Hyperspectral Imaging of Adaxial and Abaxial Leaf Surfaces for Rapid Assessment of Foliar Nutrient Concentrations in Hass Avocado
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Hyperspectral Imaging System, Image Acquisition and Spectral Data Extraction
2.3. Mineral Nutrient Analysis
2.4. Calibration Model Development
2.5. Model Evaluation
3. Results
3.1. Descriptive Analysis of Foliar Nutrient Concentrations in the Calibration and Test Sets
3.2. Reflectance of Leaf Images
3.3. Prediction Performance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO (Food and Agriculture Organisation). Major Tropical Fruits—Preliminary Market Results 2021; FAO: Rome, Italy, 2022. [Google Scholar]
- Grünwald, N.J. Entering the international year of fruits and vegetables: Tradeoffs between food production and the environment. CABI Agric. Biosci. 2021, 2, 2. [Google Scholar] [CrossRef] [PubMed]
- INDFC (International Nut and Dried Fruit Council). Nuts and Dried Fruits Statistical Yearbook 2021/22; INDFC: Reus, Spain, 2022. [Google Scholar]
- Brunetto, G.; Melo, G.W.B.D.; Toselli, M.; Quartieri, M.; Tagliavini, M. The role of mineral nutrition on yields and fruit quality in grapevine, pear and apple. Rev. Bras. Frutic. 2015, 37, 1089–1104. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.H.; Li, S.X.; Malhi, S. Effects of fertilization and other agronomic measures on nutritional quality of crops. J. Sci. Food Agric. 2008, 88, 7–23. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, V. Physiological disorders in perennial woody tropical and subtropical fruit crops: A review. Indian J. Agric. Sci. 2016, 86, 703–717. [Google Scholar]
- Lemaire, G.; Tang, L.; Bélanger, G.; Zhu, Y.; Jeuffroy, M.H. Forward new paradigms for crop mineral nutrition and fertilization towards sustainable agriculture. Eur. J. Agron. 2021, 125, 126248. [Google Scholar] [CrossRef]
- Prado, R.M.; Rozane, D.E. Leaf analysis as diagnostic tool for balanced fertilization in tropical fruits. In Fruit Crops: Diagnosis and Management of Nutrient Constraints; Srivastava, A.K., Hu, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 131–141. [Google Scholar]
- Dimkpa, C.; Bindraban, P.S.; McLean, J.; Gatere, L.; Singh, U.; Hellums, D. Methods for rapid testing of plant and soil nutrients. In Sustainable Agriculture Reviews; Lichtfouse, E., Ed.; Springer: New York, NY, USA, 2017; Volume 25, pp. 1–43. [Google Scholar]
- Barbedo, J.G.A. Detection of nutrition deficiencies in plants using proximal images and machine learning: A review. Comput. Electron. Agric. 2019, 162, 482–492. [Google Scholar] [CrossRef]
- Wang, N.N.; Sun, D.W.; Yang, Y.C.; Pu, H.; Zhu, Z. Recent advances in the application of hyperspectral imaging for evaluating fruit quality. Food Anal. Methods 2016, 9, 178–191. [Google Scholar] [CrossRef]
- Gama, T.; Wallace, H.M.; Trueman, S.J.; Tahmasbian, I.; Bai, S.H. Hyperspectral imaging for non-destructive prediction of total nitrogen concentration in almond kernels. Acta Hortic. 2018, 1219, 259–264. [Google Scholar] [CrossRef]
- Bai, S.H.; Tahmasbian, I.; Zhou, J.; Nevenimo, T.; Hannet, G.; Walton, D.; Randall, B.; Gama, T.; Wallace, H.M. A non-destructive determination of peroxide values, total nitrogen and mineral nutrients in an edible tree nut using hyperspectral imaging. Comput. Electron. Agric. 2018, 151, 492–500. [Google Scholar] [CrossRef]
- Li, X.; Li, R.; Wang, M.; Liu, Y.; Zhang, B.; Zhou, J. Hyperspectral imaging and their applications in the nondestructive quality assessment of fruits and vegetables. In Hyperspectral Imaging in Agriculture, Food and Environment; Maldonado, A.I.L., Rodriguez-Fuentes, H., Contreras, J.A.V., Eds.; Intech Open: London, UK, 2018; pp. 28–53. [Google Scholar]
- Manley, M. Near-infrared spectroscopy and hyperspectral imaging: Non-destructive analysis of biological materials. Chem. Soc. Rev. 2014, 43, 8200–8214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, Y.; Liu, Z.; Khoshelham, K.; Bai, S.H. Quality estimation of nuts using deep learning classification of hyperspectral imagery. Comput. Electron. Agric. 2021, 180, 105868. [Google Scholar] [CrossRef]
- Mishra, P.; Asaari, M.S.M.; Herrero-Langreo, A.; Lohumi, S.; Diezma, B.; Scheunders, P. Close range hyperspectral imaging of plants: A review. Biosyst. Eng. 2017, 164, 49–67. [Google Scholar] [CrossRef]
- Kämper, W.; Trueman, S.J.; Tahmasbian, I.; Bai, S.H. Rapid determination of nutrient concentrations in Hass avocado fruit by Vis/NIR hyperspectral imaging of flesh or skin. Remote Sens. 2020, 12, 3409. [Google Scholar] [CrossRef]
- Tahmasbian, I.; Wallace, H.M.; Gama, T.; Bai, S.H. An automated non-destructive prediction of peroxide value and free fatty acid level in mixed nut samples. LWT-Food Sci. Technol. 2021, 143, 110893. [Google Scholar] [CrossRef]
- Han, Y.; Bai, S.H.; Trueman, S.J.; Khoshelham, K.; Kämper, W. Predicting the ripening time of ‘Hass’ and ‘Shepard’ avocado fruit by hyperspectral imaging. Precis. Agric. 2023. [Google Scholar] [CrossRef]
- Davur, Y.J.; Kämper, W.; Khoshelham, K.; Trueman, S.J.; Bai, S.H. Estimating the ripeness of Hass avocado fruit using deep learning with hyperspectral imaging. Horticulturae 2023, 9, 599. [Google Scholar] [CrossRef]
- Lu, B.; Dao, P.D.; Liu, J.; He, Y.; Shang, J. Recent advances of hyperspectral imaging technology and applications in agriculture. Remote Sens. 2020, 12, 2659. [Google Scholar] [CrossRef]
- Liu, Y.; Lyu, Q.; He, S.; Yi, S.; Liu, X.; Xie, R.; Zheng, Y.; Deng, L. Prediction of nitrogen and phosphorus contents in citrus leaves based on hyperspectral imaging. Int. J. Agric. Biol. Eng. 2015, 8, 80–88. [Google Scholar] [CrossRef]
- Malmir, M.; Tahmasbian, I.; Xu, Z.; Farrar, M.B.; Bai, S.H. Prediction of macronutrients in plant leaves using chemometric analysis and wavelength selection. J. Soils Sediments 2020, 20, 249–259. [Google Scholar] [CrossRef]
- Ye, X.; Abe, S.; Zhang, S. Estimation and mapping of nitrogen content in apple trees at leaf and canopy levels using hyperspectral imaging. Precis. Agric. 2020, 21, 198–225. [Google Scholar] [CrossRef]
- Abenina, M.I.A.; Maja, J.M.; Cutulle, M.; Melgar, J.C.; Liu, H. Prediction of potassium in peach leaves using hyperspectral imaging and multivariate analysis. AgriEngineering 2022, 4, 400–413. [Google Scholar] [CrossRef]
- De Silva, A.L.; Trueman, S.J.; Kämper, W.; Wallace, H.M.; Nichols, J.; Bai, S.H. Hyperspectral imaging of adaxial and abaxial leaf surfaces as a predictor of macadamia crop nutrition. Plants 2023, 12, 558. [Google Scholar] [CrossRef]
- Wang, Y.J.; Jin, G.; Li, L.Q.; Liu, Y.; Kalkhajeh, Y.K.; Ning, J.M.; Zhang, Z.Z. NIR hyperspectral imaging coupled with chemometrics for nondestructive assessment of phosphorus and potassium contents in tea leaves. Infrared Phys. Technol. 2020, 108, 103365. [Google Scholar] [CrossRef]
- Vigneau, N.; Ecarnot, M.; Rabatel, G.; Roumet, P. Potential of field hyperspectral imaging as a non destructive method to assess leaf nitrogen content in Wheat. Field Crops Res. 2011, 122, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Grieco, M.; Schmidt, M.; Warnemünde, S.; Backhaus, A.; Klück, H.C.; Garibay, A.; Tandrón Moya, Y.A.; Jozefowicz, A.M.; Mock, H.P.; Seiffert, U.; et al. Dynamics and genetic regulation of leaf nutrient concentration in barley based on hyperspectral imaging and machine learning. Plant Sci. 2022, 315, 111123. [Google Scholar] [CrossRef]
- CASA (Civil Aviation Safety Authority). Remote Pilot License. Available online: https://www.casa.gov.au/drones/remote-pilot-licence (accessed on 14 March 2023).
- Dreher, M.L.; Davenport, A.J. Hass avocado composition and potential health effects. Crit. Rev. Food Sci. Nutr. 2013, 53, 738–750. [Google Scholar] [CrossRef] [Green Version]
- Dreher, M.L.; Cheng, F.W.; Ford, N.A. A comprehensive review of Hass avocado clinical trials, observational studies, and biological mechanisms. Nutrients 2021, 13, 4376. [Google Scholar] [CrossRef]
- Lahav, E.; Whiley, A.W. Irrigation and mineral nutrition. In The Avocado: Botany, Production and Uses; Whiley, A.W., Schaffer, B., Wolstenholme, B., Eds.; CABI Publishing: New York, NY, USA, 2002; pp. 259–299. [Google Scholar]
- Lovatt, C.J. Hass Avocado Nutrition Research in California; University of California: Riverside, CA, USA, 2013. [Google Scholar]
- Hapuarachchi, N.S.; Kämper, W.; Wallace, H.M.; Bai, S.H.; Ogbourne, S.M.; Nichols, J.; Trueman, S.J. Boron effects on fruit set, yield, quality and paternity of Hass avocado. Agronomy 2022, 12, 1479. [Google Scholar] [CrossRef]
- Wu, D.; Johansen, K.; Phinn, S.; Robson, A. Suitability of airborne and terrestrial laser scanning for mapping tree crop structural metrics for improved orchard management. Remote Sens. 2020, 12, 1647. [Google Scholar] [CrossRef]
- Subedi, P.P.; Walsh, K.B. Assessment of avocado fruit dry matter content using portable near infrared spectroscopy: Method and instrumentation optimisation. Postharvest Biol. Technol. 2020, 161, 111078. [Google Scholar] [CrossRef]
- Mickelbart, M.; Miller, R.; Parry, S.; Arpaia, M.; Heath, R. Avocado leaf surface morphology. Calif. Avocado Soc. Yearb. 2000, 84, 139–150. [Google Scholar]
- McGeehan, S.L.; Naylor, D.V. Automated instrumental analysis of carbon and nitrogen in plant and soil samples. Commun. Soil Sci. Plant Anal. 1988, 19, 493–505. [Google Scholar] [CrossRef]
- Rayment, G.; Higginson, F. Australian Laboratory Handbook of Soil and Water Chemical Methods; Inkata Press: Melbourne, Australia, 1992. [Google Scholar]
- Martinie, G.D.; Schilt, A.A. Investigation of the wet oxidation efficiencies of perchloric acid mixtures for various organic substances and the identities of residual matter. Anal. Chem. 1976, 48, 70–74. [Google Scholar] [CrossRef]
- Munter, R.; Grande, R. Plant tissue and soil extract analysis by ICP-atomic emission spectrometry. In Developments in Atomic Plasma Spectrochemical Analysis; Byrnes, R.M., Ed.; Heyden: London, UK, 1981; pp. 653–672. [Google Scholar]
- Tahmasbian, I.; Bai, S.H.; Wang, Y.; Boyd, S.; Zhou, J.; Esmaeilani, R.; Xu, Z. Using laboratory-based hyperspectral imaging method to determine carbon functional group distributions in decomposing forest litterfall. Catena 2018, 167, 18–27. [Google Scholar] [CrossRef]
- Tahmasbian, I.; Xu, Z.; Abdullah, K.; Zhou, J.; Esmaeilani, R.; Nguyen, T.T.N.; Bai, S.H. The potential of hyperspectral images and partial least square regression for predicting total carbon, total nitrogen and their isotope composition in forest litterfall samples. J. Soils Sediments 2017, 17, 2091–2103. [Google Scholar] [CrossRef]
- Rinnan, Å.; Van den Berg, F.; Engelsen, S.B. Review of the most common pre-processing techniques for near-infrared spectra. Trends Anal. Chem. 2009, 28, 1201–1222. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; Makino, Y.; Oshita, S. Parsimonius model development for real time monitoring of moisture in red meat using HSI. Food Chem. 2016, 196, 1084–1091. [Google Scholar] [CrossRef]
- Fearn, T. On orthogonal signal correction. Chemometr. Intell. Lab. Syst. 2000, 50, 47–52. [Google Scholar] [CrossRef]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression a basic tool of chemometrics. Chemometr. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Berrueta, L.A.; Alonso-Salces, R.M.; Héberger, K. Supervised pattern recognition in food analysis. J. Chromatogr. A 2007, 1158, 196–214. [Google Scholar] [CrossRef]
- Bellon-Maurel, V.; Fernandez-Ahumada, E.; Palagos, B.; Roger, J.M.; McBratney, A. Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy. Trends Anal. Chem. 2010, 29, 1073–1081. [Google Scholar] [CrossRef]
- Morellos, A.; Pantazi, X.E.; Moshou, D.; Alexandridis, T.; Whetton, R.; Tziotzios, G.; Wiebensohn, J.; Bill, R.; Mouazen, A.M. Machine learning based prediction of soil total nitrogen, organic carbon and moisture content by using VIS-NIR spectroscopy. Biosyst. Eng. 2016, 152, 104–116. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.W.; Laird, D.A.; Mausbach, M.J.; Hurburgh, C.R. Near-infrared reflectance spectroscopy–principal components regression analyses of soil properties. Soil Sci. Soc. Am. J. 2001, 65, 480–490. [Google Scholar] [CrossRef] [Green Version]
- Camo. The Unscrambler® X v10.3 User Manual; Camo Software: Oslo, Norway, 2019. [Google Scholar]
- Tamayo, Á.; Bernal, A.; Díaz, A.D.C. Composition and removal of nutrients by the harvested fruit of avocado cv. Hass in Antioquia. Rev. Fac. Nac. Agron. Medellin. 2018, 71, 8511–8516. [Google Scholar] [CrossRef]
- Salazar-García, S.; Álvarez-Bravo, A.; Ibarra-Estrada, M.; Mellado-Vázquez, A. Accumulation of nutrients during the development of ‘Méndez’ avocado fruit. Terra Latinoam. 2019, 37, 469–478. [Google Scholar] [CrossRef]
- Campisi-Pinto, S.; Zheng, Y.; Rolshausen, P.E.; Crowley, D.E.; Faber, B.; Bender, G.; Bianchi, M.; Khuong, T.; Lovatt, C.J. Optimal nutrient concentration ranges of ‘Hass’ avocado cauliflower stage inflorescences—Potential diagnostic tool to optimize tree nutrient status and increase yield. HortScience 2017, 52, 1707–1715. [Google Scholar] [CrossRef] [Green Version]
- Farrar, M.B.; Wallace, H.M.; Tahmasbian, I.; Yule, C.M.; Dunn, P.K.; Bai, S.H. Rapid assessment of soil carbon and nutrients following application of organic amendments. Catena 2023, 223, 106928. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, F.; He, Y.; Gong, X. Detecting macronutrients content and distribution in oilseed rape leaves based on hyperspectral imaging. Biosyst. Eng. 2013, 115, 56–65. [Google Scholar] [CrossRef]
- Melado-Herreros, A.; Nieto-Ortega, S.; Olabarrieta, I.; Gutiérrez, M.; Villar, A.; Zufía, J.; Gorretta, N.; Roger, J.M. Postharvest ripeness assessment of ‘Hass’ avocado based on development of a new ripening index and Vis-NIR spectroscopy. Postharvest Biol. Technol. 2021, 181, 111683. [Google Scholar] [CrossRef]
- Maftoonazad, N.; Karimi, Y.; Ramaswamy, H.S.; Prasher, S.O. Artificial neural network modeling of hyperspectral radiometric data for quality changes associated with avocados during storage. J. Food Process. Preserv. 2011, 35, 432–446. [Google Scholar] [CrossRef]
- Mayr, S.; Beć, K.B.; Grabska, J.; Wiedemair, V.; Pürgy, V.; Popp, M.A.; Bonn, G.K.; Huck, C.W. Challenging handheld NIR spectrometers with moisture analysis in plant matrices: Performance of PLSR vs. GPR vs. ANN modelling. Spectrochim Acta A Mol. Biomol. Spectrosc. 2021, 249, 119342. [Google Scholar] [CrossRef] [PubMed]
- Prananto, J.A.; Minasny, B.; Weaver, T. Near infrared (NIR) spectroscopy as a rapid and cost-effective method for nutrient analysis of plant leaf tissues. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2020; Volume 164, pp. 1–49. [Google Scholar]
- Lassalle, G.; Fabre, S.; Credoz, A.; Hédacq, R.; Dubucq, D.; Elger, A. Mapping leaf metal content over industrial brownfields using airborne hyperspectral imaging and optimized vegetation indices. Sci. Rep. 2021, 11, 2. [Google Scholar] [CrossRef]
- Wieczorek, D.; Żyszka-Haberecht, B.; Kafka, A.; Lipok, J. Determination of phosphorus compounds in plant tissues: From colorimetry to advanced instrumental analytical chemistry. Plant Methods 2022, 18, 22. [Google Scholar] [CrossRef] [PubMed]
- Santoso, H.; Tani, H.; Wang, X.; Segah, H. Predicting oil palm leaf nutrient contents in Kalimantan, Indonesia by measuring reflectance with a spectroradiometer. Int. J. Remote Sens. 2019, 40, 7581–7602. [Google Scholar] [CrossRef]
- Kuska, M.T.; Behmann, J.; Mahlein, A.K. Potential of hyperspectral imaging to detect and identify the impact of chemical warfare compounds on plant tissue. Pure Appl. Chem. 2018, 90, 1615–1624. [Google Scholar] [CrossRef]
- Zhou, X.; Sun, J.; Tian, Y.; Lu, B.; Hang, Y.; Chen, Q. Hyperspectral technique combined with deep learning algorithm for detection of compound heavy metals in lettuce. Food Chem. 2020, 321, 126503. [Google Scholar] [CrossRef]
- Ruffing, A.M.; Anthony, S.M.; Strickland, L.M.; Lubkin, I.; Dietz, C.R. identification of metal stresses in Arabidopsis thaliana using hyperspectral reflectance imaging. Front. Plant Sci. 2021, 12, 624656. [Google Scholar] [CrossRef]
- Blanke, M.M.; Lovatt, C.J. Anatomy and transpiration of the avocado inflorescence. Ann. Bot. 1993, 71, 543–547. [Google Scholar] [CrossRef]
- Newett, S. Little evidence to support the use of foliar applied nutrients in avocado. Talk. Avocados 2000, 11, 24–27. [Google Scholar]
- Wolstenholme, B.N.; Whiley, A.W. Ecophysiology of the avocado (Persea americana Mill.) tree as a basis for pre-harvest management. Rev. Chapingo Ser. Hortic. 1999, 5, 77–88. [Google Scholar]
- Rodriguez, E.A.G.; Penariol, M.P.; Aguiar, P.L.A.C.; Panizzi, R.C.; Andrade, R.A. Parameters for the standardization of chlorophyll and assessment of PS II quantum efficiency for avocado (Persea americana Mill). Biosci. J. 2017, 33, 968–978. [Google Scholar] [CrossRef] [Green Version]
- Hofman, P.; Marques, R.; Searle, C.; Stubbings, B.; Moody, P. Improving avocado fruit quality through tree nutrition. In Proceedings of the New Zealand and Australia Avocado Grower’s Conference, Tauranga, New Zealand, 20–22 September 2005. [Google Scholar]
- Salazar-García, S.; Cossio-Vargas, L.E.; González-Durán, I.J.L. Correction of chronic zinc deficiency in ‘Hass’ avocado. Rev. Chapingo Ser. Hortic. 2008, 14, 153–159. [Google Scholar]
- Selladurai, R.; Awachare, C.M. Nutrient management for avocado (Persea americana miller). J. Plant Nutr. 2020, 43, 138–147. [Google Scholar] [CrossRef]
- Escobar, J.V.; Cortes, M.; Correa, G.; Rondon, T.; Rodríguez, P. ‘Hass’ avocado internal disorders under simulated export conditions and its relationship with flesh mineral content and preharvest variables. Horticulturae 2021, 7, 77. [Google Scholar] [CrossRef]
Variable | Surface | Calibration Set | Test Set | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Min. | Max. | CV | Mean | SD | Min. | Max. | CV | ||
N | Abaxial | 2.51 | 0.36 | 1.49 | 3.28 | 0.14 | 2.52 | 0.27 | 2.04 | 2.95 | 0.11 |
Adaxial | 2.54 | 0.34 | 1.48 | 3.28 | 0.13 | 2.41 | 0.34 | 1.83 | 3.04 | 0.14 | |
Combined | 2.51 | 0.35 | 1.48 | 3.28 | 0.14 | 2.53 | 0.30 | 1.83 | 3.22 | 0.12 | |
P | Abaxial | 0.202 | 0.042 | 0.118 | 0.297 | 0.208 | 0.217 | 0.044 | 0.133 | 0.289 | 0.203 |
Adaxial | 0.204 | 0.042 | 0.118 | 0.284 | 0.206 | 0.208 | 0.048 | 0.128 | 0.297 | 0.231 | |
Combined | 0.206 | 0.043 | 0.118 | 0.297 | 0.209 | 0.199 | 0.042 | 0.118 | 0.275 | 0.211 | |
K | Abaxial | 1.04 | 0.24 | 0.56 | 1.63 | 0.23 | 0.96 | 0.30 | 0.57 | 1.57 | 0.31 |
Adaxial | 1.03 | 0.26 | 0.56 | 1.63 | 0.25 | 1.05 | 0.27 | 0.70 | 1.49 | 0.26 | |
Combined | 1.02 | 0.26 | 0.56 | 1.63 | 0.25 | 1.04 | 0.25 | 0.57 | 1.63 | 0.24 | |
Al | Abaxial | 52.1 | 46.0 | 13.1 | 180.9 | 0.9 | 53.8 | 49.0 | 15.4 | 168.6 | 0.9 |
Adaxial | 53.4 | 47.4 | 13.1 | 177.4 | 0.9 | 56.4 | 53.1 | 15.7 | 201.2 | 0.9 | |
Combined | 56.4 | 49.4 | 13.1 | 201.2 | 0.9 | 45.8 | 44.3 | 13.1 | 177.4 | 1.0 | |
B | Abaxial | 70.0 | 35.3 | 24.3 | 188.1 | 0.5 | 69.1 | 28.4 | 28.2 | 155.8 | 0.4 |
Adaxial | 70.1 | 34.0 | 24.3 | 188.1 | 0.5 | 66.6 | 34.5 | 25.0 | 172.2 | 0.5 | |
Combined | 69.4 | 33.3 | 24.3 | 188.1 | 0.5 | 68.4 | 37.3 | 25.0 | 188.1 | 0.6 | |
Ca | Abaxial | 0.932 | 0.483 | 0.300 | 2.28 | 0.5 | 0.840 | 0.309 | 0.268 | 1.62 | 0.4 |
Adaxial | 0.959 | 0.486 | 0.268 | 2.28 | 0.5 | 0.828 | 0.367 | 0.373 | 1.85 | 0.4 | |
Combined | 0.925 | 0.456 | 0.268 | 2.28 | 0.5 | 0.928 | 0.481 | 0.358 | 1.85 | 0.5 | |
Cu | Abaxial | 55.3 | 44.6 | 10.0 | 160.4 | 0.8 | 56.5 | 45.2 | 10.6 | 123.6 | 0.8 |
Adaxial | 57.0 | 45.5 | 10.0 | 160.4 | 0.8 | 44.7 | 39.8 | 10.5 | 121.8 | 0.9 | |
Combined | 57.1 | 44.7 | 10.0 | 160.4 | 0.8 | 47.2 | 42.7 | 10.3 | 144.8 | 0.9 | |
Fe | Abaxial | 92.7 | 50.4 | 40.5 | 270.9 | 0.5 | 99.2 | 60.4 | 43.0 | 252.8 | 0.6 |
Adaxial | 93.6 | 51.4 | 42.6 | 252.8 | 0.6 | 104.1 | 58.3 | 40.5 | 270.9 | 0.6 | |
Combined | 96.7 | 66.0 | 40.5 | 681.6 | 0.7 | 112.9 | 103.8 | 42.6 | 681.6 | 0.9 | |
Mg | Abaxial | 0.280 | 0.117 | 0.129 | 0.631 | 0.4 | 0.286 | 0.119 | 0.133 | 0.495 | 0.4 |
Adaxial | 0.287 | 0.121 | 0.129 | 0.631 | 0.4 | 0.279 | 0.112 | 0.157 | 0.524 | 0.4 | |
Combined | 0.281 | 0.117 | 0.129 | 0.631 | 0.4 | 0.298 | 0.121 | 0.129 | 0.611 | 0.4 | |
Mn | Abaxial | 926 | 615 | 276 | 2558 | 0.7 | 926 | 530 | 383 | 2118 | 0.6 |
Adaxial | 953 | 603 | 276 | 2697 | 0.6 | 965 | 693 | 299 | 2558 | 0.7 | |
Combined | 933 | 592 | 276 | 2697 | 0.6 | 1005 | 706 | 276 | 2508 | 0.7 | |
Na | Abaxial | 113.0 | 47.6 | 40.1 | 272.6 | 0.4 | 115.6 | 42.1 | 39.5 | 207.1 | 0.4 |
Adaxial | 114.9 | 48.4 | 39.5 | 272.6 | 0.4 | 108.1 | 36.8 | 51.5 | 195.2 | 0.3 | |
Combined | 116.3 | 51.7 | 39.5 | 345.9 | 0.4 | 110.7 | 46.3 | 50.2 | 345.9 | 0.4 | |
S | Abaxial | 2373 | 443 | 1329 | 3510 | 0.2 | 2416 | 497 | 1741 | 3340 | 0.2 |
Adaxial | 2379 | 456 | 1329 | 3510 | 0.2 | 2461 | 405 | 1749 | 3340 | 0.2 | |
Combined | 2397 | 461 | 1329 | 3954 | 0.2 | 2422 | 513 | 1538 | 3954 | 0.2 | |
Zn | Abaxial | 39.3 | 8.4 | 24.3 | 59.3 | 0.2 | 40.5 | 8.3 | 28.4 | 55.6 | 0.2 |
Adaxial | 39.0 | 8.2 | 24.3 | 57.5 | 0.2 | 41.8 | 8.0 | 30.8 | 59.3 | 0.2 | |
Combined | 40.0 | 8.7 | 24.3 | 76.8 | 0.2 | 38.7 | 9.7 | 26.7 | 76.8 | 0.3 |
Variable | Image | Transformation | LV | Calibration Set | Validation Set | Test Set | ||||
---|---|---|---|---|---|---|---|---|---|---|
RMSEC | R2C | RMSEV | R2V | RMSEP | R2P | RPD | ||||
N | Abaxial | – | 10 | 0.20 | 0.67 | 0.25 | 0.52 | 0.17 | 0.60 | 1.61 |
Adaxial | SNV | 4 | 0.22 | 0.57 | 0.24 | 0.50 | 0.24 | 0.49 | 1.43 | |
Combined | – | 15 | 0.19 | 0.72 | 0.22 | 0.61 | 0.22 | 0.45 | 1.55 | |
P | Abaxial | – | 6 | 0.02 | 0.67 | 0.03 | 0.58 | 0.02 | 0.71 | 1.90 |
Adaxial | MSC | 5 | 0.02 | 0.71 | 0.03 | 0.64 | 0.03 | 0.63 | 1.67 | |
Combined | – | 7 | 0.03 | 0.66 | 0.03 | 0.63 | 0.03 | 0.58 | 1.04 | |
K | Abaxial | – | 9 | 0.15 | 0.60 | 0.18 | 0.44 | 0.22 | 0.43 | 1.36 |
Adaxial | OSC | 2 | 0.15 | 0.66 | 0.17 | 0.58 | 0.18 | 0.56 | 1.54 | |
Combined | Detrend | 9 | 0.17 | 0.55 | 0.19 | 0.46 | 0.19 | 0.43 | 0.92 | |
Al | Abaxial | Detrend | 5 | 16.8 | 0.87 | 18.5 | 0.84 | 16.8 | 0.88 | 2.91 |
Adaxial | SNV | 4 | 16.8 | 0.87 | 18.1 | 0.86 | 22.2 | 0.82 | 2.39 | |
Combined | – | 7 | 17.1 | 0.88 | 18.2 | 0.86 | 16.6 | 0.86 | 2.67 | |
B | Abaxial | MSC | 5 | 22.8 | 0.58 | 25.5 | 0.48 | 19.5 | 0.51 | 1.46 |
Adaxial | MSC | 4 | 23.3 | 0.53 | 25.4 | 0.45 | 20.7 | 0.63 | 1.67 | |
Combined | SNV | 5 | 29.5 | 0.48 | 31.5 | 0.41 | 28.5 | 0.40 | 1.31 | |
Ca | Abaxial | – | 5 | 0.18 | 0.86 | 0.20 | 0.83 | 0.19 | 0.59 | 1.59 |
Adaxial | MSC + Detrend | 4 | 0.21 | 0.82 | 0.22 | 0.79 | 0.23 | 0.58 | 1.58 | |
Combined | – | 6 | 0.22 | 0.76 | 0.23 | 0.75 | 0.17 | 0.88 | 2.86 | |
Cu | Abaxial | – | 3 | 19.3 | 0.81 | 20.2 | 0.80 | 16.4 | 0.86 | 2.76 |
Adaxial | OSC | 1 | 17.1 | 0.86 | 17.4 | 0.86 | 14.7 | 0.86 | 2.71 | |
Combined | SNV | 3 | 19.9 | 0.80 | 20.4 | 0.79 | 20.4 | 0.77 | 2.09 | |
Fe | Abaxial | – | 4 | 28.2 | 0.68 | 30.9 | 0.63 | 25.8 | 0.81 | 2.34 |
Adaxial | SNV | 4 | 26.9 | 0.72 | 29.2 | 0.68 | 29.8 | 0.73 | 1.96 | |
Combined | – | 6 | 26.1 | 0.73 | 27.4 | 0.71 | 34.7 | 0.67 | 1.75 | |
Mg | Abaxial | OSC | 2 | 0.04 | 0.89 | 0.04 | 0.88 | 0.04 | 0.87 | 2.81 |
Adaxial | MSC | 4 | 0.05 | 0.83 | 0.06 | 0.80 | 0.04 | 0.85 | 2.68 | |
Combined | MSC | 6 | 0.05 | 0.83 | 0.05 | 0.81 | 0.04 | 0.87 | 2.80 | |
Mn | Abaxial | MSC | 3 | 228 | 0.86 | 245 | 0.84 | 246 | 0.85 | 2.15 |
Adaxial | MSC | 4 | 274 | 0.79 | 297 | 0.76 | 273 | 0.84 | 2.54 | |
Combined | MSC | 5 | 273 | 0.79 | 289 | 0.76 | 256 | 0.87 | 2.76 | |
Na | Abaxial | MSC | 4 | 35.7 | 0.43 | 39.6 | 0.32 | 34.5 | 0.30 | 1.22 |
Adaxial | – | 3 | 40.2 | 0.31 | 42.7 | 0.23 | 31.1 | 0.25 | 1.18 | |
Combined | SNV | 11 | 37.1 | 0.48 | 43.0 | 0.31 | 29.3 | 0.59 | 1.58 | |
S | Abaxial | – | 4 | 341 | 0.40 | 369 | 0.31 | 545 | NA | 0.91 |
Adaxial | SNV | 4 | 377 | 0.31 | 411 | 0.20 | 377 | 0.09 | 1.07 | |
Combined | – | 3 | 410 | 0.20 | 421 | 0.17 | 489 | 0.09 | 1.05 | |
Zn | Abaxial | – | 5 | 4.81 | 0.67 | 5.26 | 0.61 | 3.75 | 0.79 | 2.21 |
Adaxial | SNV | 5 | 4.50 | 0.69 | 4.98 | 0.63 | 5.62 | 0.49 | 1.43 | |
Combined | – | 6 | 5.45 | 0.61 | 5.70 | 0.57 | 5.87 | 0.63 | 1.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hapuarachchi, N.S.; Trueman, S.J.; Kämper, W.; Farrar, M.B.; Wallace, H.M.; Nichols, J.; Bai, S.H. Hyperspectral Imaging of Adaxial and Abaxial Leaf Surfaces for Rapid Assessment of Foliar Nutrient Concentrations in Hass Avocado. Remote Sens. 2023, 15, 3100. https://doi.org/10.3390/rs15123100
Hapuarachchi NS, Trueman SJ, Kämper W, Farrar MB, Wallace HM, Nichols J, Bai SH. Hyperspectral Imaging of Adaxial and Abaxial Leaf Surfaces for Rapid Assessment of Foliar Nutrient Concentrations in Hass Avocado. Remote Sensing. 2023; 15(12):3100. https://doi.org/10.3390/rs15123100
Chicago/Turabian StyleHapuarachchi, Nimanie S., Stephen J. Trueman, Wiebke Kämper, Michael B. Farrar, Helen M. Wallace, Joel Nichols, and Shahla Hosseini Bai. 2023. "Hyperspectral Imaging of Adaxial and Abaxial Leaf Surfaces for Rapid Assessment of Foliar Nutrient Concentrations in Hass Avocado" Remote Sensing 15, no. 12: 3100. https://doi.org/10.3390/rs15123100
APA StyleHapuarachchi, N. S., Trueman, S. J., Kämper, W., Farrar, M. B., Wallace, H. M., Nichols, J., & Bai, S. H. (2023). Hyperspectral Imaging of Adaxial and Abaxial Leaf Surfaces for Rapid Assessment of Foliar Nutrient Concentrations in Hass Avocado. Remote Sensing, 15(12), 3100. https://doi.org/10.3390/rs15123100