Quantifying Changes in Extent and Velocity of the Hornbreen/Hambergbreen Glacial System (SW, Spitsbergen) Based on Timeseries of Multispectral Satellite Imagery
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
3.1. Optical Imagery
3.2. Sea Surface Temperature (SST)
3.3. Climatic Data
3.4. Glacier Velocity Calculations
3.5. Estimating Changes in the Position of the Termini
3.6. Influence of Radiometric Resolution on Velocity Data
4. Results
4.1. Hornbreen
4.2. Hambergbreen
4.3. Climatic and Oceanographic Conditions
4.3.1. Meteorological Conditions
4.3.2. Oceanographic Conditions
4.4. Influence of Radiometric Resolution on the Quality of the Velocity Maps
5. Discussion
6. Conclusions
- An increased quality of output velocity maps is caused by an improved ability to recognise surface features, connected to the improved radiometric resolution of optical imagery.
- An improvement in the quality of velocity maps (between 8-bit- and 16-bit-based maps) varied from 12.5% to 50.2%. No link was found between the level of improvement and the presence of snow cover.
- The mean velocity of Hornbreen was 431 m a−1 and that of Hambergbreen was 141 m a−1. The difference in velocities depends mainly on the glaciological characteristics, such as glacier extent, and the complexity of the direction of ice flow near the terminus (e.g., tributary ice flow from Skjoldfonna); the influence of climatological conditions on glacier velocity was of secondary importance.
- Both glaciers accelerated in the study period: Hornbreen on average by 2.75 m/year and Hambergbreen on average by 0.8 m/year. The cause could be an increase in the water supply to the drainage system due to surface melting caused by an increase in air temperature (1.14 °C/decade).
- Maximum and minimum monthly values of velocities and fluctuations of the termini are about one month later in Hambergbreen than in Hornbreen; the reason for this behaviour could be a faster evolution of the drainage system and higher temperatures on the west side of the HH system.
- Thermal factors are primary climatic components that condition the velocities and changes in the positions of termini (an increased role of SST in the case of the velocity of Hambergbreen), while rainfall is the secondary component that influences glacier behaviour in particular circumstances.
- Both glaciers retreated in the study period, Hornbreen by 4.7 km and Hambergbreen by 3.1 km. The reason for the difference is the different velocities of the glaciers and the higher values of thermal factors, which enhance calving activity, as well as topography.
- If recession continues at the current rate, the Hornsund strait will reopen in ~2053.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- AMAP. Arctic Climate Change Update 2021: Key Trends and Impacts—Summary for Policy-Makers; Arctic Monitoring an Assessment Programme (AMAP): Tromsø, Norway, 2021. [Google Scholar]
- Wawrzyniak, T.; Osuch, M. A 40-Year High Arctic Climatological Dataset of the Polish Polar Station Hornsund (SW Spitsbergen, Svalbard). Earth Syst. Sci. Data 2020, 12, 805–815. [Google Scholar] [CrossRef] [Green Version]
- Błaszczyk, M.; Jania, J.A.; Kolondra, L. Fluctuations of tidewater glaciers in Hornsund Fjord (Southern Svalbard) since the beginning of the 20th century. Pol. Polar Res. 2013, 34, 321–352. [Google Scholar] [CrossRef]
- Strozzi, T.; Paul, F.; Wiesmann, A.; Schellenberger, T.; Kääb, A. Circum-Arctic Changes in the Flow of Glaciers and Ice Caps from Satellite SAR Data between the 1990s and 2017. Remote Sens. 2017, 9, 947. [Google Scholar] [CrossRef] [Green Version]
- Ziaja, W.; Ostafin, K. Origin and Location of New Arctic Islands and Straits Due to Glacial Recession. Ambio 2019, 48, 25–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szupryczyński, J. (1934-) Prace Geograficzne/Instytut Geografii Polskiej Akademii Nauk; nr 71. CBGiOŚ. IGiPZ PAN Call No. 29.103; Państwowe Wydawnictwo Naukowe: Warszawa, Poland, 1968. [Google Scholar]
- Koryakin, V.S. The Position and Morphology of Glaciers. In Glaciation of Spitsbergen (Svalbard); Troitsky, L.S., Singer, E.M., Koryakin, V.S., Markin, V.A., Mikhaliov, V.I., Eds.; Nauka: Moscov, Russia, 1975; pp. 7–41. [Google Scholar]
- Sharov, A.; Osokin, S. Controlled Interferometric Modelling of Glacier Changes in South Svalbard. Fringe 2005 Workshop 2006, 610, 27. [Google Scholar]
- Ziaja, W.; Ostafin, K. Landscape–Seascape Dynamics in the Isthmus between Sørkapp Land and the Rest of Spitsbergen: Will a New Big Arctic Island Form? AMBIO 2015, 44, 332–342. [Google Scholar] [CrossRef] [Green Version]
- Pälli, A.; Moore, J.; Jania, J.; Glowacki, P. Glacier Changes in Southern Spitsbergen, Svalbard, 1901-2000: International Symposium on Physical and Mechanical Processes Om Ice in Relation to Glacier and Ice-Sheet Modelling. Ann. Glaciol. 2003, 37, 219–225. [Google Scholar] [CrossRef] [Green Version]
- Grabiec, M.; Ignatiuk, D.; Jania, J.; Moskalik, M.; Głowacki, P.; Błaszczyk, M.; Budzik, T.; Walczowski, W. Coast Formation in an Arctic Area Due to Glacier Surge and Retreat: The Hornbreen–Hambergbreen Case from Spistbergen. Earth Surf. Process. Landf. 2018, 43, 387–400. [Google Scholar] [CrossRef]
- Kavan, J.; Tallentire, G.D.; Demidionov, M.; Dudek, J.; Strzelecki, M.C. Fifty Years of Tidewater Glacier Surface Elevation and Retreat Dynamics along the South-East Coast of Spitsbergen (Svalbard Archipelago). Remote Sens. 2022, 14, 354. [Google Scholar] [CrossRef]
- Błaszczyk, M.; Moskalik, M.; Grabiec, M.; Jania, J.; Walczowski, W.; Wawrzyniak, T.; Strzelewicz, A.; Malnes, E.; Lauknes, T.R.; Pfeffer, W. The Response of Tidewater Glacier Termini Positions in Hornsund (Svalbard) to Climate Forcing, 1992–2020. J. Geophys. Res. Earth Surf. 2023, 128, e2022JF006911. [Google Scholar] [CrossRef]
- Błaszczyk, M.; Jania, J.A.; Ciepły, M.; Grabiec, M.; Ignatiuk, D.; Kolondra, L.; Kruss, A.; Luks, B.; Moskalik, M.; Pastusiak, T.; et al. Factors Controlling Terminus Position of Hansbreen, a Tidewater Glacier in Svalbard. J. Geophys. Res. Earth Surf. 2021, 126, e2020JF005763. [Google Scholar] [CrossRef]
- Scambos, T.A.; Dutkiewicz, M.J.; Wilson, J.C.; Bindschadler, R.A. Application of Image Cross-Correlation to the Measurement of Glacier Velocity Using Satellite Image Data. Remote Sens. Environ. 1992, 42, 177–186. [Google Scholar] [CrossRef]
- Bindschadler, R.A.; Scambos, T.A. Satellite-Image-Derived Velocity Field of an Antarctic Ice Stream. Science 1991, 252, 242–246. [Google Scholar] [CrossRef] [Green Version]
- Gardner, A.S.; Moholdt, G.; Scambos, T.; Fahnstock, M.; Ligtenberg, S.; van den Broeke, M.; Nilsson, J. Increased West Antarctic and Unchanged East Antarctic Ice Discharge over the Last 7 Years. Cryosphere 2018, 12, 521–547. [Google Scholar] [CrossRef] [Green Version]
- Friedl, P.; Seehaus, T.; Braun, M. RETREAT: A new freely available data set of Sentinel-1 glacier velocities in regions outside the polar ice sheets. In Proceedings of the EGU General Assembly 2021, Online, 19–30 April 2021; EGU21-2740. [Google Scholar] [CrossRef]
- Van Wyk de Vries, M.; Wickert, A.D. Glacier Image Velocimetry: An Open-Source Toolbox for Easy and Rapid Calculation of High-Resolution Glacier Velocity Fields. Cryosphere 2021, 15, 2115–2132. [Google Scholar] [CrossRef]
- Pellikka, P.; Rees, W.G. Remote Sensing of Glaciers: Techniques for Topographic, Spatial and Thematic Mapping of Glaciers; CRC Press: Boca Raton, FL, USA, 2009; ISBN 978-0-203-85130-2. [Google Scholar]
- Kääb, A.; Winsvold, S.H.; Altena, B.; Nuth, C.; Nagler, T.; Wuite, J. Glacier Remote Sensing Using Sentinel-2. Part I: Radiometric and Geometric Performance, and Application to Ice Velocity. Remote Sens. 2016, 8, 598. [Google Scholar] [CrossRef] [Green Version]
- Yousuf, B.; Shukla, A.; Arora, M.K.; Jasrotia, A.S. Glacier Facies Characterization Using Optical Satellite Data: Impacts of Radiometric Resolution, Seasonality, and Surface Morphology. Prog. Phys. Geogr. Earth Environ. 2019, 43, 473–495. [Google Scholar] [CrossRef]
- Dallmann, W.K. Geoscience Atlas of Svalbard; Norsk Polarinstitutt: Tromsø, Norway, 2015; ISBN 978-82-7666-312-9. [Google Scholar]
- Barzycka, B.; Grabiec, M.; Błaszczyk, M.; Ignatiuk, D.; Laska, M.; Hagen, J.O.; Jania, J. Changes of Glacier Facies on Hornsund Glaciers (Svalbard) during the Decade 2007–2017. Remote Sens. Environ. 2020, 251, 112060. [Google Scholar] [CrossRef]
- Błaszczyk, M.; Hagen, J.O.; Jania, J.A. Tidewater Glaciers of Svalbard: Recent Changes and Estimates of Calving Fluxes. Pol. Polar Res. 2009, 30, 85–142. [Google Scholar]
- Lefauconnier, B.; Hagen, J.O. Surging and Calving Glaciers in Eastern Svalbard; Norsk Polarinstitutt: Tromsø, Norway, 1991; ISBN 978-82-90307-94-8. [Google Scholar]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated World Map of the Köppen-Geiger Climate Classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Perchaluk, J.; Szczurtek, S.; Ostrowski, P.; Flak, W.; Nowosad, P.; Ulandowska-Monarcha, P. Biuletyn Meteorologiczny—Podsumowanie Roku 2021, Spitsbergen—Hornsund. 2022. Available online: https://igfedupl-my.sharepoint.com/personal/dbartniak_igf_edu_pl/_layouts/15/onedrive.aspx?ga=1&id=%2Fpersonal%2Fdbartniak%5Figf%5Fedu%5Fpl%2FDocuments%2FBiuletyny%2FBIULETYN%5F44%2FReport%5F2021%5F0%2Epdf&parent=%2Fpersonal%2Fdbartniak%5Figf%5Fedu%5Fpl%2FDocuments%2FBiuletyny%2FBIULETYN%5F44 (accessed on 7 July 2023).
- Matuszko, D.; Soroka, J. Charakterystyka odwilży w Hornsundzie (Spitsbergen). Probl. Klimatol. Polarn. 2016, 26, 59–70. [Google Scholar]
- Marsz, A.A.R.; Styszyńska, A.R. Climate and Climate Change at Hornsund, Svalbard; Gdynia Maritime University: Gdynia, Poland, 2013. [Google Scholar]
- Sulikowska, A.; Wypych, A.; Mitka, K.; Maciejowski, W.; Ostafin, K.; Ziaja, W. Summer weather conditions in 2005 and 2016 on the western and eastern coasts of south Spitsbergen. Pol. Polar Res. 2018, 39, 127–144. [Google Scholar]
- Walczowski, W.; Piechura, J. Influence of the West Spitsbergen Current on the Local Climate. Int. J. Climatol. 2011, 31, 1088–1093. [Google Scholar] [CrossRef]
- Asbjørnsen, H.; Årthun, M.; Skagseth, Ø.; Eldevik, T. Mechanisms Underlying Recent Arctic Atlantification. Geophys. Res. Lett. 2020, 47, e2020GL088036. [Google Scholar] [CrossRef]
- Merchant, C.J.; Embury, O.; Bulgin, C.E.; Block, T.; Corlett, G.K.; Fiedler, E.; Good, S.A.; Mittaz, J.; Rayner, N.A.; Berry, D.; et al. Satellite-Based Time-Series of Sea-Surface Temperature since 1981 for Climate Applications. Sci Data 2019, 6, 223. [Google Scholar] [CrossRef] [Green Version]
- Embury, O. Product Quality Assurance Document. Available online: https://datastore.copernicus-climate.eu/documents/satellite-sea-surface-temperature/v2.1/D2.SST.1-v3.0_PQAD_of_v2.1SST_products_v6.0_APPROVED_Ver1.pdf (accessed on 31 March 2022).
- Fiedler, E.K.; Mao, C.; Good, S.A.; Waters, J.; Martin, M.J. Improvements to Feature Resolution in the OSTIA Sea Surface Temperature Analysis Using the NEMOVAR Assimilation Scheme. Q. J. R. Meteorol. Soc. 2019, 145, 3609–3625. [Google Scholar] [CrossRef]
- Good, S.; Fiedler, E.; Mao, C.; Martin, M.J.; Maycock, A.; Reid, R.; Roberts-Jones, J.; Searle, T.; Waters, J.; While, J.; et al. The Current Configuration of the OSTIA System for Operational Production of Foundation Sea Surface Temperature and Ice Concentration Analyses. Remote Sens. 2020, 12, 720. [Google Scholar] [CrossRef] [Green Version]
- ODIS-AWAKE. Available online: https://odis.iopan.pl/AWAKE/ (accessed on 6 July 2023).
- Wawrzyniak, T.; Osuch, M. A Consistent High Arctic Climatological Dataset (1979–2018) of the Polish Polar Station Hornsund (SW Spitsbergen, Svalbard). 2019. Available online: https://doi.pangaea.de/10.1594/PANGAEA.909042 (accessed on 31 March 2022).
- Available online: https://hornsund.igf.edu.pl/Biuletyny/ (accessed on 31 March 2022).
- Sikora, S.; Migała, K.; Budzik, T.; Głowacki, P.; Puczko, D.; Ignatiuk, D.; Jania, J. System gromadzenia danych meteorologicznych i glacjologicznych w obszarach polarnych—infrastruktura pomiarowa polskiej stacji polarnej im. Stanisława Siedleckiego (SW Spitsbergen). Przegląd Geofiz. 2012, 1, 35–47. [Google Scholar]
- Budzik, T. Air Temperature—Flatbreen. Available online: https://ppdb.us.edu.pl:/geonetwork/srv/api/records/eaa9217c-6bcf-4a35-bbda-bde3d879ee5d (accessed on 31 March 2022).
- Fitch, A.J.; Kadyrov, A.; Christmas, W.J.; Kittler, J. Orientation Correlation. In Proceedings of the British Machine Vision Conference 2002; British Machine Vision Association: Cardiff, UK, 2002; pp. 11.1–11.10. [Google Scholar]
- Błaszczyk, M.; Ignatiuk, D.; Uszczyk, A.; Cielecka-Nowak, K.; Grabiec, M.; Jania, J.A.; Moskalik, M.; Walczowski, W. Freshwater Input to the Arctic Fjord Hornsund (Svalbard). Polar Res. 2019, 38, 3506. [Google Scholar] [CrossRef]
- Front Velocity of Tidewater Glaciers in Hornsund. Available online: https://ppdb.us.edu.pl:/geonetwork/srv/api/records/37a59a98-835f-4f98-ab39-52c8d9cb7290 (accessed on 6 July 2023).
- Urbanski, J.A. A GIS Tool for Two-Dimensional Glacier-Terminus Change Tracking. Comput. Geosci. 2018, 111, 97–104. [Google Scholar] [CrossRef]
- Benn, D.I.; Evans, D.J.A. Glaciers & Glaciation; Hodder Education: London, UK, 2010; ISBN 978-0-340-90579-1. [Google Scholar]
- Iken, A. Velocity Fluctuations of an Arctic Valley Glacier: A Study of the White Glacier, Axel Heiberg Island, Canadian Arctic Archipelago [Jacobsen-McGill Arctic research expedition 1959–1962]. Glaciology 1974, 5. [Google Scholar] [CrossRef]
- Willis, I.C. Intra-Annual Variations in Glacier Motion: A Review. Prog. Phys. Geogr. Earth Environ. 1995, 19, 61–106. [Google Scholar] [CrossRef]
- Cuffey, K.M.; Paterson, W.S.B. The Physics of Glaciers; Academic Press: Cambridge, MA, USA, 2010; ISBN 978-0-08-091912-6. [Google Scholar]
- Maciejowski, W.; Michniewski, A.; Maciejowski, W.; Michniewski, A. Variations in Weather on the East and West Coasts of South Spitsbergen, Svalbard. Pol. Polar Res. 2007, 2, 123–136. [Google Scholar]
- Iken, A.; Bindschadler, R.A. Combined Measurements of Subglacial Water Pressure and Surface Velocity of Findelengletscher, Switzerland: Conclusions about Drainage System and Sliding Mechanism. J. Glaciol. 1986, 32, 101–119. [Google Scholar] [CrossRef] [Green Version]
- Jania, J. Glacjologia: Nauka o Lodowcach; Naukowe PWN: Warsaw, Poland, 1997; ISBN 978-83-01-12264-5. [Google Scholar]
- Dunse, T.; Schuler, T.V.; Hagen, J.O.; Reijmer, C.H. Seasonal Speed-up of Two Outlet Glaciers of Austfonna, Svalbard, Inferred from Continuous GPS Measurements. Cryosphere 2012, 6, 453–466. [Google Scholar] [CrossRef] [Green Version]
- How, P.; Benn, D.I.; Hulton, N.R.J.; Hubbard, B.; Luckman, A.; Sevestre, H.; van Pelt, W.J.J.; Lindbäck, K.; Kohler, J.; Boot, W. Rapidly Changing Subglacial Hydrological Pathways at a Tidewater Glacier Revealed through Simultaneous Observations of Water Pressure, Supraglacial Lakes, Meltwater Plumes and Surface Velocities. Cryosphere 2017, 11, 2691–2710. [Google Scholar] [CrossRef] [Green Version]
- Łupikasza, E.B.; Ignatiuk, D.; Grabiec, M.; Cielecka-Nowak, K.; Laska, M.; Jania, J.; Luks, B.; Uszczyk, A.; Budzik, T. The Role of Winter Rain in the Glacial System on Svalbard. Water 2019, 11, 334. [Google Scholar] [CrossRef] [Green Version]
- Davison, B.J.; Sole, A.J.; Cowton, T.R.; Lea, J.M.; Slater, D.A.; Fahrner, D.; Nienow, P.W. Subglacial Drainage Evolution Modulates Seasonal Ice Flow Variability of Three Tidewater Glaciers in Southwest Greenland. J. Geophys. Res. Earth Surf. 2020, 125, e2019JF005492. [Google Scholar] [CrossRef]
- Howat, I.M.; Joughin, I.; Fahnestock, M.; Smith, B.E.; Scambos, T.A. Synchronous Retreat and Acceleration of Southeast Greenland Outlet Glaciers 2000–06: Ice Dynamics and Coupling to Climate. J. Glaciol. 2008, 54, 646–660. [Google Scholar] [CrossRef] [Green Version]
- King, M.D.; Howat, I.M.; Candela, S.G.; Noh, M.J.; Jeong, S.; Noël, B.P.Y.; van den Broeke, M.R.; Wouters, B.; Negrete, A. Dynamic Ice Loss from the Greenland Ice Sheet Driven by Sustained Glacier Retreat. Commun Earth Env. 2020, 1, 1. [Google Scholar] [CrossRef]
- Moon, T.; Joughin, I.; Smith, B. Seasonal to Multiyear Variability of Glacier Surface Velocity, Terminus Position, and Sea Ice/Ice Mélange in Northwest Greenland. J. Geophys. Res. Earth Surf. 2015, 120, 818–833. [Google Scholar] [CrossRef]
- Podrasky, D.; Truffer, M.; Fahnestock, M.; Amundson, J.M.; Cassotto, R.; Joughin, I. Outlet Glacier Response to Forcing over Hourly to Interannual Timescales, Jakobshavn Isbræ, Greenland. J. Glaciol. 2012, 58, 1212–1226. [Google Scholar] [CrossRef] [Green Version]
- Pętlicki, M.; Ciepły, M.; Jania, J.A.; Promińska, A.; Kinnard, C. Calving of a Tidewater Glacier Driven by Melting at the Waterline. J. Glaciol. 2015, 61, 851–863. [Google Scholar] [CrossRef] [Green Version]
- Truffer, M.; Motyka, R.J. Where Glaciers Meet Water: Subaqueous Melt and Its Relevance to Glaciers in Various Settings. Rev. Geophys. 2016, 54, 220–239. [Google Scholar] [CrossRef] [Green Version]
- Colgan, W.; Rajaram, H.; Abdalati, W.; McCutchan, C.; Mottram, R.; Moussavi, M.S.; Grigsby, S. Glacier Crevasses: Observations, Models, and Mass Balance Implications. Rev. Geophys. 2016, 54, 119–161. [Google Scholar] [CrossRef]
- Winsvold, S.H.; Kääb, A.; Nuth, C. Regional Glacier Mapping Using Optical Satellite Data Time Series. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 3698–3711. [Google Scholar] [CrossRef] [Green Version]
Satellite | Bands Used | Spatial Resolution (m) | Radiometric Resolution (bits) | Number of Images | Time Span |
---|---|---|---|---|---|
Landsat 5 | 1–7 | 30 | 8 | 56 | 27 May 1985–27 September 1998 |
Landsat 7 | 8 | 15 | 8 | 16 | 27 July 1999–12 July 2002 |
ASTER | 3N/B | 15 | 8 | 25 | 23 June 2001–15 August 2012 |
Landsat 8 | 8 | 15 | 16 | 14 | 22 March 2014–31 July 2015 |
Sentinel 2 | 2–4, 8 | 10 | 12 (16) * | 47 | 1 April 2016–27 September 2021 |
Season | Sensor | Date of Acquisition | Spatial Resolution (m) | Radiometric Resolution (Bits) |
---|---|---|---|---|
Summer | Landsat 8 | 6 August 2014 | 15 | 16 |
22 August 2014 | ||||
Sentinel 2 | 11 July 2021 | 10 | 12 (16) * | |
10 August 2021 | ||||
Winter | Landsat 8 | 3 April 2015 | 15 | 16 |
3 May 2015 | ||||
Sentinel 2 | 14 April 2021 | 10 | 12 (16) * | |
15 May 2021 |
Class | L8 16-Bit Summer | L8 16-Bit Winter | L8 8-Bit Summer | L8 8-Bit Winter | S2 16-Bit Summer | S2 16-Bit Winter | S2 8-Bit Summer | S2 8-Bit Winter |
---|---|---|---|---|---|---|---|---|
Correct values | 73.8 | 35.7 | 28.7 | 22.9 | 56.1 | 76.5 | 36.1 | 26.2 |
Noise | 1.3 | 5.4 | 6.0 | 5.5 | 3.1 | 1.4 | 4.9 | 2.4 |
No Data cells | 25.0 | 58.9 | 65.3 | 71.6 | 40.9 | 22.1 | 59.1 | 71.3 |
Correct values | Percentage difference between 16-bit- and 8-bit-based Landsat 8 velocity maps | −45.1 | −12.7 | Percentage difference between 16-bit- and 8-bit-based Sentinel 2 velocity maps | −20.0 | −50.2 | ||
Noise | 4.7 | 0.0 | 1.8 | 1.0 | ||||
No Data cells | 40.4 | 12.7 | 18.2 | 49.2 |
Glacier | SST | Tair | PDD | Precipitation | Rainfall | |
---|---|---|---|---|---|---|
All monthly values | Hambergbreen | 0.41 | 0.31 | 0.37 | 0 | 0.06 |
p < 0.0001 | p < 0.0001 | p < 0.0001 | p = 0.999 | p = 0.431 | ||
Hornbreen | 0.32 | 0.41 | 0.4 | 0.1 | 0.16 | |
p < 0.0001 | p < 0.0001 | p < 0.0001 | p = 0.159 | p < 0.0001 | ||
Annual (in years with data for all months) | Hambergbreen | 0.85 | 0.54 | 0.73 | −0.15 | −0.09 |
p < 0.0001 | p = 0.087 | p < 0.0001 | p = 0.668 | p = 0.797 | ||
Hornbreen | 0.3 | 0.43 | 0.31 | 0.36 | 0.27 | |
p = 0.378 | p = 0.187 | p = 0.353 | p = 0.276 | p = 0.425 |
Glacier | Type of Velocity | SST | Tair | PDD | Precipitation | Rainfall |
---|---|---|---|---|---|---|
Hambergbreen | Typical | 0.65 | 0.61 | 0.62 | 0.23 | 0.25 |
p < 0.0001 | p < 0.0001 | p < 0.0001 | p = 0.179 | p = 0.184 | ||
Steady | 0.02 | 0.02 | −0.06 | −0.05 | −0.21 | |
p = 0.871 | p = 0.899 | p = 0.716 | p = 0.738 | p = 0.208 | ||
Abnormal | 0.10 | 0.12 | −0.04 | 0.01 | −0.14 | |
p = 0.488 | p = 0.404 | p = 0.838 | p = 0.951 | p = 0.399 | ||
Hornbreen | Typical | 0.49 | 0.68 | 0.54 | 0.26 | 0.23 |
p < 0.0001 | p < 0.0001 | p < 0.0001 | p = 0.046 | p = 0.121 | ||
Steady | 0.53 | 0.57 | 0.51 | 0.27 | 0.42 | |
p = 0.001 | p < 0.0001 | p = 0.004 | p = 0.112 | p = 0.023 | ||
Abnormal | 0.34 | 0.33 | 0.46 | 0.10 | 0.21 | |
p = 0.040 | p = 0.048 | p = 0.013 | p = 0.547 | p = 0.286 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saferna, D.; Błaszczyk, M.; Grabiec, M.; Gądek, B. Quantifying Changes in Extent and Velocity of the Hornbreen/Hambergbreen Glacial System (SW, Spitsbergen) Based on Timeseries of Multispectral Satellite Imagery. Remote Sens. 2023, 15, 3529. https://doi.org/10.3390/rs15143529
Saferna D, Błaszczyk M, Grabiec M, Gądek B. Quantifying Changes in Extent and Velocity of the Hornbreen/Hambergbreen Glacial System (SW, Spitsbergen) Based on Timeseries of Multispectral Satellite Imagery. Remote Sensing. 2023; 15(14):3529. https://doi.org/10.3390/rs15143529
Chicago/Turabian StyleSaferna, Dawid, Małgorzata Błaszczyk, Mariusz Grabiec, and Bogdan Gądek. 2023. "Quantifying Changes in Extent and Velocity of the Hornbreen/Hambergbreen Glacial System (SW, Spitsbergen) Based on Timeseries of Multispectral Satellite Imagery" Remote Sensing 15, no. 14: 3529. https://doi.org/10.3390/rs15143529
APA StyleSaferna, D., Błaszczyk, M., Grabiec, M., & Gądek, B. (2023). Quantifying Changes in Extent and Velocity of the Hornbreen/Hambergbreen Glacial System (SW, Spitsbergen) Based on Timeseries of Multispectral Satellite Imagery. Remote Sensing, 15(14), 3529. https://doi.org/10.3390/rs15143529