Early Detection of Dicamba and 2,4-D Herbicide Drifting Injuries on Soybean with a New Spatial–Spectral Algorithm Based on LeafSpec, an Accurate Touch-Based Hyperspectral Leaf Scanner
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Design
2.2. Image Acquisition and Visual Assessment of Herbicide Injury Phenotypes
2.3. Image Processing and Calibration
2.4. Mean Spectrum and Normalized Difference Vegetative Index (NDVI) Calculation from HSIs
2.5. Statistical Tests for Visual Assessment of Herbicide Injuries and NDVI
2.6. Machine Learning Classification Model Built by Leaf Average Spectrum
2.7. Distribution Analysis of Herbicide Injury Classification on Top Matured Leaves
2.7.1. Morphological Features
2.7.2. Texture Analysis
3. Results and Discussion
3.1. Visual Damage Ground Truth and NDVI
3.2. Machine Learning Classification Modeling Result of Mean Spectrum of the Whole Leaf
3.2.1. Machine Learning Method Comparison Preliminary Result
3.2.2. High-Dosage Herbicide Treatment Classification
3.2.3. Combined Dosages Dataset Classification
3.2.4. All Treatments Dataset Classification
3.2.5. PLS-DA Prediction Result Heatmap
3.3. Distribution Analysis Result of Dicamba and 2,4-D Damage
4. Discussion
4.1. Visual Damage Ground Truth and NDVI
4.2. Machine Learning Classification Result of Mean Spectrum of the Whole Leaf
4.2.1. High-Dosage Herbicide Treatment Classification
4.2.2. Combined Dosages Dataset Classification
4.2.3. All Treatments Dataset Classification
4.3. Distribution Analysis Result of Dicamba and 2,4-D Damage
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meyeres, T.; Lancaster, S.; Kumar, V.; Roozeboom, K.; Peterson, D. Non-Dicamba-Resistant Soybean Response to Multiple Dicamba Applications. Agron. J. 2023, 115, 147–160. [Google Scholar] [CrossRef]
- Riter, L.S.; Pai, N.; Vieira, B.C.; MacInnes, A.; Reiss, R.; Hapeman, C.J.; Kruger, G.R. Conversations about the Future of Dicamba: The Science Behind Off-Target Movement. J. Agric. Food Chem. 2021, 69, 14435–14444. [Google Scholar] [CrossRef] [PubMed]
- Behrens, M.R.; Mutlu, N.; Chakraborty, S.; Dumitru, R.; Jiang, W.Z.; LaVallee, B.J.; Herman, P.L.; Clemente, T.E.; Weeks, D.P. Dicamba Resistance: Enlarging and Preserving Biotechnology-Based Weed Management Strategies. Science 2007, 316, 1185–1188. [Google Scholar] [CrossRef] [PubMed]
- Byker, H.P.; Soltani, N.; Robinson, D.E.; Tardif, F.J.; Lawton, M.B.; Sikkema, P.H. Control of Glyphosate-Resistant Horseweed (Conyza canadensis) with Dicamba Applied Preplant and Postemergence in Dicamba-Resistant Soybean. Weed Technol. 2013, 27, 492–496. [Google Scholar] [CrossRef]
- Hodgskiss, C.; Legleiter, T.; Young, B.; Johnson, W. Effects of Herbicide Management Practices on the Weed Density and Richness in 2,4-D-Resistant Cropping Systems in Indiana. Weed Technol. 2021, 36, 130–136. [Google Scholar] [CrossRef]
- Peterson, M.A.; McMaster, S.A.; Riechers, D.E.; Skelton, J.; Stahlman, P.W. 2,4-D Past, Present, and Future: A Review. Weed Technol. 2016, 30, 303–345. [Google Scholar] [CrossRef]
- Islam, F.; Wang, J.; Farooq, M.A.; Khan, M.S.S.; Xu, L.; Zhu, J.; Zhao, M.; Muños, S.; Li, Q.X.; Zhou, W. Potential Impact of the Herbicide 2,4-Dichlorophenoxyacetic Acid on Human and Ecosystems. Environ. Int. 2018, 111, 332–351. [Google Scholar] [CrossRef] [PubMed]
- Brochado, M.G.d.S.; Mielke, K.C.; de Paula, D.F.; Laube, A.F.S.; Alcántara-de la Cruz, R.; Gonzatto, M.P.; Mendes, K.F. Impacts of Dicamba and 2,4-D Drift on ‘Ponkan’ Mandarin Seedlings, Soil Microbiota and Amaranthus Retroflexus. J. Hazard. Mater. Adv. 2022, 6, 100084. [Google Scholar] [CrossRef]
- Ceolin, B.C.; Kemmerich, M.; Noguera, M.M.; Camargo, E.R.; Avila, L.A. de Evaluation of an Alternative Sorbent for Passive Sampling of the Herbicides 2,4-D and Dicamba in the Air. J. Environ. Sci. Health Part B 2021, 56, 634–643. [Google Scholar] [CrossRef]
- Egan, J.F.; Mortensen, D.A. Quantifying Vapor Drift of Dicamba Herbicides Applied to Soybean. Environ. Toxicol. Chem. 2012, 31, 1023–1031. [Google Scholar] [CrossRef]
- Osipitan, O.A.; Scott, J.E.; Knezevic, S.Z. Glyphosate-Resistant Soybean Response to Micro-Rates of Three Dicamba-Based Herbicides. Agrosyst. Geosci. Environ. 2019, 2, 180052. [Google Scholar] [CrossRef]
- Jones, G.T.; Norsworthy, J.K.; Barber, T.; Gbur, E.; Kruger, G.R. Off-Target Movement of DGA and BAPMA Dicamba to Sensitive Soybean. Weed Technol. 2019, 33, 51–65. [Google Scholar] [CrossRef]
- Soltani, N.; Oliveira, M.C.; Alves, G.S.; Werle, R.; Norsworthy, J.K.; Sprague, C.L.; Young, B.G.; Reynolds, D.B.; Brown, A.; Sikkema, P.H. Off-Target Movement Assessment of Dicamba in North America. Weed Technol. 2020, 34, 318–330. [Google Scholar] [CrossRef]
- Bish, M.D.; Bradley, K.W. Survey of Missouri Pesticide Applicator Practices, Knowledge, and Perceptions. Weed Technol. 2017, 31, 165–177. [Google Scholar] [CrossRef]
- Erickson, B.E. Dicamba Still Harmed Nontarget Crops in 2021. Chem. Eng. News 2022, 100, 19. [Google Scholar] [CrossRef]
- Robinson, A.P.; Simpson, D.M.; Johnson, W.G. Response of Glyphosate-Tolerant Soybean Yield Components to Dicamba Exposure. Weed Sci. 2013, 61, 526–536. [Google Scholar] [CrossRef]
- Scholtes, A.B.; Sperry, B.P.; Reynolds, D.B.; Irby, J.T.; Eubank, T.W.; Barber, L.T.; Dodds, D.M. Effect of Soybean Growth Stage on Sensitivity to Sublethal Rates of Dicamba and 2,4-D. Weed Technol. 2019, 33, 555–561. [Google Scholar] [CrossRef]
- Centner, T.J. Creating a Compensation Program for Injuries from Dicamba Spray Drift and Volatilization. Appl. Econ. Perspect. Policy 2022, 44, 1068–1082. [Google Scholar] [CrossRef]
- González, A.J.; Gallego, A.; Gemini, V.L.; Papalia, M.; Radice, M.; Gutkind, G.; Planes, E.; Korol, S.E. Degradation and Detoxification of the Herbicide 2,4-Dichlorophenoxyacetic Acid (2,4-D) by an Indigenous Delftia Sp. Strain in Batch and Continuous Systems. Int. Biodeterior. Biodegrad. 2012, 66, 8–13. [Google Scholar] [CrossRef]
- Foster, M.R.; Griffin, J.L. Injury Criteria Associated with Soybean Exposure to Dicamba. Weed Technol. 2018, 32, 608–617. [Google Scholar] [CrossRef]
- Shi, C.; Zheng, Y.; Geng, J.; Liu, C.; Pei, H.; Ren, Y.; Dong, Z.; Zhao, L.; Zhang, N.; Chen, F. Identification of Herbicide Resistance Loci Using a Genome-Wide Association Study and Linkage Mapping in Chinese Common Wheat. Crop J. 2020, 8, 666–675. [Google Scholar] [CrossRef]
- Herbicide Damage to Plants. Available online: https://www.missouribotanicalgarden.org/gardens-gardening/your-garden/help-for-the-home-gardener/advice-tips-resources/pests-and-problems/environmental/herbicide (accessed on 7 January 2023).
- Huang, Y.; Yuan, L.; Reddy, K.N.; Zhang, J. In-Situ Plant Hyperspectral Sensing for Early Detection of Soybean Injury from Dicamba. Biosyst. Eng. 2016, 149, 51–59. [Google Scholar] [CrossRef]
- Suarez, L.A.; Apan, A.; Werth, J. Detection of Phenoxy Herbicide Dosage in Cotton Crops through the Analysis of Hyperspectral Data. Int. J. Remote Sens. 2017, 38, 6528–6553. [Google Scholar] [CrossRef]
- Marques, M.G.; da Cunha, J.P.A.R.; Lemes, E.M. Dicamba Injury on Soybean Assessed Visually and with Spectral Vegetation Index. AgriEngineering 2021, 3, 240–250. [Google Scholar] [CrossRef]
- Sherwani, S.I.; Arif, I.A.; Khan, H.A.; Sherwani, S.I.; Arif, I.A.; Khan, H.A. Modes of Action of Different Classes of Herbicides. In Herbicides, Physiology of Action, and Safety; IntechOpen: London, UK, 2015; ISBN 978-953-51-2217-3. [Google Scholar]
- Ma, D.; Wang, L.; Zhang, L.; Song, Z.; Rehman, T.U.; Jin, J. Stress Distribution Analysis on Hyperspectral Corn Leaf Images for Improved Phenotyping Quality. Sensors 2020, 20, 3659. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.; Bai, G.; Stoerger, V.; Schnable, J.C. Temporal Dynamics of Maize Plant Growth, Water Use, and Leaf Water Content Using Automated High Throughput RGB and Hyperspectral Imaging. Comput. Electron. Agric. 2016, 127, 625–632. [Google Scholar] [CrossRef]
- McFadden, D.; Fry, J.; Keeley, S.; Hoyle, J.; Raudenbush, Z. Establishment of Kentucky Bluegrass and Tall Fescue Seeded after Herbicide Application. Crop Forage Turfgrass Manag. 2022, 8, e20151. [Google Scholar] [CrossRef]
- Hu, J.; Li, C.; Wen, Y.; Gao, X.; Shi, F.; Han, L. Spatial Distribution of SPAD Value and Determination of the Suitable Leaf for N Diagnosis in Cucumber. IOP Conf. Ser. Earth Environ. Sci. 2018, 108, 022001. [Google Scholar] [CrossRef]
- Weidenhamer, J.D.; Triplett, G.B., Jr.; Sobotka, F.E. Dicamba Injury to Soybean. Agron. J. 1989, 81, 637–643. [Google Scholar] [CrossRef]
- Roesler, G.D.; Jonck, L.C.G.; Silva, R.P.; Victoria, J.A.; Silva, H.A.C.; Monquero, P.A. Decontamination Methods of Tanks to Spray 2,4-D and Dicamba and the Effects of These Herbicides on Citrus and Vegetable Species. Aust. J. Crop Sci. 2020, 14, 1302–1309. [Google Scholar] [CrossRef]
- Wang, L.; Duan, Y.; Zhang, L.; Wang, J.; Li, Y.; Jin, J. LeafScope: A Portable High-Resolution Multispectral Imager for In Vivo Imaging Soybean Leaf. Sensors 2020, 20, 2194. [Google Scholar] [CrossRef] [PubMed]
- Yogeshwari, M.; Thailambal, G. Automatic Feature Extraction and Detection of Plant Leaf Disease Using GLCM Features and Convolutional Neural Networks. Mater. Today Proc. 2023, 81, 530–536. [Google Scholar] [CrossRef]
- Mahajan, S.; Raina, A.; Gao, X.-Z.; Kant Pandit, A. Plant Recognition Using Morphological Feature Extraction and Transfer Learning over SVM and AdaBoost. Symmetry 2021, 13, 356. [Google Scholar] [CrossRef]
- Zimmer, M. Differentiating 2,4-D and Dicamba Injury on Soybeans; Purdue University: West Lafayette, IN, USA, 2019. [Google Scholar]
- Behrens, R.; Lueschen, W.E. Dicamba Volatility. Weed Sci. 1979, 27, 486–493. [Google Scholar] [CrossRef]
- Zhang, L.; Maki, H.; Ma, D.; Sánchez-Gallego, J.A.; Mickelbart, M.V.; Wang, L.; Rehman, T.U.; Jin, J. Optimized Angles of the Swing Hyperspectral Imaging System for Single Corn Plant. Comput. Electron. Agric. 2019, 156, 349–359. [Google Scholar] [CrossRef]
- Li, T.; Li, J.; Xiao, J.; Liu, X.; Tang, H. Man-Made Target Detection Method Based on the Red-Edge Spectral Information in Natural Background. In Proceedings of the AOPC 2022: Optical Sensing, Imaging, and Display Technology, Beijing, China, 18–20 December 2022; SPIE: Bellingham, WA, USA, 2023; Volume 12557, pp. 507–513. [Google Scholar]
- Collins, W. Remote Sensing of Crop Type and Maturity. Photogramm. Eng. Remote Sens. 1978, 44, 43–55. [Google Scholar]
- Le Bris, A.; Tassin, F.; Chehata, N. Contribution of Texture and Red-Edge Band for Vegetated Areas Detection and Identification. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium—IGARSS, Melbourne, VIC, Australia, 21–26 July 2013; pp. 4102–4105. [Google Scholar]
- Kaplan, G.; Avdan, U. Evaluating the Utilization of the Red Edge and Radar Bands from Sentinel Sensors for Wetland Classification. CATENA 2019, 178, 109–119. [Google Scholar] [CrossRef]
- Niu, Z.; Rehman, T.; Young, J.; Johnson, W.G.; Yokoo, T.; Young, B.; Jin, J. Hyperspectral Analysis for Discriminating Herbicide Site of Action: A Novel Approach for Accelerating Herbicide Research. Sensors 2023, 23, 9300. [Google Scholar] [CrossRef]
- Niu, Z. Early Detection of Dicamba and 2,4-D Herbicide Injuries on Soybean with LeafSpec, an Accurate Handheld Hyperspectral Leaf Scanner. Ph.D. Thesis, Purdue University Graduate School, West Lafayette, IN, USA, 2022. [Google Scholar]
- Garaba, S.P.; Dierssen, H.M. An Airborne Remote Sensing Case Study of Synthetic Hydrocarbon Detection Using Short Wave Infrared Absorption Features Identified from Marine-Harvested Macro- and Microplastics. Remote Sens. Environ. 2018, 205, 224–235. [Google Scholar] [CrossRef]
- Polder, G.; Blok, P.M.; de Villiers, H.A.C.; van der Wolf, J.M.; Kamp, J. Potato Virus Y Detection in Seed Potatoes Using Deep Learning on Hyperspectral Images. Front. Plant Sci. 2019, 10, 209. [Google Scholar] [CrossRef]
- Shaikh, M.S.; Jaferzadeh, K.; Thörnberg, B.; Casselgren, J. Calibration of a Hyper-Spectral Imaging System Using a Low-Cost Reference. Sensors 2021, 21, 3738. [Google Scholar] [CrossRef] [PubMed]
- Mahesh, S.; Jayas, D.S.; Paliwal, J.; White, N.D.G. Hyperspectral Imaging to Classify and Monitor Quality of Agricultural Materials. J. Stored Prod. Res. 2015, 61, 17–26. [Google Scholar] [CrossRef]
- Rehman, T.U.; Ma, D.; Wang, L.; Zhang, L.; Jin, J. Predictive Spectral Analysis Using an End-to-End Deep Model from Hyperspectral Images for High-Throughput Plant Phenotyping. Comput. Electron. Agric. 2020, 177, 105713. [Google Scholar] [CrossRef]
- Alharbi, S.; Raun, W.R.; Arnall, D.B.; Zhang, H. Prediction of Maize (Zea mays L.) Population Using Normalized-Difference Vegetative Index (NDVI) and Coefficient of Variation (CV). J. Plant Nutr. 2019, 42, 673–679. [Google Scholar] [CrossRef]
- Cabrera-Bosquet, L.; Molero, G.; Stellacci, A.; Bort, J.; Nogués, S.; Araus, J. NDVI as a Potential Tool for Predicting Biomass, Plant Nitrogen Content and Growth in Wheat Genotypes Subjected to Different Water and Nitrogen Conditions. Cereal Res. Commun. 2011, 39, 147–159. [Google Scholar] [CrossRef]
- Nanda, A.; Mohapatra, D.B.B.; Mahapatra, A.P.K.; Mahapatra, A.P.K.; Mahapatra, A.P.K. Multiple Comparison Test by Tukey’s Honestly Significant Difference (HSD): Do the Confident Level Control Type I Error. Int. J. Stat. Appl. Math. 2021, 6, 59–65. [Google Scholar] [CrossRef]
- Bonifazi, G.; Capobianco, G.; Serranti, S. Hyperspectral Imaging and Hierarchical PLS-DA Applied to Asbestos Recognition in Construction and Demolition Waste. Appl. Sci. 2019, 9, 4587. [Google Scholar] [CrossRef]
- Peerbhay, K.Y.; Mutanga, O.; Ismail, R. Commercial Tree Species Discrimination Using Airborne AISA Eagle Hyperspectral Imagery and Partial Least Squares Discriminant Analysis (PLS-DA) in KwaZulu–Natal, South Africa. ISPRS J. Photogramm. Remote Sens. 2013, 79, 19–28. [Google Scholar] [CrossRef]
- Lee, L.C.; Liong, C.-Y.; Jemain, A.A. Partial Least Squares-Discriminant Analysis (PLS-DA) for Classification of High-Dimensional (HD) Data: A Review of Contemporary Practice Strategies and Knowledge Gaps. Analyst 2018, 143, 3526–3539. [Google Scholar] [CrossRef]
- Chevallier, S.; Bertrand, D.; Kohler, A.; Courcoux, P. Application of PLS-DA in Multivariate Image Analysis. J. Chemom. 2006, 20, 221–229. [Google Scholar] [CrossRef]
- Fauvel, M.; Villa, A.; Chanussot, J.; Benediktsson, J.A. Mahalanobis Kernel for the Classification of Hyperspectral Images. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010; pp. 3724–3727. [Google Scholar]
- Panda, A.; Pachori, R.B.; Sinnappah-Kang, N.D. Classification of Chronic Myeloid Leukemia Neutrophils by Hyperspectral Imaging Using Euclidean and Mahalanobis Distances. Biomed. Signal Process. Control 2021, 70, 103025. [Google Scholar] [CrossRef]
- Mohanaiah, P.; Sathyanarayana, P.; GuruKumar, L. Image Texture Feature Extraction Using GLCM Approach. Int. J. Sci. Res. Publ. 2013, 3, 5. [Google Scholar]
- Zulpe, N.; Pawar, V. GLCM Textural Features for Brain Tumor Classification. Int. J. Comput. Sci. Issues (IJCSI) 2012, 9, 354–359. [Google Scholar]
- Naveen, M.; Vidyashankara, M.S.; Hemantha, G. Leaf Classification Based on GLCM Texture and SVM. IJCA Int. J. Comput. Appl. 2020, 177, 18–21. [Google Scholar] [CrossRef]
- Elnemr, H.A. Feature Selection for Texture-Based Plant Leaves Classification. In Proceedings of the 2017 International Conference on Advanced Control Circuits Systems (ACCS) Systems & 2017 International Conference on New Paradigms in Electronics & Information Technology (PEIT), Alexandria, Egypt, 5–8 November 2017; pp. 91–97. [Google Scholar]
- de la Casa, A.; Ovando, G.; Bressanini, L.; Martínez, J.; Díaz, G.; Miranda, C. Soybean Crop Coverage Estimation from NDVI Images with Different Spatial Resolution to Evaluate Yield Variability in a Plot. ISPRS J. Photogramm. Remote Sens. 2018, 146, 531–547. [Google Scholar] [CrossRef]
- Robinson, A.P.; Davis, V.M.; Simpson, D.M.; Johnson, W.G. Response of Soybean Yield Components to 2,4-D. Weed Sci. 2013, 61, 68–76. [Google Scholar] [CrossRef]
Herbicide | Treatment Name | Rate (g ae/ha) |
---|---|---|
XTENDIMAX | Dicamba 1/1000 a | 0.56 |
(Dicamba) | Dicamba 1/2000 | 0.28 |
2.9 lb ae/gal b | Dicamba 1/4000 | 0.14 |
Dicamba 1/8000 | 0.0695 | |
ENLISTONE | 2,4-D 1/25 | 42.6 |
(2,4-D) | 2,4-D 1/50 | 21.3 |
3.8 lb ae/gal b | 2,4-D 1/75 | 14.3 |
2,4-D 1/100 | 10.6 |
Dataset | Treatments (Number of Replicates) | ||
---|---|---|---|
High-Dosage Only | 1/1000 dicamba (20) | 1/25 2,4-D (20) | Untreated control (20) |
Combined Dosages | Combined dicamba a (80) | Combined 2,4-D b (80) | Untreated control (20) |
All treatments | 4 dosages of dicamba (20 each) | 4 dosages 2,4-D (20 each) | Untreated control (20) |
Treatment | 7 DAT b | 14 DAT | 21 DAT | 28 DAT | ||||
---|---|---|---|---|---|---|---|---|
Dicamba1/8000 | 2.10 ± 2.85 | e a | 4.95 ± 4.21 | e | 3.85 ± 4.12 | f | 3.75 ± 3.84 | e |
Dicamba1/4000 | 1.95 ± 2.74 | e | 9.45 ± 4.50 | c | 9.55 ± 5.50 | d,e | 7.90 ± 4.60 | d |
Dicamba1/2000 | 3.85 ± 3.36 | d,e | 20.10 ± 4.68 | b | 20.40 ± 5.05 | b | 19.25 ± 3.35 | b |
Dicamba1/1000 | 8.55 ± 5.85 | c | 27.80 ± 7.22 | a | 32.40 ± 6.03 | a | 31.80 ± 4.26 | a |
2,4-D 1/100 | 4.20 ± 3.46 | d,e | 6.00 ± 4.68 | d,e | 7.53 ± 6.00 | e | 7.50 ± 5.66 | d |
2,4-D 1/75 | 5.45 ± 2.37 | d | 9.40 ± 4.47 | c,d | 11.25 ± 3.64 | d | 14.95 ± 4.24 | c |
2,4-D 1/50 | 12.20 ± 4.84 | b | 21.45 ± 6.13 | b | 15.20 ± 3.62 | c | 15.35 ± 3.80 | c |
2,4-D 1/25 | 15.30 ± 6.52 | a | 26.20 ± 6.86 | a | 19.75 ± 5.86 | b | 21.00 ± 5.28 | b |
Treatment | 1 DAT a | 7 DAT | 14 DAT | 21 DAT | 28 DAT | |||||
---|---|---|---|---|---|---|---|---|---|---|
Dicamba1/8000 | 0.634 ± 0.017 | b | 0.697 ± 0.025 | a,b | 0.715 ± 0.017 | d | 0.738 ± 0.015 | b,c | 0.749 ± 0.014 | b |
Dicamba1/4000 | 0.632 ± 0.028 | b | 0.699 ± 0.021 | a,b | 0.720 ± 0.018 | c,d | 0.738 ± 0.017 | b,c | 0.750 ± 0.013 | b |
Dicamba1/2000 | 0.630 ± 0.038 | b | 0.709 ± 0.022 | a | 0.727 ± 0.018 | a,b,c | 0.743 ± 0.010 | a,b,c | 0.749 ± 0.010 | b |
Dicamba1/1000 | 0.626 ± 0.024 | a | 0.694 ± 0.017 | b,c | 0.723 ± 0.016 | a,b,c,d | 0.740 ± 0.012 | a,b,c | 0.750 ± 0.019 | b |
2,4-D 1/100 | 0.589 ± 0.047 | c | 0.698 ± 0.020 | a,b | 0.732 ± 0.012 | a | 0.746 ± 0.009 | a,b | 0.755 ± 0.013 | a,b |
2,4-D 1/75 | 0.619 ± 0.021 | b | 0.694 ± 0.018 | b,c | 0.729 ± 0.011 | a,b,c | 0.748 ± 0.016 | a | 0.749 ± 0.011 | b |
2,4-D 1/50 | 0.634 ± 0.030 | b | 0.695 ± 0.019 | b | 0.731 ± 0.011 | a,b | 0.746 ± 0.015 | a,b | 0.747 ± 0.016 | b |
2,4-D 1/25 | 0.629 ± 0.023 | b | 0.682 ± 0.018 | c | 0.721 ± 0.015 | b,c,d | 0.736 ± 0.015 | c | 0.737 ± 0.015 | c |
Untreated control | 0.680 ± 0.032 | a | 0.698 ± 0.023 | a,b | 0.721 ± 0.020 | b,c,d | 0.744 ± 0.013 | a,b,c | 0.760 ± 0.014 | a |
Dataset | M-Distance | PLS-DA |
---|---|---|
High-Dosage Only | 0.8667 | 0.933 |
Combined Dosages | 0.6333 | 0.861 |
All treatments | 0.3111 | 0.574 |
Data | Single Day Classification Overall Accuracy a | |||||
---|---|---|---|---|---|---|
Treatment | Samples | 1 DAT | 7 DAT | 14 DAT | 21 DAT | 28 DAT |
2,4-D 1/25 | 20 | 0.900 | 0.900 | 0.900 | 0.900 | 1.000 |
Dicamba 1/1000 | 20 | 0.864 | 0.950 | 0.950 | 0.950 | 0.950 |
UTC b | 20 | 0.950 | 0.950 | 0.950 | 1.000 | 1.000 |
All c | 60 | 0.918 | 0.933 | 0.933 | 0.950 | 0.983 |
Treatment | Number of Replicates | Single Day Classification Overall Accuracy a | ||||
---|---|---|---|---|---|---|
1 DAT | 7 DAT | 14 DAT | 21 DAT | 28 DAT | ||
2,4-D | 80 | 0.838 | 0.888 | 0.888 | 0.875 | 0.775 |
Dicamba | 80 | 0.700 | 0.825 | 0.825 | 0.838 | 0.938 |
UTC b | 20 | 0.950 | 1.000 | 0.900 | 0.900 | 1.000 |
All c | 180 | 0.789 | 0.872 | 0.861 | 0.856 | 0.872 |
Overall Accuracy of Single-Day Classification | ||||||
---|---|---|---|---|---|---|
Treatment | Dosage | 1 DAT | 7 DAT | 14 DAT | 21 DAT | 28 DAT |
2,4-D | 1/25 | 0.800 | 0.824 | 0.600 | 0.550 | 0.700 |
1/50 | 0.550 | 0.500 | 0.650 | 0.250 | 0.550 | |
1/75 | 0.450 | 0.700 | 0.500 | 0.750 | 0.350 | |
1/100 | 0.600 | 0.750 | 0.529 | 0.350 | 0.650 | |
Dicamba | 1/1000 | 0.400 | 0.330 | 0.391 | 0.550 | 0.550 |
1/2000 | 0.300 | 0.450 | 0.450 | 0.650 | 0.450 | |
1/4000 | 0.100 | 0.650 | 0.300 | 0.900 | 0.750 | |
1/8000 | 0.765 | 0.769 | 0.850 | 0.850 | 0.450 | |
UTC a | 0.864 | 1.000 | 0.900 | 0.950 | 0.800 | |
OA b | 0.537 | 0.664 | 0.574 | 0.644 | 0.583 |
Treatment | Dosage | 7 DAT | 14 DAT | 21 DAT | 28 DAT | ||||
---|---|---|---|---|---|---|---|---|---|
M1 a | M2 b | M1 | M2 | M1 | M2 | M1 | M2 | ||
2,4-D | 1/25 | 0.824 | 0.750 | 0.600 | 0.824 | 0.550 | 0.684 | 0.700 | 0.722 |
1/50 | 0.500 | 0.650 | 0.650 | 0.824 | 0.250 | 0.778 | 0.550 | 0.733 | |
1/75 | 0.700 | 0.467 | 0.500 | 0.867 | 0.750 | 0.600 | 0.350 | 0.824 | |
1/100 | 0.750 | 0.611 | 0.529 | 0.714 | 0.350 | 0.800 | 0.650 | 0.714 | |
Dicamba | 1/1000 | 0.333 | 0.684 | 0.391 | 0.812 | 0.550 | 0.882 | 0.550 | 0.800 |
1/2000 | 0.450 | 0.789 | 0.450 | 0.667 | 0.650 | 0.750 | 0.450 | 0.900 | |
1/4000 | 0.650 | 0.833 | 0.300 | 0.778 | 0.900 | 0.632 | 0.750 | 0.533 | |
1/8000 | 0.769 | 0.833 | 0.850 | 0.875 | 0.850 | 0.684 | 0.450 | 0.667 | |
UTC c | 1.000 | 0.800 | 0.900 | 0.850 | 0.950 | 0.650 | 0.800 | 0.833 | |
OA d | 0.664 | 0.720 | 0.574 | 0.801 | 0.644 | 0.711 | 0.583 | 0.755 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, Z.; Young, J.; Johnson, W.G.; Young, B.; Wei, X.; Jin, J. Early Detection of Dicamba and 2,4-D Herbicide Drifting Injuries on Soybean with a New Spatial–Spectral Algorithm Based on LeafSpec, an Accurate Touch-Based Hyperspectral Leaf Scanner. Remote Sens. 2023, 15, 5771. https://doi.org/10.3390/rs15245771
Niu Z, Young J, Johnson WG, Young B, Wei X, Jin J. Early Detection of Dicamba and 2,4-D Herbicide Drifting Injuries on Soybean with a New Spatial–Spectral Algorithm Based on LeafSpec, an Accurate Touch-Based Hyperspectral Leaf Scanner. Remote Sensing. 2023; 15(24):5771. https://doi.org/10.3390/rs15245771
Chicago/Turabian StyleNiu, Zhongzhong, Julie Young, William G. Johnson, Bryan Young, Xing Wei, and Jian Jin. 2023. "Early Detection of Dicamba and 2,4-D Herbicide Drifting Injuries on Soybean with a New Spatial–Spectral Algorithm Based on LeafSpec, an Accurate Touch-Based Hyperspectral Leaf Scanner" Remote Sensing 15, no. 24: 5771. https://doi.org/10.3390/rs15245771
APA StyleNiu, Z., Young, J., Johnson, W. G., Young, B., Wei, X., & Jin, J. (2023). Early Detection of Dicamba and 2,4-D Herbicide Drifting Injuries on Soybean with a New Spatial–Spectral Algorithm Based on LeafSpec, an Accurate Touch-Based Hyperspectral Leaf Scanner. Remote Sensing, 15(24), 5771. https://doi.org/10.3390/rs15245771