An Integrated Approach for Analyzing the Morphological Evolution of the Lower Reaches of the Minjiang River Based on Long-Term Remote Sensing Data
Abstract
:1. Introduction
2. Study Area and Based Data
2.1. Study Area
2.2. Based Data
2.2.1. Remote Sensing Image Data
2.2.2. Model Training Dataset
3. Method
3.1. Remote Sensing Image Pre-Processing
3.2. River Water Identification Method
3.3. Beaches and Sandbars Identification Method
3.4. Evaluation of the Effect of Remote Sensing Image Interpretation
3.5. River Morphology Change Parameters
3.5.1. Curvature Coefficient
3.5.2. Fractal Dimension
3.5.3. Land Use Transfer Matrix
4. Results
4.1. Reliability Assessment of Water Body Identification Algorithms
4.2. Overall Evolutionary Characteristics of the Downstream of Minjiang River
4.3. Evolutionary Characteristics of the River Sections
4.3.1. MQMH Section
4.3.2. BG Section
4.3.3. NG Section
4.3.4. MW Section
5. Discussion
5.1. Impact of Large Hydraulic Projects on River Morphology
5.2. Impact of River Sediment Mining on the Evolution of River Morphology
5.3. Impact of River Training Measures along the River
5.4. Influence of Geological Conditions on River Morphology
5.5. Impact of Large Flood Events on River Morphology
6. Conclusions
- (1)
- The proposed method of river water identification in this study demonstrates high accuracy and effectiveness, with an F1 score and Kappa coefficient greater than 0.96 and 0.91, respectively.
- (2)
- By integrating the fractal dimension, river curvature, and land use transfer matrix, the plane morphological evolution of the river can be comprehensively characterized. The results reveal that the downstream of the MQMH section experienced beach erosion, while the upstream section maintained a more consistent morphology. The NG section widened, and the BG section contracted. The changes in river morphology at the MW section were relatively minor.
- (3)
- The morphological evolution of the lower reaches of the Minjiang River has been significantly impacted by various factors, including reservoir construction, river sediment mining, river training measures, geological conditions, and large flood events.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Year | Area (km²) | |||||||
---|---|---|---|---|---|---|---|---|
1986–1990 | 1990–1994 | 1994–2000 | 2000–2006 | 2006–2011 | 2011–2017 | 2017–2021 | ||
Transform type | Sandbar–Water | 5.12 | 5.57 | 9.90 | 0.99 | 4.01 | 3.15 | 2.85 |
Beach–Water | 3.09 | 12.25 | 7.40 | 5.94 | 4.80 | 3.30 | 1.25 | |
Water–Water | 307.65 | 321.63 | 335.67 | 321.10 | 319.50 | 324.00 | 319.87 | |
Sandbar–Beach | 0.18 | 0.85 | 1.21 | 1.26 | 1.20 | 0.00 | 0.05 | |
Beach–Beach | 28.69 | 23.50 | 19.15 | 14.05 | 13.57 | 9.70 | 10.72 | |
Water–Beach | 6.65 | 2.91 | 7.52 | 10.35 | 1.19 | 2.20 | 3.37 | |
Sandbar–Sandbar | 21.00 | 21.42 | 16.68 | 15.69 | 20.89 | 20.99 | 21.21 | |
Beach–Sandbar | 1.05 | 0.73 | 0.74 | 1.33 | 0.42 | 1.58 | 0.01 | |
Water–Sandbar | 4.96 | 5.90 | 1.62 | 9.95 | 2.71 | 1.41 | 3.27 |
Station | Time | Flow/(m3/s) | Average Flow Diversion Ratio/(%) | |
---|---|---|---|---|
NG | BG | |||
Zhuqi | September 2002 | 1200–1500 | 19.63 | 80.37 |
1500–2000 | 21.47 | 78.53 | ||
2000–2600 | 30.94 | 69.06 | ||
Houguan | February 2008 | 1500–2000 | 83.23 | 16.77 |
2000–3000 | 65.18 | 34.82 | ||
June 2013 | 3400–4000 | 79.41 | 20.59 | |
4000–4500 | 80.05 | 19.95 | ||
4500–5300 | 77.80 | 22.20 |
References
- Cosgrove, W.J.; Loucks, D.P. Water management: Current and future challenges and research directions. Water Resour. Res. 2015, 51, 4823–4839. [Google Scholar] [CrossRef] [Green Version]
- Johnson, N.; Revenga, C.; Echeverria, J. Ecology—Managing water for people and nature. Science 2001, 292, 1071–1072. [Google Scholar] [CrossRef]
- Mathetsa, S.M.; Simatele, M.D.; Rampedi, I.T. A Water-Centric Approach in the Assessment and Governance of the Water-Energy-Climate Change Nexus in South Africa. Front. Sustain. Food Syst. 2022, 6, 691704. [Google Scholar] [CrossRef]
- Lambooy, T. Corporate social responsibility: Sustainable water use. J. Clean. Prod. 2011, 19, 852–866. [Google Scholar] [CrossRef]
- Steel, E.A.; Sowder, C.; Peterson, E.E. Spatial and Temporal Variation of Water Temperature Regimes on the Snoqualmie River Network. JAWRA J. Am. Water Resour. Assoc. 2016, 52, 769–787. [Google Scholar] [CrossRef]
- Li, Z.; Yan, C.; Boota, M.W. Review and outlook of river morphology expression. J. Water Clim. Chang. 2022, 13, 1725–1747. [Google Scholar] [CrossRef]
- Zhou, Z.; Tuo, Y.; Li, J.; Chen, M.; Wang, H.; Zhu, L.; Deng, Y. Effects of hydrology and river characteristics on riverine wetland morphology variation in the middle reaches of the Yarlung Zangbo–Brahmaputra river based on remote sensing. J. Hydrol. 2022, 607, 127497. [Google Scholar] [CrossRef]
- Zhang, K.; Kimball, J.S.; Running, S.W. A review of remote sensing based actual evapotranspiration estimation. Wiley Interdiscip. Rev. Water 2016, 3, 834–853. [Google Scholar] [CrossRef]
- Entwistle, N.; Heritage, G.; Milan, D. Recent remote sensing applications for hydro and morphodynamic monitoring and modelling. Earth Surf. Process. Landf. 2018, 43, 2283–2291. [Google Scholar] [CrossRef] [Green Version]
- Dube, T.; Shekede, M.D.; Massari, C. Remote sensing for water resources and environmental management. Remote Sens. 2023, 15, 18. [Google Scholar] [CrossRef]
- Chohan, K.; Ahmad, S.R.; Ashraf, A.; Kamran, M.; Rasheed, R. Remote sensing based innovative solution of river morphology for better flood management. Int. J. Appl. Earth Obs. Geoinf. 2022, 111, 102845. [Google Scholar] [CrossRef]
- Cretaux, J.F.; Abarca-del-Rio, R.; Berge-Nguyen, M.; Arsen, A.; Drolon, V.; Clos, G.; Maisongrande, P. Lake Volume Monitoring from Space. Surv. Geophys. 2016, 37, 269–305. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Liang, J.; Xie, F.; Hu, Z.; Sun, W.; Yang, G.; Yu, J.; Chen, L.; Wang, L.; Wang, L.; et al. Temporal and spatial variation of coastline using remote sensing images for Zhoushan archipelago, China. Int. J. Appl. Earth Obs. Geoinf. 2022, 107, 102711. [Google Scholar] [CrossRef]
- Wang, Y.; Tan, L.; Wang, G.; Sun, X.; Xu, Y. Study on the Impact of Spatial Resolution on Fractional Vegetation Cover Extraction with Single-Scene and Time-Series Remote Sensing Data. Remote Sens. 2022, 14, 4165. [Google Scholar] [CrossRef]
- Aati, S.; Avouac, J.-P. Optimization of Optical Image Geometric Modeling, Application to Topography Extraction and Topographic Change Measurements Using PlanetScope and SkySat Imagery. Remote Sens. 2020, 12, 3418. [Google Scholar] [CrossRef]
- Liu, Y.K.; Ma, L.L.; Wang, N.; Qian, Y.G.; Zhao, Y.G.; Qiu, S.; Gao, C.X.; Long, X.X.; Li, C.R. On-orbit radiometric calibration of the optical sensors on-board SuperView-1 satellite using three independent methods. Opt. Express 2020, 28, 11085–11105. [Google Scholar] [CrossRef] [PubMed]
- Behera, M.D.; Gupta, A.K.; Barik, S.K.; Das, P.; Panda, R.M. Use of satellite remote sensing as a monitoring tool for land and water resources development activities in an Indian tropical site. Environ. Monit. Assess. 2018, 190, 401. [Google Scholar] [CrossRef]
- Huang, C.; Chen, Y.; Zhang, S.; Wu, J. Detecting, Extracting, and Monitoring Surface Water from Space Using Optical Sensors: A Review. Rev. Geophys. 2018, 56, 333–360. [Google Scholar] [CrossRef]
- Wang, S.Z.; Cao, J.N.; Yu, P.S. Deep Learning for Spatio-Temporal Data Mining: A Survey. IEEE Trans. Knowl. Data Eng. 2022, 34, 3681–3700. [Google Scholar] [CrossRef]
- Wu, X.; Hong, D.; Chanussot, J. Convolutional Neural Networks for Multimodal Remote Sensing Data Classification. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5517010. [Google Scholar] [CrossRef]
- Wang, L.; Li, R.; Zhang, C.; Fang, S.; Duan, C.; Meng, X.; Atkinson, P.M. UNetFormer: A UNet-like transformer for efficient semantic segmentation of remote sensing urban scene imagery. ISPRS J. Photogramm. Remote Sens. 2022, 190, 196–214. [Google Scholar] [CrossRef]
- Chen, A.; Yang, J.; He, Y.; Yuan, Q.; Li, Z.; Zhu, L. High spatiotemporal resolution estimation of AOD from Himawari-8 using an ensemble machine learning gap-filling method. Sci. Total Environ. 2023, 857 Pt 3, 159673. [Google Scholar] [CrossRef]
- Khaw, H.Y.; Soon, F.C.; Chuah, J.H.; Chow, C. Image noise types recognition using convolutional neural network with principal components analysis. IET Image Process. 2017, 11, 1238–1245. [Google Scholar] [CrossRef]
- Zheng, W.; Dong, W.; Lin, G. Adaptive management of estuarine resource utilization and wetland conservation based on multi-temporal remote sensing: A case study of Minjiang Estuary, China. J. Nat. Conserv. 2022, 70, 126286. [Google Scholar] [CrossRef]
- Yang, S.-L.; Huang, M.-Q. The Impact of Replenishing Flow and Sediment on the Riverbed Repairing of Minjiang Estuary and Water Level Rising under Shuikou Dam; Springer: Singapore, 2020; pp. 723–741. [Google Scholar]
- Zhang, P.; Pang, Y.; Shi, C.; Luo, D. Analysis of change trend of water quality in Minjiang River downstream. Water Resour. Prot. 2018, 34, 64–69. [Google Scholar]
- Zhang, Z.; Hong, H.; Zhou, J.; Yu, G. Phase association of polycyclic aromatic hydrocarbons in the Minjiang River Estuary, China. Sci. Total. Environ. 2004, 323, 71–86. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, H.; Lin, X.F. Changes of climatic features in the Minjiang River Basin in recent 45 years. Res. Soil Water Conserv. 2009, 16, 107–110. [Google Scholar]
- Wang, B.; Chen, Z.; Wu, L.; Yang, X.; Zhou, Y. SADA-Net: A Shape Feature Optimization and Multiscale Context Information-Based Water Body Extraction Method for High-Resolution Remote Sensing Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 1744–1759. [Google Scholar] [CrossRef]
- Zhong, H.-F.; Sun, Q.; Sun, H.-M.; Jia, R.-S. NT-Net: A Semantic Segmentation Network for Extracting Lake Water Bodies from Optical Remote Sensing Images Based on Transformer. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5627513. [Google Scholar] [CrossRef]
- Isikdogan, L.F.; Bovik, A.; Passalacqua, P. Seeing Through the Clouds with DeepWaterMap. IEEE Geosci. Remote Sens. Lett. 2019, 17, 1662–1666. [Google Scholar] [CrossRef]
- Luo, X.; Tong, X.; Hu, Z. An applicable and automatic method for earth surface water mapping based on multispectral images. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102472. [Google Scholar] [CrossRef]
- Cohen, J. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Peng, F.; Yan, F. Calculation on Fractal Dimension of River Morphology. Acta Geogr. Sin. 1997, 4, 38–44. [Google Scholar]
- Ayalew, A.D.; Wagner, P.D.; Sahlu, D.; Fohrer, N. Land use change and climate dynamics in the Rift Valley Lake Basin, Ethiopia. Environ. Monit. Assess. 2022, 194, 791. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Kikon, N.; Verma, P. Impact of land use change and urbanization on urban heat island in Lucknow city, Central India. A remote sensing based estimate. Sustain. Cities Soc. 2017, 32, 100–114. [Google Scholar] [CrossRef]
- Ashouri, M.; Piry, Z.; Moghaddam, M.H.R. A comparison of the influence of the Sattarkhan reservoir dam on the upstream and downstream of the Ahar Chai River, NW Iran. Environ. Earth Sci. 2015, 73, 4099–4108. [Google Scholar] [CrossRef]
- Ye, L.Q.; Hu, Z.Y.; Wang, X.Q. Evolution Analysis of Minqing Channel in the Lower Reach of Minjiang River. J. Water Resour. Archit. Eng. 2014, 12, 164–167+217. [Google Scholar]
- Zhang, P.; Shi, C.C.; Pang, Y.; Pan, H.C.; Xu, L. Influence of runoff in downstream of Minjiang river and change of diversion ratio in Beigang on water age. J. Water Resour. Water Eng. 2015, 26, 40–45. [Google Scholar]
Satellite Sensors | Time | Spatial Resolution (m) |
---|---|---|
Sentinel2 | 1 April 2021 | 10 |
Sentinel2 | 7 April 2019 | 10 |
Landsat8 | 18 April 2017 | 30 |
Landsat8 | 13 April 2015 | 30 |
Landsat8 | 23 April 2013 | 30 |
Landsat5 | 2 April 2011 | 30 |
Landsat5 | 12 April 2009 | 30 |
Landsat5 | 4 April 2006 | 30 |
Landsat5 | 12 April 2003 | 30 |
Landsat5 | 3 April 2000 | 30 |
Landsat5 | 11 April 1997 | 30 |
Landsat5 | 19 April 1994 | 30 |
Landsat5 | 21 April 1990 | 30 |
Landsat5 | 29 April 1986 | 30 |
Landsat | Sentinel | |
---|---|---|
Accuracy | 0.960 | 0.966 |
Precision | 0.997 | 0.986 |
Recall | 0.943 | 0.963 |
F1 | 0.969 | 0.974 |
Kappa | 0.912 | 0.924 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, N.; Sheng, S.; He, L.-Y.; Tian, B.-R.; Chen, H.; Xu, C.-Y. An Integrated Approach for Analyzing the Morphological Evolution of the Lower Reaches of the Minjiang River Based on Long-Term Remote Sensing Data. Remote Sens. 2023, 15, 3093. https://doi.org/10.3390/rs15123093
Zhou N, Sheng S, He L-Y, Tian B-R, Chen H, Xu C-Y. An Integrated Approach for Analyzing the Morphological Evolution of the Lower Reaches of the Minjiang River Based on Long-Term Remote Sensing Data. Remote Sensing. 2023; 15(12):3093. https://doi.org/10.3390/rs15123093
Chicago/Turabian StyleZhou, Nie, Sheng Sheng, Li-Ying He, Bing-Ru Tian, Hua Chen, and Chong-Yu Xu. 2023. "An Integrated Approach for Analyzing the Morphological Evolution of the Lower Reaches of the Minjiang River Based on Long-Term Remote Sensing Data" Remote Sensing 15, no. 12: 3093. https://doi.org/10.3390/rs15123093
APA StyleZhou, N., Sheng, S., He, L. -Y., Tian, B. -R., Chen, H., & Xu, C. -Y. (2023). An Integrated Approach for Analyzing the Morphological Evolution of the Lower Reaches of the Minjiang River Based on Long-Term Remote Sensing Data. Remote Sensing, 15(12), 3093. https://doi.org/10.3390/rs15123093