Nat. Disasters 2013, 22, 54–61. [Google Scholar]
- Sharma, S.; Dhakal, K. Boots on the Ground and Eyes in the Sky: A Perspective on Estimating Fire Danger from Soil Moisture Content. Fire 2021, 4, 45. [Google Scholar] [CrossRef]
- Rakhmatulina, E.; Stephens, S.; Thompson, S. Soil moisture influences on Sierra Nevada dead fuel moisture content and fire risks. For. Ecol. Manag. 2021, 496, 119379. [Google Scholar] [CrossRef]
- Vinodkumar, V.; Dharssi, I.; Yebra, M.; Fox-Hughes, P. Continental-scale prediction of live fuel moisture content using soil moisture information. Agric. For. Meteorol. 2021, 307, 108503. [Google Scholar] [CrossRef]
- Van Linn, P.F.; Nussear, K.E.; Esque, T.C.; DeFalco, L.A.; Inman, R.D.; Abella, S.R. Estimating wildfire risk on a Mojave Desert landscape using remote sensing and field sampling. Int. J. Wildland Fire 2013, 22, 770–779. [Google Scholar] [CrossRef]
- Bian, H.F.; Zhang, H.Y.; Zhou, D.W.; Xu, J.W.; Zhang, Z.X. Integrating models to evaluate and map grassland fire risk zones in Hulunbuir of Inner Mongolia, China. Fire Saf. J. 2013, 61, 207–216. [Google Scholar] [CrossRef]
- Verbesselt, J.; Somers, B.; van Aardt, J.; Jonckheere, I.; Coppin, P. Monitoring herbaceous biomass and water content with SPOT VEGETATION time-series to improve fire risk assessment in savanna ecosystems. Remote Sens. Environ. 2006, 101, 399–414. [Google Scholar] [CrossRef]
- Alexandre, P.M.; Mockrin, M.H.; Stewart, S.I.; Hammer, R.B.; Radeloff, V.C. Rebuilding and new housing development after wildfire. Int. J. Wildland Fire 2015, 24, 138–149. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, S.; Oehler, F.; San-Miguel-Ayanz, J.; Camia, A.; Pereira, J.M.C. Modeling spatial patterns of fire occurrence in Mediterranean Europe using Multiple Regression and Random Forest. For. Ecol. Manag. 2012, 275, 117–129. [Google Scholar] [CrossRef]
- Mitchener, L.J.; Parker, A.J. Climate, lightning, and wildfire in the national forests of the southeastern United States: 1989–1998. Phys. Geogr. 2005, 26, 147–162. [Google Scholar] [CrossRef]
- Wu, Z.W.; He, H.S.; Keane, R.E.; Zhu, Z.; Wang, Y.; Shan, Y. Current and future patterns of forest fire occurrence in China. Int. J. Wildland Fire 2020, 29, 104–119. [Google Scholar] [CrossRef]
- Zapata-Rios, X.; Lopez-Fabara, C.; Navarrete, A.; Torres-Paguay, S.; Flores, M. Spatiotemporal patterns of burned areas, fire drivers, and fire probability across the equatorial Andes. J. Mt. Sci. 2021, 18, 952–972. [Google Scholar] [CrossRef]
- Pavlek, K.; Biscevic, F.; Furcic, P.; Grdan, A.; Gugic, V.; Malesic, N.; Moharic, P.; Vragovic, V.; Fuerst-Bjelis, B.; Cvitanovic, M. Spatial patterns and drivers of fire occurrence in a Mediterranean environment: A case study of southern Croatia. Geogr. Tidsskr. 2017, 117, 22–35. [Google Scholar] [CrossRef] [Green Version]
- Lafon, C.W.; Grissino-Mayer, H.D. Spatial patterns of fire occurrence in the central Appalachian mountains and implications for wildland fire management. Phys. Geogr. 2007, 28, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Su, Z.; Zheng, L.; Luo, S.; Tigabu, M.; Guo, F. Modeling wildfire drivers in Chinese tropical forest ecosystems using global logistic regression and geographically weighted logistic regression. Nat. Hazards 2021, 108, 1317–1345. [Google Scholar] [CrossRef]
- Syphard, A.D.; Radeloff, V.C.; Keeley, J.E.; Hawbaker, T.J.; Clayton, M.K.; Stewart, S.I.; Hammer, R.B. Human influence on California fire regimes. Ecol. Appl. 2007, 17, 1388–1402. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, J.; Chang, Y.; Weisberg, P.J.; He, H.S. Spatial patterns and drivers of fire occurrence and its future trend under climate change in a boreal forest of Northeast China. Glob. Chang. Biol. 2012, 18, 2041–2056. [Google Scholar] [CrossRef]
- Miranda, B.R.; Sturtevant, B.R.; Stewart, S.I.; Hammer, R.B. Spatial and temporal drivers of wildfire occurrence in the context of rural development in northern Wisconsin, USA. Int. J. Wildland Fire 2012, 21, 141–154. [Google Scholar] [CrossRef]
- Wu, Z.; He, H.S.; Yang, J.; Liu, Z.; Liang, Y. Relative effects of climatic and local factors on fire occurrence in boreal forest landscapes of northeastern China. Sci. Total Environ. 2014, 493, 472–480. [Google Scholar] [CrossRef]
- Phelps, N.; Woolford, D.G. Comparing calibrated statistical and machine learning methods for wildland fire occurrence prediction: A case study of human-caused fires in Lac La Biche, Alberta, Canadac. Int. J. Wildland Fire 2021, 30, 850–870. [Google Scholar] [CrossRef]
- Graham, M.H. Confronting multicollinearity in ecological multiple regression. Ecology 2003, 84, 2809–2815. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Han, X.; Dai, S. Fire Occurrence Probability Mapping of Northeast China with Binary Logistic Regression Model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 121–127. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Brunsdon, C.; Charlton, M.E. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships; John Wiley & Sons Ltd.: Chichester, UK, 2002. [Google Scholar]
- Liang, H.; Wang, W.; Guo, F.; Lin, F.; Lin, Y. Comparing the application of logistic and geographically weighted logistic regression models for Fujian forest fire forecasting. Acta Ecol. Sin. 2017, 37, 4128–4141. [Google Scholar]
- Rodrigues, M.; de la Riva, J. An insight into machine-learning algorithms to model human-caused wildfire occurrence. Environ. Model. Softw. 2014, 57, 192–201. [Google Scholar] [CrossRef]
- De Vasconcelos, M.J.P.; Silva, S.; Tome, M.; Alvim, M.; Pereira, J. Spatial prediction of fire ignition probabilities: Comparing logistic regression and neural networks. Photogramm. Eng. Remote Sens. 2001, 67, 73–81. [Google Scholar]
- Gao, C.; Lin, H.-L.; Hu, H.-Q.; Song, H. A review of models of forest fire occurrence prediction in China. Ying Yong Sheng Tai Xue Bao = J. Appl. Ecol. 2020, 31, 3227–3240. [Google Scholar] [CrossRef]
- Guo, F.; Wang, G.; Su, Z.; Liang, H.; Wang, W.; Lin, F.; Liu, A. What drives forest fire in Fujian, China? Evidence from logistic regression and Random Forests. Int. J. Wildland Fire 2016, 25, 505–519. [Google Scholar] [CrossRef]
- Phelps, N.; Woolford, D.G. Guidelines for effective evaluation and comparison of wildland fire occurrence prediction models. Int. J. Wildland Fire 2021, 30, 225–240. [Google Scholar] [CrossRef]
- Parajuli, A.; Gautam, A.P.; Sharma, S.P.; Bhujel, K.B.; Sharma, G.; Thapa, P.B.; Bist, B.S.; Poudel, S. Forest fire risk mapping using GIS and remote sensing in two major landscapes of Nepal. Geomat. Nat. Hazards Risk 2020, 11, 2569–2586. [Google Scholar] [CrossRef]
- Mallinis, G.; Petrila, M.; Mitsopoulos, I.; Lorent, A.; Neagu, S.; Apostol, B.; Gancz, V.; Popa, I.; Goldammer, J.G. Geospatial Patterns and Drivers of Forest Fire Occurrence in Romania. Appl. Spat. Anal. Policy 2019, 12, 773–795. [Google Scholar] [CrossRef]
- Arnan, X.; Quevedo, L.; Rodrigo, A. Forest fire occurrence increases the distribution of a scarce forest type in the Mediterranean Basin. Acta Oecol. 2013, 46, 39–47. [Google Scholar] [CrossRef]
- Matin, M.A.; Chitale, V.S.; Murthy, M.S.R.; Uddin, K.; Bajracharya, B.; Pradhan, S. Understanding forest fire patterns and risk in Nepal using remote sensing, geographic information system and historical fire data. Int. J. Wildland Fire 2017, 26, 276–286. [Google Scholar] [CrossRef] [Green Version]
- Renard, Q.; Pélissier, R.; Ramesh, B.R.; Kodandapani, N. Environmental susceptibility model for predicting forest fire occurrence in the Western Ghats of India. Int. J. Wildland Fire 2012, 21, 368–379. [Google Scholar] [CrossRef] [Green Version]
- Wotton, B.M.; Nock, C.A.; Flannigan, M.D. Forest fire occurrence and climate change in Canada. Int. J. Wildland Fire 2010, 19, 253–271. [Google Scholar] [CrossRef]
- Muro, J.; Linstädter, A.; Magdon, P.; Wöllauer, S.; Männer, F.A.; Schwarz, L.-M.; Ghazaryan, G.; Schultz, J.; Malenovský, Z.; Dubovyk, O. Predicting plant biomass and species richness in temperate grasslands across regions, time, and land management with remote sensing and deep learning. Remote Sens. Environ. 2022, 282, 113262. [Google Scholar] [CrossRef]
- Liu, M.; Dries, L.; Heijman, W.; Huang, J.; Zhu, X.; Hu, Y.; Chen, H. The Impact of Ecological Construction Programs on Grassland Conservation in Inner Mongolia, China. Land Degrad. Dev. 2018, 29, 326–336. [Google Scholar] [CrossRef] [Green Version]
- Le Page, Y.; Pereira, J.M.C.; Trigo, R.; da Camara, C.; Oom, D.; Mota, B. Global fire activity patterns (1996-2006) and climatic influence: An analysis using the World Fire Atlas. Atmos. Chem. Phys. 2008, 8, 1911–1924. [Google Scholar] [CrossRef] [Green Version]
- Jia, Y.; Cui, X.; Liu, Y.; Liu, Y.; Xu, C.; Li, T.; Ran, Q.; Wang, Y. Drought vulnerability assessment in Inner Mongolia. Acta Ecol. Sin. 2020, 40, 9070–9082. [Google Scholar]
- Li, J.; Feng, C. Ecosystem service values and ecological improvement based on land use change: A case study of the Inner Mongolia Autonomous Region. Acta Ecol. Sin. 2019, 39, 4741–4750. [Google Scholar]
- Zhou, H.; Wang, Y.; Zhou, G. Temporal and spatial dynamics of grassland fires in Inner Mongolia. Acta Pratacult. Sin. 2016, 25, 16–25. [Google Scholar]
- Wheeler, D.C. Diagnostic tools and a remedial method for collinearity in geographically weighted regression. Environ. Plan. A Econ. Space 2007, 39, 2464–2481. [Google Scholar] [CrossRef]
- Guo, F.; Su, Z.; Wang, G.; Sun, L.; Lin, F.; Liu, A. Wildfire ignition in the forests of southeast China: Identifying drivers and spatial distribution to predict wildfire likelihood. Appl. Geogr. 2016, 66, 12–21. [Google Scholar] [CrossRef]
- Catry, F.X.; Rego, F.C.; Bação, F.L.; Moreira, F. Modeling and mapping wildfire ignition risk in Portugal. Int. J. Wildland Fire 2009, 18, 921–931. [Google Scholar] [CrossRef] [Green Version]
- Engelmark, O. EARLY postfire tree regeneration in a Picea-Vaccinium forest in northern Sweden. J. Veg. Sci. 1993, 4, 791–794. [Google Scholar] [CrossRef]
- Cardille, J.A.; Ventura, S.J.; Turner, M.G. Environmental and social factors influencing wildfires in the Upper Midwest, United States. Ecol. Appl. 2001, 11, 111–127. [Google Scholar] [CrossRef]
- Diaz-Delgado, R.; Lloret, F.; Pons, X. Spatial patterns of fire occurrence in Catalonia, NE, Spain. Landsc. Ecol. 2004, 19, 731–745. [Google Scholar] [CrossRef] [Green Version]
- Scholze, M.; Knorr, W.; Arnell, N.W.; Prentice, I.C. A climate-change risk analysis for world ecosystems. Proc. Natl. Acad. Sci. USA 2006, 103, 13116–13120. [Google Scholar] [CrossRef] [Green Version]
- Shmuel, A.; Ziv, Y.; Heifetz, E. Machine-Learning-based evaluation of the time-lagged effect of meteorological factors on 10-hour dead fuel moisture content. For. Ecol. Manag. 2022, 505, 119897. [Google Scholar] [CrossRef]
- Yang, K. China Meteorological Forcing Data (1979–2018); National Tibetan Plateau/Third Pole Environment Data Center: Beijing, China, 2018. [Google Scholar] [CrossRef]
- Vilar, L.; Woolford, D.G.; Martell, D.L.; Pilar Martin, M. A model for predicting human-caused wildfire occurrence in the region of Madrid, Spain. Int. J. Wildland Fire 2010, 19, 325–337. [Google Scholar] [CrossRef]
- Chang, Y.; Zhu, Z.; Bu, R.; Chen, H.; Feng, Y.; Li, Y.; Hu, Y.; Wang, Z. Predicting fire occurrence patterns with logistic regression in Heilongjiang Province, China. Landsc. Ecol. 2013, 28, 1989–2004. [Google Scholar] [CrossRef]
- Purevdorj, T.; Tateishi, R.; Ishiyama, T.; Honda, Y. Relationships between percent vegetation cover and vegetation indices. Int. J. Remote Sens. 1998, 19, 3519–3535. [Google Scholar] [CrossRef]
- Jimenez-Munoz, J.C.; Sobrino, J.A.; Plaza, A.; Guanter, L.; Moreno, J.; Martinez, P. Comparison between Fractional Vegetation Cover Retrievals from Vegetation Indices and Spectral Mixture Analysis: Case Study of PROBA/CHRIS Data over an Agricultural Area. Sensors 2009, 9, 768–793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ceccato, P.; Flasse, S.; Gregoire, J.M. Designing a spectral index to estimate vegetation water content from remote sensing data —Part 2 Validation and applications. Remote Sens. Environ. 2002, 82, 198–207. [Google Scholar] [CrossRef]
- Syphard, A.D.; Radeloff, V.C.; Keuler, N.S.; Taylor, R.S.; Hawbaker, T.J.; Stewart, S.I.; Clayton, M.K. Predicting spatial patterns of fire on a southern California landscape. Int. J. Wildland Fire 2008, 17, 602–613. [Google Scholar] [CrossRef]
- Conedera, M.; Torriani, D.; Neff, C.; Ricotta, C.; Bajocco, S.; Pezzatti, G.B. Using Monte Carlo simulations to estimate relative fire ignition danger in a low-to-medium fire-prone region. For. Ecol. Manag. 2011, 261, 2179–2187. [Google Scholar] [CrossRef]
- Zhang, H. Spatial analysis of fire-influencing factors in Henan Province. Prog. Geogr. 2014, 33, 958–968. [Google Scholar]
- Xu, X. China Monthly Vegetation Index (NDVI) Spatial Distribution Dataset; Chinese Academy of Sciences: Beijing, China, 2018. [Google Scholar] [CrossRef]
- Mou, N.; Liu, W.; Wang, H.; Dai, H. ArcGIS 10 Tutorial: From Beginner to Master; Sinomap Press: Beijing, China, 2012. (In Chinese) [Google Scholar]
- Nunes, A.N.; Lourenço, L.; Meira, A.C.C. Exploring spatial patterns and drivers of forest fires in Portugal (1980–2014). Sci. Total Environ. 2016, 573, 1190–1202. [Google Scholar] [CrossRef]
- Su, H.; Shen, W.; Wang, J.; Ali, A.; Li, M. Machine learning and geostatistical approaches for estimating aboveground biomass in Chinese subtropical forests. For. Ecosyst. 2020, 7, 64. [Google Scholar] [CrossRef]
- Karlson, M.; Ostwald, M.; Reese, H.; Sanou, J.; Tankoano, B.; Mattsson, E. Mapping Tree Canopy Cover and Aboveground Biomass in Sudano-Sahelian Woodlands Using Landsat 8 and Random Forest. Remote Sens. 2015, 7, 10017–10041. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Valverde, A. Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling. Glob. Ecol. Biogeogr. 2012, 21, 498–507. [Google Scholar] [CrossRef]
- Xue, Z.C.; Kappas, M.; Wyss, D. Spatio-Temporal Grassland Development in Inner Mongolia after Implementation of the First Comprehensive Nation-Wide Grassland Conservation Program. Land 2021, 10, 38. [Google Scholar] [CrossRef]
- Zhao, F.; Shu, L.; Di, X.; Tian, X.; Wang, M. Changes in the Occurring Date of Forest Fires in the Inner Mongolia Daxing’anling Forest Region Under Global Warming. Sci. Silvae Sin. 2009, 45, 166–172. [Google Scholar]
- Syphard, A.D.; Sheehan, T.; Rustigian-Romsos, H.; Ferschweiler, K. Mapping future fire probability under climate change: Does vegetation matter? PLoS ONE 2018, 13, e0201680. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, M.; Jiménez-Ruano, A.; Peña-Angulo, D.; de la Riva, J. A comprehensive spatial-temporal analysis of driving factors of human-caused wildfires in Spain using Geographically Weighted Logistic Regression. J. Environ. Manag. 2018, 225, 177–192. [Google Scholar] [CrossRef] [Green Version]
- Monjarás-Vega, N.A.; Briones-Herrera, C.I.; Vega-Nieva, D.J.; Calleros-Flores, E.; Corral-Rivas, J.J.; López-Serrano, P.M.; Pompa-García, M.; Rodríguez-Trejo, D.A.; Carrillo-Parra, A.; González-Cabán, A.; et al. Predicting forest fire kernel density at multiple scales with geographically weighted regression in Mexico. Sci. Total Environ. 2020, 718, 137313. [Google Scholar] [CrossRef]
- Shabbir, A.H.; Zhang, J.; Groninger, J.W.; van Etten, E.J.B.; Sarkodie, S.A.; Lutz, J.A.; Valencia, C. Seasonal weather and climate prediction over area burned in grasslands of northeast China. Sci. Rep. 2020, 10, 19961. [Google Scholar] [CrossRef]
- Muller, M.M.; Vila-Vilardell, L.; Vacik, H. Towards an integrated forest fire danger assessment system for the European Alps. Ecol. Inform. 2020, 60, 101151. [Google Scholar] [CrossRef]
- Sousa, D.; Cruz-Jesus, F.; Sousa, A.; Painho, M. A multivariate approach to assess the structural determinants of large wildfires: Evidence from a Mediterranean country. Int. J. Wildland Fire 2021, 30, 241. [Google Scholar] [CrossRef]
- Guo, F.; Su, Z.; Wang, G.; Sun, L.; Tigabu, M.; Yang, X.; Hu, H. Understanding fire drivers and relative impacts in different Chinese forest ecosystems. Sci. Total Environ. 2017, 605–606, 411–425. [Google Scholar] [CrossRef]
- Masinda, M.M.; Li, F.; Liu, Q.; Sun, L.; Hu, T. Prediction model of moisture content of dead fine fuel in forest plantations on Maoer Mountain, Northeast China. J. For. Res. 2021, 32, 2023–2035. [Google Scholar] [CrossRef]
- Masinda, M.M.; Sun, L.; Wang, G.; Hu, T. Moisture content thresholds for ignition and rate of fire spread for various dead fuels in northeast forest ecosystems of China. J. For. Res. 2020, 32, 1147–1155. [Google Scholar] [CrossRef]
- Syphard, A.D.; Rustigian-Romsos, H.; Mann, M.; Conlisk, E.; Moritz, M.A.; Ackerly, D. The relative influence of climate and housing development on current and projected future fire patterns and structure loss across three California landscapes. Glob. Environ. Chang. 2019, 56, 41–55. [Google Scholar] [CrossRef]
- Naderpour, M.; Rizeei, H.M.; Ramezani, F. Forest Fire Risk Prediction: A Spatial Deep Neural Network-Based Framework. Remote Sens. 2021, 13, 2513. [Google Scholar] [CrossRef]
- Krawchuk, M.A.; Moritz, M.A. Constraints on global fire activity vary across a resource gradient. Ecology 2011, 92, 121–132. [Google Scholar] [CrossRef]
- Su, Z.W.; Tigabu, M.; Cao, Q.Q.; Wang, G.Y.; Hu, H.Q.; Guo, F.T. Comparative analysis of spatial variation in forest fire drivers between boreal and subtropical ecosystems in China. For. Ecol. Manag. 2019, 454, 117669. [Google Scholar] [CrossRef]
- Sağlam, B.; Bilgili, E.; Durmaz, B.D.; Kadıoğulları, A.İ.; Küçük, Ö. Spatio-Temporal Analysis of Forest Fire Risk and Danger Using LANDSAT Imagery. Sensors 2008, 8, 3970–3987. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.; Rideout, D.; Kirsch, A. An optimization model for locating fuel treatments across a landscape to reduce expected fire losses. Can. J. For. Res. 2008, 38, 868–877. [Google Scholar] [CrossRef]
Serial Number | Methods | Advantages | Disadvantages |
---|---|---|---|
1 | Modeling based on meteorological data from meteorological satellites [12] | Study area with large scale estimation can be made | Limited accuracy |
2 | Builds the relationship between fire occurrence and soil moisture investigated by field measurement [13,14,15] | High accuracy | Time-consuming and laborious; only a small-scale estimation can be made |
3 | Evaluation based on meteorological data, fuel condition of MODIS Inversion and other social data [16,17] | Consideration from many aspects; improves the accuracy of prediction to some extent | Many kinds of data need processing |
4 | Monitoring vegetation moisture by time-series satellites [18] | Long-term fire risk assessment | Considers only moisture of vegetation |
Variable | Abbreviation | Coefficient | Standard Error | p-Value |
---|---|---|---|---|
Intercept | Intercept | 38.543 | 10.218 | <0.0001 |
Mean annual temperature | Temp | −0.138 | 0.036 | <0.0001 |
Distance to nearest river | D_river | −0.009 | <0.0001 | <0.0001 |
Distance to nearest settlement | D_resp | −0.142 | <0.0001 | <0.0001 |
Distance to nearest railway | D_rail | −0.004 | <0.0001 | 0.024 |
Global vegetation moisture index | GVMI | −7.523 | 1.650 | <0.0001 |
Normalized Difference Vegetation Index | NDVI | 2.599 | 0.560 | <0.0001 |
Daily average specific humidity | Humi_dy | −857.033 | 81.818 | <0.0001 |
Daily average wind speed | Wind_dy | 0.217 | 0.050 | <0.0001 |
Slope | Slope | −0.108 | 0.024 | <0.0001 |
Variable | Mean | Min | 1Q | Median | 3Q | Max |
---|---|---|---|---|---|---|
Intercept | 30.55973 | 8.352316 | 14.07005 | 28.78026 | 40.13325 | 109.0789 |
Humi_dy | −711.947 | −1407.05 | −1115.85 | −1037.32 | −26.1174 | 262.0729 |
Wind_dy | 0.204153 | −0.37813 | −0.21256 | 0.123083 | 0.534187 | 1.327401 |
NDVI | 1.294488 | −1.53458 | 0.749144 | 1.351105 | 1.899675 | 4.123084 |
GVMI | −7.48481 | −9.86252 | −8.10707 | −7.24877 | −6.92158 | −3.26509 |
Temp | −0.10685 | −0.38292 | −0.14078 | −0.09896 | −0.0535 | −0.02163 |
Slope | −0.06249 | −0.10811 | −0.0675 | −0.0622 | −0.05487 | −0.03551 |
D_rail | −0.00752 | −0.0189 | −0.01085 | −0.00803 | −0.00173 | −0.00097 |
D_resp | −0.11175 | −0.25096 | −0.14876 | −0.12328 | −0.05028 | 0.016634 |
D_river | −0.00949 | −0.02133 | −0.0166 | −0.00881 | −0.00415 | 0.002383 |
Model | Akaike Information Criterion (AIC) | Area under Curve (AUC) | Mean Absolute Error (MAE) | Root Mean Square Error (RMSE) | R2 |
---|---|---|---|---|---|
GLR | 1018.496 | 0.841 | 0.148 | 0.390 | 0.363 |
GWLR | 807.330 | 0.909 | 0.111 | 0.338 | 0.537 |
RF | - | 0.944 | 0.053 | 0.231 | 0.779 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, C.; Chang, Y.; Xiong, Z.; Ping, X.; Zhang, H.; Guo, M.; Hu, Y. Predicting Grassland Fire-Occurrence Probability in Inner Mongolia Autonomous Region, China. Remote Sens. 2023, 15, 2999. https://doi.org/10.3390/rs15122999
Chang C, Chang Y, Xiong Z, Ping X, Zhang H, Guo M, Hu Y. Predicting Grassland Fire-Occurrence Probability in Inner Mongolia Autonomous Region, China. Remote Sensing. 2023; 15(12):2999. https://doi.org/10.3390/rs15122999
Chicago/Turabian StyleChang, Chang, Yu Chang, Zaiping Xiong, Xiaoying Ping, Heng Zhang, Meng Guo, and Yuanman Hu. 2023. "Predicting Grassland Fire-Occurrence Probability in Inner Mongolia Autonomous Region, China" Remote Sensing 15, no. 12: 2999. https://doi.org/10.3390/rs15122999
APA StyleChang, C., Chang, Y., Xiong, Z., Ping, X., Zhang, H., Guo, M., & Hu, Y. (2023). Predicting Grassland Fire-Occurrence Probability in Inner Mongolia Autonomous Region, China. Remote Sensing, 15(12), 2999. https://doi.org/10.3390/rs15122999