Imprint of Mesoscale Eddies on Air-Sea Interaction in the Tropical Atlantic Ocean
Abstract
:1. Introduction
2. Materials and Methods
2.1. Altimetry Data and Mesoscale Eddy Tracking
2.2. Sea Surface Temperature, Heat Fluxes and Precipitation Data
2.3. Eddy Induced Anomalies and Composite Analysis
3. Results
3.1. Mesoscale Eddy Characteristics
3.2. Eddy-Induced SST Anomalies and Composite Analysis
3.2.1. Spatial Distribution of Eddy-Induced SST Anomalies
3.2.2. Composite Analysis of Eddy-Induced SST Anomalies
3.2.3. Impact of Eddies on Latent Heat, Sensible Heat and Infrared Flux Anomalies
3.3. Precipitation Anomalies over Eddies
4. Discussion
4.1. Contribution of Axisymmetric and Non-Axisymmetric Structures to Eddy Heat Flux
4.2. Relationship between Heat Flux and Precipitation Anomalies within Eddies
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
TAO | Tropical Atlantic ocean |
SST | Sea surface temperature |
SSS | Sea surface salinity |
LHF | Latent heat flux |
SHF | Sensible heat flux |
IRF | Infrared flux |
PR | Precipitation |
References
- Aguedjou, H.M.A.; Dadou, I.; Chaigneau, A.; Morel, Y.; Alory, G. Eddies in the Tropical Atlantic Ocean and Their Seasonal Variability. Geophys. Res. Lett. 2019, 46, 12156–12164. [Google Scholar] [CrossRef]
- Chaigneau, A.; Gizolme, A.; Grados, C. Mesoscale eddies off Peru in altimeter records: Identification algorithms and eddy spatio-temporal patterns. Prog. Oceanogr. 2008, 79, 106–119. [Google Scholar] [CrossRef]
- Chaigneau, A.; Eldin, G.; Dewitte, B. Eddy activity in the four major upwelling systems from satellite altimetry (1992–2007). Prog. Oceanogr. 2009, 83, 117–123. [Google Scholar] [CrossRef]
- Chelton, D.B.; Schlax, M.G.; Samelson, R.M.; de Szoeke, R.A. Global observations of large oceanic eddies. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Chelton, D.B.; Schlax, M.G.; Samelson, R.M. Global observations of nonlinear mesoscale eddies. Fluids 2011, 91, 167–216. [Google Scholar] [CrossRef]
- Fu, L.-L.; Chelton, D.; Le Traon, P.-Y.; Morrow, R. Eddy Dynamics From Satellite Altimetry. Oceanography 2011, 23, 14–25. [Google Scholar] [CrossRef]
- Laxenaire, R.; Speich, S.; Blanke, B.; Chaigneau, A.; Pegliasco, C.; Stegner, A. Anticyclonic Eddies Connecting the Western Boundaries of Indian and Atlantic Oceans. J. Geophys. Res. Ocean. 2018, 123, 7651–7677. [Google Scholar] [CrossRef]
- Pegliasco, C.; Chaigneau, A.; Morrow, R. Main eddy vertical structures observed in the four major Eastern Boundary Upwelling Systems. J. Geophys. Res. Ocean. 2015, 120, 6008–6033. [Google Scholar] [CrossRef]
- Chu, X.; Xue, H.; Qi, Y.; Chen, G.; Mao, Q.; Wang, D.; Chai, F. An exceptional anticyclonic eddy in the South China Sea in 2010. J. Geophys. Res. Ocean. 2014, 119, 881–897. [Google Scholar] [CrossRef]
- Villas Bôas, A.B.; Sato, O.T.; Chaigneau, A.; Castelão, G.P. The signature of mesoscale eddies on the air-sea turbulent heat fluxes in the South Atlantic Ocean. Geophys. Res. Lett. 2015, 42, 1856–1862. [Google Scholar] [CrossRef]
- Yang, P.; Jing, Z.; Wu, L. An Assessment of Representation of Oceanic Mesoscale Eddy-Atmosphere Interaction in the Current Generation of General Circulation Models and Reanalyses. Geophys. Res. Lett. 2018, 45, 11856–11865. [Google Scholar] [CrossRef]
- Wang, D.X.; Xu, H.Z.; Lin, J.; Hu, J.Y. Anticyclonic eddies in the northeastern South China Sea during winter 2003/2004. J. Oceanogr. 2008, 64, 925–935. [Google Scholar] [CrossRef]
- Aguedjou, H.M.A.; Chaigneau, A.; Dadou, I.; Morel, Y.; Pegliasco, C.; Da-Allada, C.Y.; Baloïtcha, E. What Can We Learn From Observed Temperature and Salinity Isopycnal Anomalies at Eddy Generation Sites? Application in the Tropical Atlantic Ocean. J. Geophys. Res. Ocean. 2021, 126, 1–27. [Google Scholar] [CrossRef]
- Chaigneau, A.; Le Texier, M.; Eldin, G.; Grados, C.; Pizarro, O. Vertical structure of mesoscale eddies in the eastern South Pacific Ocean: A composite analysis from altimetry and Argo profiling floats. J. Geophys. Res. Ocean. 2011, 116. [Google Scholar] [CrossRef]
- Keppler, L.; Cravatte, S.; Chaigneau, A.; Pegliasco, C.; Gourdeau, L.; Singh, A. Observed Characteristics and Vertical Structure of Mesoscale Eddies in the Southwest Tropical Pacific. J. Geophys. Res. Ocean. 2018, 123, 2731–2756. [Google Scholar] [CrossRef]
- Sandalyuk, N.V.; Belonenko, T.V. Three-dimensional structure of the mesoscale eddies in the Agulhas Current region from hydrological and altimetry data. Russ. J. Earth Sci. 2021, 21, 1–19. [Google Scholar] [CrossRef]
- Schütte, F.; Brandt, P.; Karstensen, J. Occurrence and characteristics of mesoscale eddies in the tropical northeastern Atlantic Ocean. Ocean. Sci. 2016, 12, 663–685. [Google Scholar] [CrossRef]
- Sun, W.; Dong, C.; Tan, W.; Liu, Y.; He, Y.; Wang, J. Vertical structure anomalies of oceanic eddies and eddy-induced transports in the South China Sea. Remote Sens. 2018, 10, 795. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, W.; Tian, J.; Liang, X. A mesoscale eddy pair southwest of Taiwan and its influence on deep circulation. J. Geophys. Res. 2013, 118, 6479–6494. [Google Scholar] [CrossRef]
- Dadou, I.; Garçon, V.; Andersen, V.; Flierl, G.R.; Davis, C.S. Impact of the North Equatorial Current meandering on a pelagic ecosystem: A modeling approach. J. Mar. Res. 1996, 54, 311–342. [Google Scholar] [CrossRef]
- Dufois, F.; Hardman-Mountford, N.J.; Greenwood, J.; Richardson, A.J.; Feng, M.; Matear, R.J. Anticyclonic eddies are more productive than cyclonic eddies in subtropical gyres because of winter mixing. Sci. Adv. 2016, 2, e1600282. [Google Scholar] [CrossRef]
- Mcgillicuddy, D.J., Jr. Mechanisms of Physical- Biological-Biogeochemical Interaction at the Oceanic Mesoscale. Annu. Rev. Mar. Sci. 2016, 8, 125–159. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Wang, Q.; Chu, X. Accelerated spread of Fukushima’s waste water by ocean circulation. Innovation 2021, 2, 100119. [Google Scholar] [CrossRef] [PubMed]
- Chelton, D.B.; Xie, S.P. Coupled ocean-atmosphere interaction at oceanic mesoscales. Oceanography 2010, 23, 54–69. [Google Scholar] [CrossRef]
- Frenger, I.; Gruber, N.; Knutti, R.; Münnich, M. Imprint of Southern Ocean eddies on winds, clouds and rainfall. Nat. Geosci. 2013, 6, 608–612. [Google Scholar] [CrossRef]
- Carton, J.A.; Chepurin, G.A.; Ligan, C.; Grodsky, S.A. Improved Global Net Surface Heat Flux. J. Geophys. Res. Ocean. 2018, 123, 3144–3163. [Google Scholar] [CrossRef]
- Adam, O.; Bischoff, T.; Schneider, T. Seasonal and interannual variations of the energy flux equator and ITCZ. Part II: Zonally varying shifts of the ITCZ. J. Clim. 2016, 29, 7281–7293. [Google Scholar] [CrossRef]
- Eichhorn, A.; Bader, J. Impact of tropical Atlantic sea-surface temperature biases on the simulated atmospheric circulation and precipitation over the Atlantic region: An ECHAM6 model study. Clim. Dyn. 2017, 49, 2061–2075. [Google Scholar] [CrossRef]
- Xie, S.; Carton, J.A. Tropical Atlantic Variability: Patterns, Mechanisms, and Impacts. Earth Clim. Ocean.-Atmos. Interact. 2004, 147, 121–142. [Google Scholar]
- Farneti, R.; Stiz, A.; Ssebandeke, J.B. Improvements and persistent biases in the southeast tropical Atlantic in CMIP models. NPJ Clim. Atmos. Sci. 2022, 5, 42. [Google Scholar] [CrossRef]
- Assassi, C.; Morel, Y.V.; Ermeirsch, F.; Chaigneau, A.; Pegliasco, C.; Morrow, R.; Colas, F.; Fleury, S.; Carton, X.; Klein, P.; et al. An index to distinguish surface- and subsurface-intensified vortices from surface observations. J. Phys. Oceanogr. 2016, 46, 2529–2552. [Google Scholar] [CrossRef]
- Liu, Y.; Zheng, Q.; Li, X. Characteristics of Global Ocean Abnormal Mesoscale Eddies Derived From the Fusion of Sea Surface Height and Temperature Data by Deep Learning. Geophys. Res. Lett. 2021, 48, e2021GL094772. [Google Scholar] [CrossRef]
- Moschos, E.; Barboni, A.; Stegner, A. Why Do Inverse Eddy Surface Temperature Anomalies Emerge? The Case of the Mediterranean Sea. Remote Sens. 2022, 14, 3807. [Google Scholar] [CrossRef]
- Leyba, I.M.; Saraceno, M.; Solman, S.A. Air-sea heat fluxes associated to mesoscale eddies in the Southwestern Atlantic Ocean and their dependence on different regional conditions. Clim. Dyn. 2016, 49, 2491–2501. [Google Scholar] [CrossRef]
- Sun, W.; Dong, C.; Tan, W.; He, Y. Statistical characteristics of cyclonic warm-core eddies and anticyclonic cold-core eddies in the North Pacific based on remote sensing data. Remote Sens. 2019, 11, 208. [Google Scholar] [CrossRef]
- Pujol, M.I.; Faugère, Y.; Taburet, G.; Dupuy, S.; Pelloquin, C.; Ablain, M.; Picot, N. DUACS DT2014: The new multi-mission altimeter data set reprocessed over 20 years. Ocean. Sci. 2016, 12, 1067–1090. [Google Scholar] [CrossRef]
- Huang, B.; Liu, C.; Banzon, V.; Freeman, E.; Graham, G.; Hankins, B.; Smith, T.; Zhang, H.M. Improvements of the Daily Optimum Interpolation Sea Surface Temperature (DOISST) Version 2.1. J. Clim. 2021, 34, 2923–2939. [Google Scholar] [CrossRef]
- Reynolds, R.W.; Smith, T.M.; Liu, C.; Chelton, D.B.; Casey, K.S.; Schlax, M.G. Daily high-resolution-blended analyses for sea surface temperature. J. Clim. 2021, 20, 5473–5496. [Google Scholar] [CrossRef]
- Bentamy, A.; Grodsky, S.A.; Katsaros, K.B.; Mestas-Nuñez, A.M.; Blanke, B.; Desbiolles, F. Improvement in air–sea flux estimates derived from satellite observations. Int. J. Remote Sens. 2013, 34, 5243–5261. [Google Scholar] [CrossRef]
- Bentamy, A.; Grodsky, S.A.; Elyouncha, A.; Chapron, B.; Desbiolles, F. Homogenization of scatterometer wind retrievals. Int. J. Climatol. 2016, 37, 870–889. [Google Scholar] [CrossRef]
- Bentamy, A.; Piolle, J.F.; Grouazel, A.; Danielson, R.; Gulev, S.; Paul, F.; Azelmat, H.; Mathieu, P.P.; von Schuckmann, K.; Sathyendranath, S.; et al. Review and assessment of latent and sensible heat fl ux accuracy over the global oceans. Remote Sens. Environ. 2017, 201, 196–218. [Google Scholar] [CrossRef]
- Huffman, G.J.; Adler, R.F.; Arkin, P.; Chang, A.; Ferraro, R.; Gruber, A.; Janowiak, J.; McNab, A.; Rudolf, B.; Schneider, U. The Global Precipitation Climatology Project (GPCP) Combined Precipitation Dataset. Bull. Am. Meteorol. Soc. 1997, 78, 5–20. [Google Scholar] [CrossRef]
- Huffman, G.J.; Adler, R.F.; Bolvin, D.T.; Nelkin, E.J. The TRMM Multi-Satellite Precipitation Analysis (TMPA). In Satellite Rainfall Applications for Surface Hydrology; Springer: Berlin/Heidelberg, Germany, 2010; pp. 3–22. [Google Scholar]
- Delcroix, T.; Chaigneau, A.; Soviadan, D.; Boutin, J.; Pegliasco, C. Eddy-Induced Salinity Changes in the Tropical Pacific. J. Geophys. Res. Ocean. 2019, 124, 374–389. [Google Scholar] [CrossRef]
- Gaube, P.; Chelton, D.B.; Samelson, R.M.; Schlax, M.G.; O’Neill, L.W. Satellite observations of mesoscale eddy-induced Ekman pumping. J. Phys. Oceanogr. 2015, 45, 104–132. [Google Scholar] [CrossRef]
- Chelton, D.B.; Gaube, P.; Schlax, M.G.; Early, J.J.; Samelson, R.M. The Influence of Nonlinear Mesoscale Eddies on Near-Surface Oceanic Chlorophyll. Science 2011, 334, 328–333. [Google Scholar] [CrossRef]
- Gaube, P.; McGillicuddy, D.J.; Chelton, D.B.; Behrenfeld, M.J.; Strutton, P.G. Regional variations in the influence of mesoscale eddies on near-surface chlorophyll. J. Geophys. Res. Ocean. 2014, 119, 8195–8220. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, L.; Chen, G. Characterization of Sea Surface Temperature and Air-Sea Heat Flux Anomalies Associated with Mesoscale Eddies in the South China Sea. J. Geophys. Res. Ocean. 2020, 125, e2019JC015470. [Google Scholar] [CrossRef]
- Liu, X.; Chang, P.; Kurian, J.; Saravanan, R.; Lin, X. Satellite-observed precipitation response to ocean mesoscale eddies. J. Clim. 2018, 31, 6879–6895. [Google Scholar] [CrossRef]
- Greaser, S.R.; Subrahmanyam, B.; Trott, C.B.; Roman-Stork, H.L. Interactions Between Mesoscale Eddies and Synoptic Oscillations in the Bay of Bengal During the Strong Monsoon of 2019. J. Geophys. Res. Ocean. 2020, 125, 1–29. [Google Scholar] [CrossRef]
- Trott, C.B.; Subrahmanyam, B.; Chaigneau, A.; Delcroix, T. Eddy Tracking in the Northwestern Indian Ocean During Southwest Monsoon Regimes. Geophys. Res. Lett. 2018, 45, 6594–6603. [Google Scholar] [CrossRef]
- Nnamchi, H.C.; Latif1, M.; Keenlyside, N.S.; Kjellsson, J.; Richter, I. Diabatic heating governs the seasonality of the Atlantic Niño. Nat. Commun. 2021, 12, 376. [Google Scholar] [CrossRef] [PubMed]
- Helber, R.W.; Weisberg, R.H.; Bonjean, F.; Johnson, E.S.; Lagerloef, G.S.E. Satellite-derived surface current divergence in relation to tropical Atlantic SST and wind. Am. Meteorol. Soc. 2006, 37, 1357–1375. [Google Scholar] [CrossRef]
- Da-Allada, C.Y.; Alory, G.; Du Penhoat, Y.; Kestenare, E.; Dur, F.; Hounkonnou, N.M. Seasonal mixed-layer salinity balance in the tropical Atlantic Ocean: Mean state and seasonal cycle. J. Geophys. Res. Ocean. 2013, 118, 332–345. [Google Scholar] [CrossRef]
Cyclonic Eddies | Anticyclonic Eddies | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Number (%) | SST’ (°C) | LHF’ (W m−2) | SHF’ (W m−2) | IRF’ (W m−2) | Number (%) | SST’ (°C) | LHF’ (W m−2) | SHF’ (W m−2) | IRF’ (W m−2) | |
Warm-core eddies | 145,868 (39.7%) | 0.12 ± 0.05 * | 1.5 ± 2.09 | 0.5 ± 0.60 | 0.73 ± 0.27 | 196,989 (59.8%) | 0.16 ± 0.06 | 4.10 ± 2.27 | 1.15 ± 0.67 | 0.92 ± 0.33 |
Cold-core eddies | 221,785 (60.3%) | −0.17 ± 0.08 | −4.60 ± 2.14 | −1.36 ± 0.63 | −0.96 ± 0.40 | 132,231 (40.2%) | −0.13 ± 0.06 | −2.78 ± 2.00 | −0.80 ± 0.63 | −0.79 ± 0.40 |
Total | 367,653 (100%) | – | – | – | – | 329,220 (100%) | – | – | – | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguedjou, H.M.A.; Chaigneau, A.; Dadou, I.; Morel, Y.; Baloïtcha, E.; Da-Allada, C.Y. Imprint of Mesoscale Eddies on Air-Sea Interaction in the Tropical Atlantic Ocean. Remote Sens. 2023, 15, 3087. https://doi.org/10.3390/rs15123087
Aguedjou HMA, Chaigneau A, Dadou I, Morel Y, Baloïtcha E, Da-Allada CY. Imprint of Mesoscale Eddies on Air-Sea Interaction in the Tropical Atlantic Ocean. Remote Sensing. 2023; 15(12):3087. https://doi.org/10.3390/rs15123087
Chicago/Turabian StyleAguedjou, Habib Micaël A., Alexis Chaigneau, Isabelle Dadou, Yves Morel, Ezinvi Baloïtcha, and Casimir Y. Da-Allada. 2023. "Imprint of Mesoscale Eddies on Air-Sea Interaction in the Tropical Atlantic Ocean" Remote Sensing 15, no. 12: 3087. https://doi.org/10.3390/rs15123087
APA StyleAguedjou, H. M. A., Chaigneau, A., Dadou, I., Morel, Y., Baloïtcha, E., & Da-Allada, C. Y. (2023). Imprint of Mesoscale Eddies on Air-Sea Interaction in the Tropical Atlantic Ocean. Remote Sensing, 15(12), 3087. https://doi.org/10.3390/rs15123087