Extraction of Rocky Desertification Information in the Karst Area Based on the Red-NIR-SWIR Spectral Feature Space
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. Data Collection and Processing
2.3. Spectral Characteristics of Each Land Cover Type
3. Methods
3.1. Model Construction Based on Reflectance Spectral Feature Space
3.1.1. Model Construction Based on the SWIR-NIR Spectral Feature Space
3.1.2. Model Construction Based on the Red-NIR Spectral Feature Space
3.1.3. Model Construction Based on the SWIR-Red Spectral Feature Space
3.2. Calculation of Feature Space Model Based on Surface Parameters
3.3. Rocky Desertification Classification
3.4. Accuracy Assessment
4. Results
4.1. Comparison of the Results of Rocky Desertification Extraction
4.2. Comparison of the Accuracy of the Models
4.3. Spatial Distribution Characteristics of Rocky Desertification Extracted by PDRI1
5. Discussion
5.1. Sources of Error and Applicability of Each Model
5.2. Research Limitations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, S.J.; Liu, Q.M.; Zhang, D.F. Karst rocky desertification in southwestern China: Geomorphology, landuse, impact and rehabilitation. Land Degrad. Dev. 2004, 15, 115–121. [Google Scholar] [CrossRef]
- Bai, X.Y.; Wang, S.J.; Xiong, K.N. Assessing Spatial-Temporal Evolution Processes of Karst Rocky Desertification Land: Indications for Restoration Strategies. Land Degrad. Dev. 2013, 24, 47–56. [Google Scholar] [CrossRef]
- Peng, X.D.; Dai, Q.H.; Ding, G.J.; Shi, D.M.; Li, C.L. Impact of vegetation restoration on soil properties in near-surface fissures located in karst rocky desertification regions. Soil Till. Res. 2020, 200, 104620. [Google Scholar] [CrossRef]
- Gutiérrez, F.; Parise, M.; De Waele, J.; Jourde, H. A review on natural and human-induced geohazards and impacts in karst. Earth Sci. Rev. 2014, 138, 61–88. [Google Scholar] [CrossRef]
- Jiang, Z.C.; Lian, Y.Q.; Qin, X.Q. Rocky desertification in Southwest China: Impacts, causes, and restoration. Earth Sci. Rev. 2014, 132, 1–12. [Google Scholar] [CrossRef]
- Tong, X.W.; Wang, K.L.; Yue, Y.M.; Brandt, M.; Liu, B.; Zhang, C.H.; Liao, C.J.; Fensholt, R. Quantifying the effectiveness of ecological restoration projects on long-term vegetation dynamics in the karst regions of Southwest China. Int. J. Appl. Earth Obs. Geoinf. 2017, 54, 105–113. [Google Scholar] [CrossRef] [Green Version]
- Yue, Y.M.; Wang, K.L.; Liu, B.; Li, R.; Zhang, B.; Chen, H.S.; Zhang, M.Y. Development of new remote sensing methods for mapping green vegetation and exposed bedrocky fractions within heterogeneous landscapes. Int. J. Remote Sens. 2013, 34, 5136–5153. [Google Scholar] [CrossRef]
- Huang, Q.H.; Cai, Y.L.; Xing, X.S. Rocky desertification, antidesertification, and sustainable development in the karst mountain region of Southwest China. Ambio 2008, 37, 390–392. [Google Scholar] [CrossRef]
- Yin, C.; Zhou, Z.F.; Tan, W.Y.; Wang, P.; Feng, Q. Inversion model of soil profile moisture content in rocky desertification area based on microwave and optical remote sensing. J. Infrared Millim. Waves 2018, 37, 360–370. [Google Scholar] [CrossRef]
- Zhang, M.Y.; Wang, K.L.; Zhang, C.H.; Chen, H.S.; Liu, H.Y.; Yue, Y.M.; Luffman, I.; Qi, X.K. Using the radial basis function network model to assess rocky desertification in northwest Guangxi, China. Environ. Earth Sci. 2010, 62, 69–76. [Google Scholar] [CrossRef]
- Li, Y.F.; Sun, B.; Gao, Z.H.; Su, W.S.; Wang, B.Y.; Yan, Z.Y.; Gao, T. Extraction of rocky desertification information in karst area by using different multispectral sensor data and multiple endmember spectral mixture analysis method. Front. Environ. Sci. 2022, 10, 2085. [Google Scholar] [CrossRef]
- Guo, B.; Zhang, D.F.; Lu, Y.F.; Yang, F.; Meng, C.; Han, B.M.; Zang, W.Q.; Zhao, H.H.; Wei, C.X.; Wu, H.W.; et al. A novel-optimal monitoring model of rocky desertification based on feature space models with typical surface parameters derived from LANDSAT_8 OLI. Land Degrad. Dev. 2021, 32, 5023–5036. [Google Scholar] [CrossRef]
- Guo, B.; Yang, F.; Li, J.L.; Lu, Y.F. A novel-optimal monitoring index of rocky desertification based on feature space model and red edge indices that derived from sentinel-2 MSI image. Geomat. Nat. Hazards Risk 2022, 13, 1571–1592. [Google Scholar] [CrossRef]
- Pei, J.; Wang, L.; Huang, N.; Geng, J.; Cao, J.H.; Niu, Z. Analysis of Landsat-8 OLI Imagery for Estimating Exposed Bedrocky Fractions in Typical Karst Regions of Southwest China Using a Karst Bare-Rocky Index. Remote Sens. 2018, 10, 1321. [Google Scholar] [CrossRef] [Green Version]
- Xie, X.J.; Tian, S.F.; Du, P.J.; Zhan, W.F.; Samat, A.; Chen, J.K. Quantitative Estimation of Carbonate Rocky Fraction in Karst Regions Using Field Spectra in 2.0–2.5 μm. Remote Sens. 2016, 8, 68. [Google Scholar] [CrossRef] [Green Version]
- Yue, Y.M.; Wang, K.L.; Zhang, B.; Liu, B.; Chen, H.S.; Zhang, M.Y. Uncertainty of Remotely Sensed Extraction of Information of Karst Rocky Desertification. Adv. Earth Sci. 2011, 26, 266–274. [Google Scholar]
- Qin, Q.M.; You, L.; Zhao, Y.; Zhao, S.H.; Yao, Y.J. Soil line automatic identification algorithm based on two-dimensional feature space. Trans. Chin. Soc. Agric. Eng. 2012, 28, 167–171. [Google Scholar] [CrossRef]
- Wei, H.S.; Wang, J.L.; Cheng, K.; Li, G.; Ochir, A.; Davaasuren, D.; Chonokhuu, S. Desertification Information Extraction Based on Feature Space Combinations on the Mongolian Plateau. Remote Sens. 2018, 10, 1614. [Google Scholar] [CrossRef] [Green Version]
- Guo, B.; Han, B.M.; Yang, F.; Fan, Y.W.; Jiang, L.; Chen, S.T.; Yang, W.N.; Gong, R.; Liang, T. Salinization information extraction model based on VI–SI feature space combinations in the Yellow River Delta based on Landsat 8 OLI image. Geomat. Nat. Hazards Risk 2019, 10, 1863–1878. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Liu, M.L.; Liu, X.N.; Luo, W.Q.; Wu, L.; Zhu, L.H. Spectral analysis of seasonal rocky and vegetation changes for detecting karst rocky desertification in southwest China. Int. J. Appl. Earth Obs. Geoinf. 2021, 100, 102337. [Google Scholar] [CrossRef]
- Luo, J.; Liu, S.H.; Ruan, O.; Hu, H.T. Extraction of rocky desertification information using NDVI-Albedo feature space. Bull. Surv. Mapp. 2022, 56, 56–60. [Google Scholar] [CrossRef]
- Zhan, Z.M.; Qin, Q.M.; Ghulan, A.; Wang, D.D. NIR-Red spectral space based new method for soil moisture monitoring. Sci. China Earth Sci. 2007, 36, 1020–1026. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Zhang, Q.L.; Bao, A.M.; Wang, Y.J. A New Remote Sensing Dryness Index Based on the Near-Infrared and Red Spectral Space. Remote Sens. 2019, 11, 456. [Google Scholar] [CrossRef] [Green Version]
- Amani, M.; Mobasheri, M.R.; Mahdavi, S. Contemporaneous estimation of Leaf Area Index and soil moisture using the red-NIR spectral space. Remote Sens. Lett. 2017, 9, 264–273. [Google Scholar] [CrossRef]
- Li, Z.; Tan, D.B. The Second Modified Perpendicular Drought Index (MPDI1): A Combined Drought Monitoring Method with Soil Moisture and Vegetation Index. J. Indian Soc. Remote Sens. 2013, 41, 873–881. [Google Scholar] [CrossRef]
- Ajaj, Q.M.; Pradhan, B.; Noori, A.M.; Jebur, M.N. Spatial Monitoring of Desertification Extent in Western Iraq using Landsat Images and GIS. Land Degrad. Dev. 2017, 28, 2418–2431. [Google Scholar] [CrossRef]
- Li, S.; Wu, H.G. Mapping karst rocky desertification using Landsat 8 images. Remote Sens. Lett. 2015, 6, 657–666. [Google Scholar] [CrossRef]
- Huang, Q.H.; Cai, Y.L. Mapping Karst Rocky in Southwest China. Mt. Res. Dev. 2009, 29, 14–20. [Google Scholar] [CrossRef]
- Xie, X.J.; Du, P.J.; Xia, J.S.; Luo, J.Q. Spectral indices for estimating exposed carbonate rocky fraction in karst areas of southwest China. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1988–1992. [Google Scholar] [CrossRef]
- Xia, L. A two-axis adjusted vegetation index (TWVI). Int. J. Remote Sens. 2007, 15, 1447–1458. [Google Scholar] [CrossRef]
- Yan, M.M.; Zhou, Z.; Wang, J.; Gu, X.P.; Xiao, J.Y. Study on the dynamic change of soil moisture in karst area: A case of Huaxi district in Guiyang City. Carsologica Sin. 2016, 35, 446–452. [Google Scholar] [CrossRef]
- Wang, Z.J.; Dai, L. Assessment of land use /cover changes and its ecological effect in karst mountainous cities in central Guizhou Province: Taking Huaxi District of Guiyang City as a case. Acta Ecol. Sin. 2021, 41, 3429–3440. [Google Scholar] [CrossRef]
- Yang, Y.; Gao, H.D.; Wang, Q.; Li, X.S. Study on the Distribution Characteristics of Sloping Farmland in Karst Mountain Area Under the Influence of Multiple Factors—A Case Study of Huaxi District of Guiyang. Res. Soil Water Conserv. 2022, 29, 361–367. [Google Scholar] [CrossRef]
- Zhu, S.P.; Chen, Y. Methods for Atmospheric Radiation Correction. Geospat. Inf. 2010, 8, 119–122. [Google Scholar]
- Zheng, W.; Zeng, Z.Y. A Review on Methods of Atmospheric Correction for Remote Sensing Images. Remote Sens. Inf. 2004, 4, 66–70. [Google Scholar] [CrossRef]
- Ghulam, A.; Qin, Q.M.; Zhu, L.J. 6S Model Based Atmospheric Correction of Visible and Near-Infrared Data and Sensitivity Analysis. Univ. Pekin. 2004, 40, 611–618. [Google Scholar] [CrossRef]
- Hou, X.Z.; Yi, W.N.; Qiao, Y.L.; Huang, H.L.; Cui, W.Y.; Du, L.L.; Chen, C. Atmospheric Correction of Remote Sensing Image Based on 6S Model. J. Atmos. Environ. Opt. 2015, 10, 63. [Google Scholar] [CrossRef]
- Chen, F.; Wang, S.J.; Bai, X.Y.; Liu, F.; Tian, Y.C.; Luo, G.J.; Li, Q.; Wang, J.F.; Wu, L.H.; Cao, Y.; et al. Spatio-temporal evolution and future scenario prediction of karst rocky desertification based on CA–Markov model. Arab. J Geosci. 2021, 14, 1262. [Google Scholar] [CrossRef]
- Xia, X.Q.; Tian, Q.J.; Du, F.L. Retrieval of Rocky-desertification Degree from Multi-spectral Remote Sensing Images. J. Remote Sens. 2006, 10, 1007–4619. [Google Scholar] [CrossRef]
- Boardman, J.W.; Kruscl, F.A.; Green, R.O. Mapping target signatures via partial unmixing of AVIRIS data. Fifth JPL Airborne Earth Sci. Workshop 1995, 95, 23–26. [Google Scholar]
- Feng, H.X.; Qin, Q.M.; Li, B.Y.; Liu, F.; Jiang, H.B.; Dong, H.; Wang, J.L.; Liu, M.C.; Zhang, N. The New Method Monitoring Agricultural Drought Based on SWIR-Red Spectrum Feature Space. Spectrosc. Spectr. Anal. 2011, 31, 3069–3073. [Google Scholar] [CrossRef]
- Xiang, K.Q.; Zhang, C.H.; Wang, K.L. Comparing Remote Sensing Methods for Monitoring Karst Rocky Desertification at Sub-pixel Scales in a Highly Heterogeneous Karst Region. Sci. Rep. 2019, 9, 13368. [Google Scholar] [CrossRef] [Green Version]
- Baig, M.H.A.; Zhang, L.F.; Shuai, T.; Tong, Q.X. Derivation of a tasselled cap transformation based on Landsat 8 at-satellite reflectance. Remote Sens. Lett. 2014, 5, 423–431. [Google Scholar] [CrossRef]
- Ma, Z.Y.; Xie, Y.W.; Jiao, J.Z.; Li, L.L.; Wang, X.Q. The Construction and Application of an Aledo-NDVI Based Desertification Monitoring Model. Procedia Environ. Sci. 2011, 10, 2029–2035. [Google Scholar] [CrossRef] [Green Version]
- Guo, B.; Zang, W.Q.; Han, B.M.; Yang, F.; Luo, W.; He, T.L.; Fan, Y.W.; Yang, X.; Chen, S.T. Dynamic monitoring of desertification in Naiman Banner based on feature space models with typical surface parameters derived from LANDSAT images. Land Degrad. Dev. 2020, 31, 1573–1592. [Google Scholar] [CrossRef]
- Verstraete, M.M.; Pinty, B. Designing Optimal Spectral Indexes for Remote Sensing Applications. Trans. Geosci. Remote Sens. 1996, 34, 1254–1265. [Google Scholar] [CrossRef]
- Lamqadem, A.A.; Saber, H.; Pradhan, B. Quantitative Assessment of Desertification in an Arid Oasis Using Remote Sensing Data and Spectral Index Techniques. Remote Sens. 2018, 10, 1862. [Google Scholar] [CrossRef] [Green Version]
- Qian, C.H.; Qiang, H.Q.; Wang, F.; Li, M.Y. Optimization of Rocky Desertification Classification Model Based on Vegetation Type and Seasonal Characteristic. Remote Sens. 2021, 13, 2935. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Y.Y.; Cai, H.; Jia, Y.; Zhou, Q. Research on Temporal and Spatial Changes of Multi-scale Rocky Desertification Based on Multi-source Data. Chin. J. Undergr. Space Eng. 2021, 17. [Google Scholar]
- Chen, S.T.; Guo, B.; Zhang, R.; Zang, W.Q.; Wei, C.X.; Wu, H.W.; Yang, X.; Zhen, X.Y.; Li, X.; Zhang, D.F.; et al. Quantitatively determine the dominant driving factors of the spatial—Temporal changes of vegetation NPP in the Hengduan Mountain area during 2000–2015. J. Mt. Sci. Engl. 2021, 18, 427–445. [Google Scholar] [CrossRef]
- Guo, B.F. Hyperspectral Image Classification via Matching Absorption Features. IEEE Access 2019, 7, 131039–131049. [Google Scholar] [CrossRef]
- Yue, Y.M.; Zhang, B.; Wang, K.L.; Liu, B.; Li, R.; Jiao, Q.J.; Yang, Q.Q.; Zhang, M.Y. Spectral indices for estimating ecological indicators of karst rocky desertification. Int. J. Remote Sens. 2010, 31, 2115–2122. [Google Scholar] [CrossRef]
- Li, H.; Wang, C.z.; Zhong, C.; Su, A.j.; Xiong, C.R.; Wang, J.G.; Liu, J.G. Mapping Urban Bare Land Automatically from Landsat Imagery with a Simple Index. Remote Sens. 2017, 9, 249. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.H.; Ran, Y.H.; Liu, J.X.; Li, J. The changing distribution of rocky desertification in the Guangxi Region, 1930s to 2000. Acta Geogr. Sin. 2016, 71, 390–399. [Google Scholar] [CrossRef]
Data Type | Sources | Website |
---|---|---|
DEM | Geospatial data cloud | http://www.gscloud.cn/, accessed on 30 September 2022 |
Land use data | ESA_World Cover 10 m land cover data from ESA | http://scihub.copernicus.eu/, accessed on 30 August 2022 |
Lithology map | The Center of Karst Science Data | http://www.karstdata.cn/, accessed on 22 June 2022 |
Landsat-8 OLI | Geospatial data cloud | http://www.gscloud.cn/, accessed on 21 June 2022 |
Levels of Rocky Desertification | PRDI1 | PRDI2 | PRDI3 | KRDI | RSDDI |
---|---|---|---|---|---|
No | 0–0.04 | 0–0.02 | 0–0.12 | 0–0.16 | 0.47–0.77 |
Slight | 0.04–0.07 | 0.02–0.05 | 0.12–0.18 | 0.16–0.27 | 0.38–0.47 |
Moderate | 0.07–0.10 | 0.05–0.10 | 0.18–0.22 | 0.27–0.36 | 0.28–0.38 |
Intensive | 0.10–0.13 | 0.10–0.25 | 0.22–0.29 | 0.36–0.56 | 0.13–0.28 |
Severe | 0.13–0.36 | 0.25–0.63 | 0.29–0.98 | 0.56–1.92 | 0–0.13 |
PRDI1 | Levels of Rocky Desertification | Observed Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
No | Slight | Moderate | Intensive | Severe | Total | PA | OA | Kappa | ||
Inversed value | No | 30 | 4 | 32 | 0.938 | 0.829 | 0.784 | |||
Slight | 3 | 21 | 2 | 1 | 27 | 0.704 | ||||
Moderate | 3 | 3 | 42 | 1 | 49 | 0.776 | ||||
Intensive | 1 | 1 | 4 | 42 | 2 | 50 | 0.840 | |||
Severe | 3 | 3 | 41 | 47 | 0.872 | |||||
Total | 37 | 29 | 49 | 49 | 43 | 205 | ||||
UA | 0.811 | 0.655 | 0.776 | 0.857 | 0.953 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, J.; Yu, W.; Fang, Q.; Zi, R.; Fang, F.; Zhao, L. Extraction of Rocky Desertification Information in the Karst Area Based on the Red-NIR-SWIR Spectral Feature Space. Remote Sens. 2023, 15, 3056. https://doi.org/10.3390/rs15123056
Cai J, Yu W, Fang Q, Zi R, Fang F, Zhao L. Extraction of Rocky Desertification Information in the Karst Area Based on the Red-NIR-SWIR Spectral Feature Space. Remote Sensing. 2023; 15(12):3056. https://doi.org/10.3390/rs15123056
Chicago/Turabian StyleCai, Jun, Wanyang Yu, Qian Fang, Ruyi Zi, Fayong Fang, and Longshan Zhao. 2023. "Extraction of Rocky Desertification Information in the Karst Area Based on the Red-NIR-SWIR Spectral Feature Space" Remote Sensing 15, no. 12: 3056. https://doi.org/10.3390/rs15123056
APA StyleCai, J., Yu, W., Fang, Q., Zi, R., Fang, F., & Zhao, L. (2023). Extraction of Rocky Desertification Information in the Karst Area Based on the Red-NIR-SWIR Spectral Feature Space. Remote Sensing, 15(12), 3056. https://doi.org/10.3390/rs15123056