Mapping Water Levels across a Region of the Cuvette Centrale Peatland Complex
Abstract
:1. Introduction
- How does the inundation of tropical peatlands in the Cuvette Centrale vary spatially and temporally?;
- How does water level correlate with net water input across the peatlands, and can this be used to distinguish between areas of the Cuvette Centrale that are largely rainfed and where flood or additional groundwater dynamics play a significant role?;
- What are the differences in peatland hydrological inputs to the east and west of the Congo River?
2. Methods and Materials
2.1. Study Area
2.2. Data
2.2.1. SAR Data
2.2.2. Meteorological Data
2.2.3. In Situ Data
2.2.4. Altimetry-Derived Surface Water Level
2.2.5. Land Cover and Terrain Data
2.3. Methods
2.3.1. PALSAR-2 Data
2.3.2. Calculation of Daily Net Water Input
2.3.3. Determining Which Areas Are Rainfed
2.3.4. Mitigating for Terrain Variability When Estimating Pixel Water Level
2.3.5. Estimating the Daily Water Level
2.3.6. Determining Water Level Variability
2.3.7. Validation of Modelled Water Levels
2.4. Use of Elevation Data in the Discussion of the Results
3. Results
3.1. Validation of the Combined Use of Actual- and Potential-Evapotranspiration
3.2. The Applicability of the Derived SAR Metrics for Flood Mapping
3.3. Identification of Rainfed Regions
3.3.1. Pixel-Wise Correlations—Statistical Summary
3.3.2. Assessing the Maximum Period of Correlation between SAR Backscatter and Net Water Input
3.3.3. Variability in the Pixel-Wise Correlation Gradient
3.4. Transfer Equation between HH Backscatter and Water Level
3.5. Variability in Derived Water Levels
3.6. Assessing the Relationship between Water Level Variation and Swamp Vegetation Type
3.7. Comparison between Modelled Water Level and Water Logger Data
3.8. Comparison between Modelled Water Level and Altimetry Data
4. Discussion
4.1. Applicability of the Modelled Water Level Maps
4.1.1. Facilitating Scaling Up of Methane and Carbon Dioxide Fluxes
4.1.2. Supporting Model Calibration and Validation
4.1.3. Enhancing Understanding of Water Transfer between River Systems and Surrounding Wetlands at High Spatiotemporal Resolution
4.1.4. Forecasting Short-Term Water Level Changes
4.2. Our Results in the Context of the Original Research Questions
4.2.1. Distinguishing Rainfed and Flood-Prone Peatland Areas
4.2.2. Spatial and Temporal Variation in Inundation across the Study Area
4.2.3. Distinct Optimal Water Levels for Different Swamp Vegetation Types
4.2.4. Differences in Peatland Hydrological Inputs to the East and West of the Congo River
4.3. Accuracy of Interpolated Inundation Maps and Limitations
4.4. Microtopography Considerations
4.5. Recommendations for Enhancing Map Accuracy
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Post-Processing Applied to ALOS-2 PALSAR-2 Scenes
- We converted the CEOS format SAR images into BEAM–DIMAP format, the default format used to produce all outputs when using SNAP, and separated the HH and HV polarisation bands into individual files such that the post-processing steps could be applied to each band individually;
- Due to some small location differences in the footprint of each co-located scene, it was necessary to stack the images multi-temporally, defining a single image (the first date) as the one to which all the other images were aligned. Within the radar co-registration process, we specified product geolocation as the initial offset method and used a nearest neighbour resampling method;
- Speckle is a feature of SAR images that results from coherent backscatter from multiple targets, leading to a granular appearance. We applied the Improved Lee Sigma speckle filter [52] to each individual image in the co-registered stack. This is recommended when assessing the temporal evolution of surface-water inundation, as multi-temporal speckle filtering could dampen the signal of seasonal variations too much. The Improved Lee Sigma filter is commonly applied to SAR data as it reduces blurriness [58]. It takes into account possible edges where the local variance around a pixel exceeds a certain threshold and is used to remove coherent noise. It is important to note that speckle filtering comes at the expense of image resolution. For the additional filter settings, we used a single look option and ran the process within a moving 7 × 7 window with resampling performed over a smaller target 3 × 3 window within this domain. The 7 × 7 window was used to detect whether an area contained speckle or realistic structures, and then the speckle filtering was applied over a smaller 3 × 3 window. Lee et al. [52] found that a 3 × 3 target window gave good results specifically with ALOS PALSAR data. Additionally, we used the default sigma value of 0.9;
- Due to variations in the incident angle across the longitude axis of the PALSAR-2 imagery, of between 25.6° and 49.1°, there was an antenna pattern effect that required correction. The mean latitudinal backscatter values decreased linearly across the image extent from the satellite’s position, corresponding with the linear increase in incident angle. To correct this, we performed the following steps:
- (a)
- Identified and masked permanent water bodies by applying a threshold of −11 dB to the backscatter. This value was arrived at by observing the backscatter over the time series for the lake and river bodies within the study area and is in agreement with the value used by Kim et al. [53];
- (b)
- Calculated the mean latitudinal backscatter across the full longitudinal extent of each image within the stack;
- (c)
- Calculated a linear regression across these values;
- (d)
- We applied this correction on an image-by-image basis due to environmental or SAR instrument differences that affect backscatter amplitude. However, it was also important that the slope of the antenna pattern correction applied is the same for all images, such that we could later analyse temporal changes in backscatter on a pixel-by-pixel basis. Temporal changes in hydrology impact the antenna pattern correction slope. We calculated the average slope of the linear regression across all time steps and applied a unique intercept value for each image that maintained the original backscatter values at pixels with the lowest incident angle;
- (e)
- We defined the reference backscatter amplitude to be at the lowest incident angle (closest to the satellite). We calculated the difference between this value and the regression line values across longitude. Finally, we added these differences to the original averaged backscatter values at each longitude to arrive at an antenna-pattern corrected image;
- (f)
- We visually inspected each corrected image in the stack to ensure that the backscatter pattern was balanced.
This effectively acted to rotate the pattern of each image’s backscatter values across longitude, using the longitude with the lowest incident angle as the pivot point. The east-to-west backscatter patterns in the resulting images are noticeably more balanced; - The original resolution of the ALOS-2 PALSAR-2 scenes was 25 m but the effective resolution was reduced following the application of the speckle filter. We geocoded the scenes within the co-registered stack to 100 m resolution using the SAR-Mosaic function with a bilinear resampling option. The final geocoded product was in the WGS84 projection;
- To express the data in units of decibels (dB), we applied the Sigma nought (0) backscatter calculation across each image within the co-registered stack, using the following equation:
- We then calculated the ratio HH:HV (HH–HV when calculated in dB), a metric that we used to test its usefulness for assessing water level changes.
Appendix B
Appendix B.1. Data Collected along Transects
Transect Name | Country | Dry Season | Wet Season | Sampling Dates |
---|---|---|---|---|
Boboka | DRC | 23 | 0 | 26 January–9 February 2020 |
Bondzale | RoC | 24 | 0 | 4–6 March 2019 |
Ekolongouma | RoC | 30 | 0 | 15–22 February 2019 |
Ikelemba | DRC | 15 | 0 | 17–19 January 2020 |
Ipombo | DRC | 30 | 29 | Three sampling periods:
|
Itanga | RoC | 24 | 0 | 10–11 March 2019 |
Lobaka | DRC | 29 | 0 | 21 February–3 March 2020 |
Lokolama | DRC | 0 | 23 | 10–13 October 2020 |
Mpeka | DRC | 35 | 40 | Two sampling periods:
|
Totals | 210 | 92 | All measurements: 302 |
Appendix B.2. Water Logger Data Summary
Location | Water Logger Name | Start Date | End Date | Lat | lon | Corrected? |
---|---|---|---|---|---|---|
GEM | EKG02 | 16 March 2019 | 21 March 2021 | 1.191986 | 17.84694 | Y |
GEM | EKG03 | 15 March 2019 | 17 March 2021 | 1.188695 | 17.83192 | Y |
Lokolama | LOK5_1.0 | 1 February 2018 | 21 December 2019 | −0.3032 | 18.20069 | Y |
Lokolama | LOK5_3.0 | 1 February 2018 | 21 December 2019 | −0.31495 | 18.1871 | Y |
Lokolama | LOK5_4.0 | 1 February 2018 | 21 December 2019 | −0.32095 | 18.18046 | Y |
Appendix B.3. ALOS-2 PALSAR-2 Summary
Date | Scene ID | Centre lat | Centre long | Shift | Area | Zone |
---|---|---|---|---|---|---|
29 March 2019 | ALOS2261753600-190329 | 0.872 | 17.817 | 0 | 2 | 33 |
10 May 2019 | ALOS2267963600-190510 | 0.871 | 17.818 | 0 | 2 | 33 |
21 June 2019 | ALOS2274173600-190621 | 0.857 | 17.814 | 0 | 2 | 33 |
19 July 2019 | ALOS2278313600-190719 | 0.872 | 17.819 | 0 | 2 | 33 |
30 August 2019 | ALOS2284523600-190830 | 0.872 | 17.82 | 0 | 2 | 33 |
11 October 2019 | ALOS2290733600-191011 | 0.873 | 17.821 | 0 | 2 | 33 |
22 November 2019 | ALOS2296943600-191122 | 0.873 | 17.821 | 0 | 2 | 33 |
3 January 2020 | ALOS2303153600-200103 | 0.873 | 17.821 | 0 | 2 | 33 |
14 February 2020 | ALOS2309363600-200214 | 0.873 | 17.817 | 0 | 2 | 33 |
27 March 2020 | ALOS2315573600-200327 | 0.872 | 17.816 | 0 | 2 | 33 |
8 May 2020 | ALOS2321783600-200508 | 0.871 | 17.821 | 0 | 2 | 33 |
19 June 2020 | ALOS2327993600-200619 | 0.857 | 17.817 | 0 | 2 | 33 |
17 July 2020 | ALOS2332133600-200717 | 0.857 | 17.817 | 0 | 2 | 33 |
28 August 2020 | ALOS2338343600-200828 | 0.872 | 17.821 | 0 | 2 | 33 |
9 October 2020 | ALOS2344553600-201009 | 0.872 | 17.821 | 0 | 2 | 33 |
8 October 2021 | ALOS2398373600-211008 | 0.873 | 17.82 | 0 | 2 | 33 |
19 November 2021 | ALOS2404583600-211119 | 0.874 | 17.821 | 0 | 2 | 33 |
Appendix B.4. Additional Figures
References
- Davidson, N.C.; Fluet-Chouinard, E.; Finlayson, C.M. Global extent and distribution of wetlands: Trends and issues. Mar. Freshw. Res. 2018, 69, 620–627. [Google Scholar] [CrossRef] [Green Version]
- Mitsch, W.J.; Bernal, B.; Nahlik, A.M.; Mander, Ü.; Zhang, L.; Anderson, C.J.; Jørgensen, S.E.; Brix, H. Wetlands, carbon, and climate change. Landsc. Ecol. 2013, 28, 583–597. [Google Scholar] [CrossRef]
- Junk, W.J.; Brown, M.; Campbell, I.C.; Finlayson, M.; Gopal, B.; Ramberg, L.; Warner, B.G. The comparative biodiversity of seven globally important wetlands: A synthesis. Aquat. Sci. 2006, 68, 400–414. [Google Scholar] [CrossRef]
- Bousquet, P.; Ciais, P.; Miller, J.B.; Dlugokencky, E.J.; Hauglustaine, D.A.; Prigent, C.; van der Werf, G.R.; Peylin, P.; Brunke, E.G.G.; Carouge, C.; et al. Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature 2006, 443, 439–443. [Google Scholar] [CrossRef]
- Poulter, B.; Bousquet, P.; Canadell, J.G.; Ciais, P.; Peregon, A.; Saunois, M.; Arora, V.K.; Beerling, D.J.; Brovkin, V.; Jones, C.D.; et al. Global wetland contribution to 2000–2012 atmospheric methane growth rate dynamics. Environ. Res. Lett. 2017, 12, 094013. [Google Scholar] [CrossRef]
- Zhang, Z.; Zimmermann, N.E.; Calle, L.; Hurtt, G.; Chatterjee, A.; Poulter, B. Enhanced response of global wetland methane emissions to the 2015–2016 El Niño-Southern Oscillation event. Environ. Res. Lett. 2018, 13, 074009. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Fluet-Chouinard, E.; Jensen, K.; McDonald, K.; Hugelius, G.; Gumbricht, T.; Carroll, M.; Prigent, C.; Bartsch, A.; Poulter, B. Development of the global dataset of Wetland Area and Dynamics for Methane Modeling (WAD2M). Earth Syst. Sci. Data 2021, 13, 2001–2023. [Google Scholar] [CrossRef]
- Whalen, S.C. Biogeochemistry of methane exchange between natural wetlands and the atmosphere. Environ. Eng. Sci. 2005, 22, 73–94. [Google Scholar] [CrossRef]
- Bergamaschi, P.; Frankenberg, C.; Meirink, J.F.; Krol, M.; Dentener, F.; Wagner, T.; Platt, U.; Kaplan, J.O.; Körner, S.; Heinmann, M.; et al. Satellite charactography of atmospheric methane from SCIAMACHY on board ENVISAT: 2. Evaluation based on inverse model simulations. J. Geophys. Res. Atmos. 2007, 112, D02304. [Google Scholar] [CrossRef] [Green Version]
- Ringeval, B.; De Noblet-Ducoudré, N.; Ciais, P.; Bousquet, P.; Prigent, C.; Papa, F.; Rossow, W.B. An attempt to quantify the impact of changes in wetland extent on methane emissions on the seasonal and interannual time scales. Glob. Biogeochem. Cycles 2010, 24, GB2003. [Google Scholar] [CrossRef] [Green Version]
- Dargie, G.C.; Lewis, S.L.; Lawson, I.T.; Mitchard, E.T.; Page, S.E.; Bocko, Y.E.; Ifo, S.A. Age, extent and carbon storage of the central Congo Basin peatland complex. Nature 2017, 542, 86–90. [Google Scholar] [CrossRef]
- Ribeiro, K.; Pacheco, F.S.; Ferreira, J.W.; de Sousa-Neto, E.R.; Hastie, A.; Krieger Filho, G.C.; Alvalá, P.C.; Forti, M.C.; Ometto, J.P. Tropical peatlands and their contribution to the global carbon cycle and climate change. Glob. Change Biol. 2021, 27, 489–505. [Google Scholar] [CrossRef]
- Couwenberg, J.; Dommain, R.; Joosten, H. Greenhouse gas fluxes from tropical peatlands in south-east Asia. Glob. Change Biol. 2010, 16, 1715–1732. [Google Scholar] [CrossRef]
- Tshimanga, R.M.; Hughes, D.A. Basin-scale performance of a semidistributed rainfall-runoff model for hydrological predictions and water resources assessment of large rivers: The Congo River. Water Resour. Res. 2014, 50, 1174–1188. [Google Scholar] [CrossRef]
- Lee, H.; Yuan, T.; Jung, H.C.; Beighley, E. Mapping wetland water depths over the central Congo Basin using PALSAR ScanSAR, Envisat altimetry, and MODIS VCF data. Remote Sens. Environ. 2015, 159, 70–79. [Google Scholar] [CrossRef]
- Lee, H.; Jung, H.C.; Yuan, T.; Beighley, R.E.; Duan, J. Controls of Terrestrial Water Storage Changes Over the Central Congo Basin Determined by Integrating PALSAR ScanSAR, Envisat Altimetry, and GRACE Data. In Remote Sensing of the Terrestrial Water Cycle; Wiley Online Library: Hoboken, NJ, USA, 2014. [Google Scholar] [CrossRef]
- Frappart, F.; Zeiger, P.; Betbeder, J.; Gond, V.; Bellot, R.; Baghdadi, N.; Blarel, F.; Darrozes, J.; Bourrel, L.; Seyler, F. Automatic detection of inland water bodies along altimetry tracks for estimating surface water storage variations in the congo basin. Remote Sens. 2021, 13, 3804. [Google Scholar] [CrossRef]
- Alsdorf, D.; Han, S.C.; Bates, P.; Melack, J. Seasonal water storage on the Amazon floodplain measured from satellites. Remote Sens. Environ. 2010, 114, 2448–2456. [Google Scholar] [CrossRef]
- Alsdorf, D.; Beighley, E.; Laraque, A.; Lee, H.; Tshimanga, R.; O’Loughlin, F.; Mahé, G.; Dinga, B.; Moukandi, G.; Spencer, R.G. Opportunities for hydrologic research in the Congo Basin. Rev. Geophys. 2016, 54, 378–409. [Google Scholar] [CrossRef] [Green Version]
- Papa, F.; Frappart, F.; Güntner, A.; Prigent, C.; Aires, F.; Getirana, A.C.; Maurer, R. Surface freshwater storage and variability in the Amazon basin from multi-satellite observations, 1993–2007. J. Geophys. Res. Atmos. 2013, 118, 11951–11965. [Google Scholar] [CrossRef] [Green Version]
- Salameh, E.; Frappart, F.; Papa, F.; Güntner, A.; Venugopal, V.; Getirana, A.; Prigent, C.; Aires, F.; Labat, D.; Laignel, B. Fifteen years (1993–2007) of surface freshwater storage variability in the ganges-brahmaputra river basin using multi-satellite observations. Water 2017, 9, 245. [Google Scholar] [CrossRef] [Green Version]
- Frappart, F.; Seyler, F.; Martinez, J.M.M.; León, J.G.; Cazenave, A.; Leon, J.G.; Cazenave, A.; Cazenave, A. Floodplain water storage in the Negro River basin estimated from microwave remote sensing of inundation area and water levels. Remote Sens. Environ. 2005, 99, 387–399. [Google Scholar] [CrossRef] [Green Version]
- Frappart, F.; Papa, F.; Santos Da Silva, J.; Ramillien, G.; Prigent, C.; Seyler, F.; Calmant, S.; da Silva, J.S.; Ramillien, G.; Prigent, C.; et al. Surface freshwater storage and dynamics in the Amazon basin during the 2005 exceptional drought. Environ. Res. Lett. 2012, 7, 044010. [Google Scholar] [CrossRef] [Green Version]
- Frappart, F.; Bourrel, L.; Salazar, X.R.; Baup, F.; Baup, F.; Darrozes, J.; Pombosa, R. Spatio-temporal dynamics of the floods in the Guayas watershed (Ecuatorian Pacific Coast) using ENVISAT ASAR images. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015. [Google Scholar] [CrossRef]
- Lee, H.; Beighley, R.E.; Alsdorf, D.; Jung, H.C.; Shum, C.K.; Duan, J.; Guo, J.; Yamazaki, D.; Andreadis, K. Characterisation of terrestrial water dynamics in the Congo Basin using GRACE and satellite radar altimetry. Remote Sens. Environ. 2011, 115, 3530–3538. [Google Scholar] [CrossRef] [Green Version]
- Becker, M.; Papa, F.; Frappart, F.; Alsdorf, D.; Calmant, S.; da Silva, J.S.; Prigent, C.; Seyler, F. Satellite-based estimates of surface water dynamics in the Congo River Basin. Int. J. Appl. Earth Obs. Geoinf. 2018, 66, 196–209. [Google Scholar] [CrossRef] [Green Version]
- Kitambo, B.; Papa, F.; Paris, A.; Tshimanga, R.; Frappart, F.; Calmant, S.; Elmi, O.; Fleischmann, A.; Becker, M.; Tourian, M.; et al. A long-term monthly surface water storage dataset for the Congo basin from 1992 to 2015. Earth Syst. Sci. Data Discuss. 2022, 1–39. [Google Scholar] [CrossRef]
- Prigent, C.C.; Prigent, C.C.; Prigent, C.C.; Jimenez, C.; Jimenez, C.; Bousquet, P.; Bousquet, P.; Bousquet, P.; Bousquet, P. Satellite-derived global surface water extent and dynamics over the last 25 years (GIEMS-2). J. Geophys. Res. 2020, 125, e2019JD030711. [Google Scholar] [CrossRef]
- Crezee, B.; Dargie, G.C.; Ewango, C.E.; Mitchard, E.T.; Emba B, O.; Kanyama T, J.; Bola, P.; Ndjango, J.B.N.; Girkin, N.T.; Bocko, Y.E.; et al. Mapping peat thickness and carbon stocks of the central Congo Basin using field data. Nat. Geosci. 2022, 15, 639–644. [Google Scholar] [CrossRef]
- Runge, J. The Congo River, Central Africa. In Large Rivers: Geomorphology and Management; Wiley Online Library: Hoboken, NJ, USA, 2008. [Google Scholar] [CrossRef]
- Biddulph, G.E.; Bocko, Y.E.; Bola, P.; Crezee, B.; Dargie, G.C.; Emba, O.; Georgiou, S.; Girkin, N.; Hawthorne, D.; Jonay Jovani-Sancho, A.; et al. Current knowledge on the Cuvette Centrale peatland complex and future research directions. Bois Forets Trop. 2021, 350, 3–14. [Google Scholar] [CrossRef]
- Dargie, G.C. Quantifying and Understanding the Tropical Peatlands of the Central Congo Basin. Ph.D. Thesis, University of Leeds, Leeds, UK, 2015. [Google Scholar]
- Crezee, B.J. Spatial Distribution, Carbon Stocks and Diversity of Peat Swamp Forests in the Central Congo Basin. Ph.D. Thesis, University of Leeds, Leeds, UK, 2022. [Google Scholar]
- Lampela, M.; Jauhiainen, J.; Kämäri, I.; Koskinen, M.; Tanhuanpää, T.; Valkeapää, A.; Vasander, H. Ground surface microtopography and vegetation patterns in a tropical peat swamp forest. Catena 2016, 139, 127–136. [Google Scholar] [CrossRef]
- Apers, S.; Lannoy, G.D.; Lannoy, G.D.; Baird, A.; Baird, A.J.; Cobb, A.R.; Dargie, G.C.; del Aguila Pasquel, J.; del Aguila Pasquel, J.; Gruber, A.; et al. Tropical peatland hydrology simulated with a global land surface model. J. Adv. Model. Earth Syst. 2021, 14, e2021MS002784. [Google Scholar] [CrossRef]
- Wang, Y.; Hess, L.L.; Filoso, S.; Melack, J.M. Understanding the radar backscattering from flooded and nonflooded Amazonian forests: Results from canopy backscatter modeling. Remote Sens. Environ. 1995, 54, 324–332. [Google Scholar] [CrossRef]
- Hess, L.L.; Melack, J.M.; Affonso, A.G.; Barbosa, C.; Gastil-Buhl, M.; Novo, E.M. Wetlands of the Lowland Amazon Basin: Extent, Vegetative Cover, and Dual-season Inundated Area as Mapped with JERS-1 Synthetic Aperture Radar. Wetlands 2015, 35, 745–756. [Google Scholar] [CrossRef]
- Rosenqvist, J.; Rosenqvist, A.; Jensen, K.; McDonald, K. Mapping of maximum and minimum inundation extents in the amazon basin 2014-2017 with ALOS-2 PALSAR-2 scan SAR time-series data. Remote Sens. 2020, 12, 1326. [Google Scholar] [CrossRef] [Green Version]
- Rosenqvist, Å.; Birkett, C.M.; Rosenqvist Åand Birkett, C.M. Evaluation of JERS-1 SAR mosaics for hydrological applications in the Congo river basin. Int. J. Remote Sens. 2002, 23, 1283–1302. [Google Scholar] [CrossRef]
- Rosenqvist, A.; Shimada, M.; Ito, N.; Watanabe, M. ALOS PALSAR: A pathfinder mission for global-scale monitoring of the environment. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3307–3316. [Google Scholar] [CrossRef]
- Garcin, Y.; Schefuß, E.; Dargie, G.C.; Hawthorne, D.; Lawson, I.T.; Sebag, D.; Biddulph, G.E.; Crezee, B.; Bocko, Y.E.; Ifo, S.A.; et al. Hydroclimatic vulnerability of peat carbon in the central Congo Basin. Nature 2022, 612, 277–282. [Google Scholar] [CrossRef]
- Motohka, T.; Kankaku, Y.; Suzuki, S.; Shimada, M. Status of the advanced land observing satellite-2 (ALOS-2) and its follow-on L-band SAR mission. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017. [Google Scholar] [CrossRef]
- Yuan, T.; Lee, H.; Jung, H.C. Toward Estimating wetland water level changes based on hydrological sensitivity analysis of PALSAR backscattering coefficients over different vegetation fields. Remote Sens. 2015, 7, 3153. [Google Scholar] [CrossRef] [Green Version]
- Landuyt, L.; Verhoest, N.E.; Van Coillie, F.M. Flood mapping in vegetated areas using an unsupervised clustering approach on sentinel-1 and-2 imagery. Remote Sens. 2020, 12, 3611. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations - A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [Green Version]
- Camberlin, P.; Barraud, G.; Bigot, S.; Dewitte, O.; Makanzu Imwangana, F.; Maki Mateso, J.C.; Martiny, N.; Monsieurs, E.; Moron, V.; Pellarin, T.; et al. Evaluation of remotely sensed rainfall products over Central Africa. Q. J. R. Meteorol. Soc. 2019, 145, 2115–2138. [Google Scholar] [CrossRef]
- Santos, V.D.; Oliveira, R.A.J.; Datok, P.; Sauvage, S.; Paris, A.; Gosset, M.; Sánchez-Pérez, J.M. Evaluating the performance of multiple satellite-based precipitation products in the Congo River Basin using the SWAT model. J. Hydrol. Reg. Stud. 2022, 42, 101168. [Google Scholar] [CrossRef]
- Fitts, C.R. Groundwater Science; Academic Press: Cambridge, MA, USA, 2012. [Google Scholar] [CrossRef]
- Frappart, F.; Calmant, S.; Cauhopé, M.; Seyler, F.; Cazenave, A. Preliminary results of ENVISAT RA-2-derived water levels validation over the Amazon basin. Remote Sens. Environ. 2006, 100, 252–264. [Google Scholar] [CrossRef] [Green Version]
- Kitambo, B.; Papa, F.; Paris, A.; Raphael, T.; Calmant, S.; Fleischmann, A.S.; Frappart, F.; Becker, M.; Tourian, M.J.; Prigent, C.; et al. A combined use of in situ and satellite-derived observations to characterize surface hydrology and its variability in the Congo River basin. Hydrol. Earth Syst. Sci. 2022, 26, 1857–1882. [Google Scholar] [CrossRef]
- Yamazaki, D.; Ikeshima, D.; Tawatari, R.; Yamaguchi, T.; O’Loughlin, F.; Neal, J.C.; Sampson, C.C.; Kanae, S.; Bates, P.D. A high-accuracy map of global terrain elevations. Geophys. Res. Lett. 2017, 44, 5844–5853. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.S.; Wen, J.H.; Ainsworth, T.L.; Chen, K.S.; Chen, A.J. Improved sigma filter for speckle filtering of SAR imagery. IEEE Trans. Geosci. Remote Sens. 2009, 47, 202–213. [Google Scholar] [CrossRef]
- Kim, D.; Lee, H.; Laraque, A.; Tshimanga, R.M.; Yuan, T.; Jung, H.C.; Beighley, E.; Chang, C.H. Mapping spatio-temporal water level variations over the central congo river using palsar scansar and envisat altimetry data. Int. J. Remote Sens. 2017, 38, 7021–7040. [Google Scholar] [CrossRef]
- De Reu, J.; Bourgeois, J.; Bats, M.; Zwertvaegher, A.; Gelorini, V.; De Smedt, P.; Chu, W.; Antrop, M.; De Maeyer, P.; Finke, P.; et al. Application of the topographic position index to heterogeneous landscapes. Geomorphology 2013, 186, 39–49. [Google Scholar] [CrossRef]
- Botsch, R.E. Chapter 12. Significance and Measures of Association. APLS 301 Scopes and Methods of Political Science Course, USCA 2011. Available online: https://polisci.usca.edu/apls301/Text/Chapter%2012.%20Significance%20and%20Measures%20of%20Association.htm (accessed on 9 June 2023).
- Fu, L.L.; Alsdorf, D.; Morrow, R.; Rodriguez, E.; Mognard, N. SWOT: The Surface Water and Ocean Topography Mission Wide-Swath Altimetric Measurement of Water Elevation on Earth. JPL Open Repository, V1: Pasadena, CA, USA, 2012. Available online: https://hdl.handle.net/2014/41996 (accessed on 9 June 2023).
- Biancamaria, S.; Lettenmaier, D.P.; Pavelsky, T.M. The SWOT Mission and Its Capabilities for Land Hydrology. In Remote Sensing and Water Resources; Cazenave, A., Champollion, N., Benveniste, J., Chen, J., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 117–147. [Google Scholar] [CrossRef] [Green Version]
- Medasani, S.; Reddy, G.U. Analysis and Evaluation of Speckle Filters by Using Polarimetric Synthetic Aperture Radar Data Through Local Statistics. In Proceedings of the 2nd International Conference on Electronics, Communication and Aerospace Technology, ICECA 2018, Coimbatore, India, 29–31 March 2018. [Google Scholar] [CrossRef]
p-Value Threshold | % of Total Study Area Pixels | Average Value for Maximum Length of Correlation (Days) | Gradient of Pixel-Wise Correlation (cm/dB) | Standard Error (cm) | |
---|---|---|---|---|---|
<0.001 | 6 | 0.65 | 29 | 11.52 | 2.43 |
<0.01 | 24 | 0.5 | 25 | 9.87 | 2.8 |
<0.05 | 50 | 0.38 | 22 | 8.42 | 3.04 |
<0.1 | 64 | 0.33 | 21 | 7.75 | 3.12 |
<0.15 | 73 | 0.3 | 20 | 7.35 | 3.17 |
≥0.15 | 27 | 0.01 | 12 | 1.34 | 3.48 |
Metric Tested | ANOVA F-Stat | p-Value | Mean for HWS (cm) | Mean for PS (cm) | |
---|---|---|---|---|---|
Minimum water level | 2687 | 0.0 | 0.0003 | −5.91 | −5.72 |
Maximum water level | 1,230,110 | 0.0 | 0.125 | 14.93 | 21.6 |
Mean water level | 898,409 | 0.0 | 0.094 | 3.40 | 6.32 |
Std. dev. of water level | 898,284 | 0.0 | 0.094 | 4.41 | 5.86 |
Pixel-Wise Correlation Statistics | Model Validation Statistics | ||||||||
---|---|---|---|---|---|---|---|---|---|
Logger | Latitude | Longitude | p-Value | Slope (cm/dB) | Std Error (cm) | Kendall’s | Spearman’s | ||
EKG02 | 1.191986 | 17.84694 | 0.37 | 0.01 | 7.53 | 2.85 | 0.41 | 0.45 | 0.63 |
EKG03 | 1.188695 | 17.83192 | 0.28 | 0.03 | 5.28 | 2.45 | 0.56 | 0.53 | 0.73 |
LOK5_1 | −0.303200 | 18.20069 | 0.25 | 0.04 | 6.65 | 3.35 | 0.22 | 0.32 | 0.47 |
LOK5_3 | −0.314950 | 18.18710 | 0.1 | 0.14 | 3.93 | 3.45 | 0.34 | 0.40 | 0.60 |
LOK5_4 | −0.317950 | 18.18378 | 0.07 | 0.18 | 4.15 | 4.28 | 0.26 | 0.35 | 0.53 |
Pixel-Wise Correlation Statistics | Model Validation Statistics | ||||||||
---|---|---|---|---|---|---|---|---|---|
Altimeter | Latitude | Longitude | p-Value | Slope (cm/dB) | Std Error (cm) | Kendall’s | Spearman’s | ||
KM1355 | −0.24 | 19.23 | 0.04 | 0.24 | 1.38 | 1.87 | 0.64 | 0.51 | 0.67 |
KM1374 | 0.36 | 19.01 | 0.26 | 0.03 | 1.89 | 0.92 | 0.58 | 0.54 | 0.74 |
KM1263 | 0.27 | 18.47 | 0.00 | 0.47 | 0.10 | 1.34 | 0.79 | 0.72 | 0.87 |
KM1360 | −0.39 | 19.26 | 0.07 | 0.19 | 0.95 | 1.03 | 0.85 | 0.84 | 0.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Georgiou, S.; Mitchard, E.T.A.; Crezee, B.; Dargie, G.C.; Young, D.M.; Jovani-Sancho, A.J.; Kitambo, B.; Papa, F.; Bocko, Y.E.; Bola, P.; et al. Mapping Water Levels across a Region of the Cuvette Centrale Peatland Complex. Remote Sens. 2023, 15, 3099. https://doi.org/10.3390/rs15123099
Georgiou S, Mitchard ETA, Crezee B, Dargie GC, Young DM, Jovani-Sancho AJ, Kitambo B, Papa F, Bocko YE, Bola P, et al. Mapping Water Levels across a Region of the Cuvette Centrale Peatland Complex. Remote Sensing. 2023; 15(12):3099. https://doi.org/10.3390/rs15123099
Chicago/Turabian StyleGeorgiou, Selena, Edward T. A. Mitchard, Bart Crezee, Greta C. Dargie, Dylan M. Young, Antonio J. Jovani-Sancho, Benjamin Kitambo, Fabrice Papa, Yannick E. Bocko, Pierre Bola, and et al. 2023. "Mapping Water Levels across a Region of the Cuvette Centrale Peatland Complex" Remote Sensing 15, no. 12: 3099. https://doi.org/10.3390/rs15123099
APA StyleGeorgiou, S., Mitchard, E. T. A., Crezee, B., Dargie, G. C., Young, D. M., Jovani-Sancho, A. J., Kitambo, B., Papa, F., Bocko, Y. E., Bola, P., Crabtree, D. E., Emba, O. B., Ewango, C. E. N., Girkin, N. T., Ifo, S. A., Kanyama, J. T., Mampouya, Y. E. W., Mbemba, M., Ndjango, J. -B. N., ... Lewis, S. L. (2023). Mapping Water Levels across a Region of the Cuvette Centrale Peatland Complex. Remote Sensing, 15(12), 3099. https://doi.org/10.3390/rs15123099