Novel Method for Determining the Height of the Stable Boundary Layer under Low-Level Jet by Judging the Shape of the Wind Velocity Variance Profile
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yin, J.; Gao, C.Y.; Hong, J.; Gao, Z.; Li, Y.; Li, X.; Fan, S.; Zhu, B. Surface Meteorological Conditions and Boundary Layer Height Variations During an Air Pollution Episode in Nanjing, China. J. Geophys. Res.-Atmos. 2019, 124, 3350–3364. [Google Scholar] [CrossRef]
- Sun, H.J.; Shi, H.R.; Chen, H.Y.; Tang, G.Q.; Sheng, C.; Che, K.; Chen, H.B. Evaluation of a Method for Calculating the Height of the Stable Boundary Layer Based on Wind Profile Lidar and Turbulent Fluxes. Remote Sens. 2021, 13, 3596. [Google Scholar] [CrossRef]
- Peña, A.; Gryning, S.-E.; Hahmann, A.N. Observations of the atmospheric boundary layer height under marine upstream flow conditions at a coastal site. J. Geophys. Res.-Atmos. 2013, 118, 1924–1940. [Google Scholar] [CrossRef]
- Jiang, Q.; Wang, Q. Characteristics and Scaling of the Stable Marine Internal Boundary Layer. J. Geophys. Res.-Atmos. 2021, 126, e2021JD035510. [Google Scholar] [CrossRef]
- Lan, C.; Liu, H.; Katul, G.G.; Li, D.; Finn, D. Turbulence Structures in the Very Stable Boundary Layer Under the Influence of Wind Profile Distortion. J. Geophys. Res.-Atmos. 2022, 127, e2022JD036565. [Google Scholar] [CrossRef]
- Ganeshan, M.; Yang, Y. A Regional Analysis of Factors Affecting the Antarctic Boundary Layer During the Concordiasi Campaign. J. Geophys. Res.-Atmos. 2018, 123, 10830–810841. [Google Scholar] [CrossRef]
- Rey-Sanchez, C.; Wharton, S.; Vilà-Guerau de Arellano, J.; Paw, U.K.T.; Hemes, K.S.; Fuentes, J.D.; Osuna, J.; Szutu, D.; Ribeiro, J.V.; Verfaillie, J.; et al. Evaluation of Atmospheric Boundary Layer Height From Wind Profiling Radar and Slab Models and Its Responses to Seasonality of Land Cover, Subsidence, and Advection. J. Geophys. Res.-Atmos. 2021, 126, e2020JD033775. [Google Scholar] [CrossRef]
- Li, H.; Yang, Y.; Hu, X.-M.; Huang, Z.; Wang, G.; Zhang, B.; Zhang, T. Evaluation of retrieval methods of daytime convective boundary layer height based on lidar data. J. Geophys. Res. Atmos. 2017, 122, 4578–4593. [Google Scholar] [CrossRef]
- Liu, R.; Liu, S.; Huang, H.; Dai, Y.; Zeng, X.; Yuan, H.; Wei, Z.; Lu, X.; Wei, N.; Zhang, S.; et al. The Effect of Surface Heating Heterogeneity on Boundary Layer Height and Its Dependence on Background Wind Speed. J. Geophys. Res.-Atmos. 2022, 127, e2022JD037168. [Google Scholar] [CrossRef]
- Banta, R.M. Stable-boundary-layer regimes from the perspective of the low-level jet. Acta Geophys. 2008, 56, 58–87. [Google Scholar] [CrossRef]
- Banta, R.M.; Mahrt, L.; Vickers, D.; Sun, J.; Balsley, B.B.; Pichugina, Y.L.; Williams, E.J. The Very Stable Boundary Layer on Nights with Weak Low-Level Jets. J. Atmos. Sci. 2007, 64, 3068–3090. [Google Scholar] [CrossRef] [Green Version]
- Banta, R.M.; Pichugina, Y.L.; Brewer, W.A. Turbulent Velocity-Variance Profiles in the Stable Boundary Layer Generated by a Nocturnal Low-Level Jet. J. Atmos. Sci. 2006, 63, 2700–2719. [Google Scholar] [CrossRef] [Green Version]
- Banta, R.M.; Pichugina, Y.L.; Newsom, R.K. Relationship between Low-Level Jet Properties and Turbulence Kinetic Energy in the Nocturnal Stable Boundary Layer. J. Atmos. Sci. 2003, 60, 2549–2555. [Google Scholar] [CrossRef]
- Pichugina, Y.L.; Tucker, S.C.; Banta, R.M.; Brewer, W.A.; Kelley, N.D.; Jonkman, B.J.; Newsom, R.K. Horizontal-Velocity and Variance Measurements in the Stable Boundary Layer Using Doppler Lidar: Sensitivity to Averaging Procedures. J. Atmos. Ocean. Technol. 2008, 25, 1307–1327. [Google Scholar] [CrossRef]
- Moreira, G.D.A.; Marques, M.T.A.; Nakaema, W.; Moreira, A.C.D.C.A.; Landulfo, E. Detecting the planetary boundary layer height from low-level jet with Doppler lidar measurements. In Proceedings of the SPIE Remote Sensing, Toulouse, France, 20 October 2015. [Google Scholar]
- Vickers, D.; Mahrt, A.L. Evaluating Formulations of Stable Boundary Layer Height. J. Appl. Meteorol. 2004, 43, 1736. [Google Scholar] [CrossRef] [Green Version]
- Lemone, M.A.; Tewari, M.; Chen, F.; Dudhia, J. Objectively Determined Fair-Weather NBL Features in ARW-WRF and Their Comparison to CASES-97 Observations. Mon. Weather Rev. 2014, 142, 2709–2732. [Google Scholar] [CrossRef] [Green Version]
- Schween, J.H.; Hirsikko, A.; Lohnert, U.; Crewell, S. Mixing-layer height retrieval with ceilometer and Doppler lidar: From case studies to long-term assessment. Atmos. Meas. Tech. 2014, 7, 3685–3704. [Google Scholar] [CrossRef] [Green Version]
- Shukla, K.K.; Phanikumar, D.V.; Newsom, R.K.; Kumar, K.N.; Ratnam, M.V.; Naja, M.; Singh, N. Estimation of the mixing layer height over a high altitude site in Central Himalayan region by using Doppler lidar. J. Atmos. Sol.-Terr. Phys. 2014, 109, 48–53. [Google Scholar] [CrossRef]
- Stull, R.B. An Introduction to Boundary Layer Meteorology; Springer Science & Business Media: New York, NY, USA, 1988. [Google Scholar]
- Joffre, S.M.; Kangas, M.; Heikinheimo, M.; Kitaigorodskii, S.A. Variability of the stable and unstable atmospheric boundary-layer height and its scales over a boreal forest. Bound.-Layer Meteorol. 2001, 99, 429–450. [Google Scholar] [CrossRef]
- Vogelezang, D.H.P.; Holtslag, A.A.M. Evaluation and model impacts of alternative boundary-layer height formulations. Bound.-Layer Meteorol. 1996, 81, 245–269. [Google Scholar] [CrossRef]
- Seidel, D.J.; Ao, C.O.; Li, K. Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis. J. Geophys. Res.-Atmos. 2010, 115, D16113. [Google Scholar] [CrossRef] [Green Version]
- Seidel, D.J.; Zhang, Y.; Beljaars, A.; Golaz, J.C.; Jacobson, A.R.; Medeiros, B. Climatology of the planetary boundary layer over the continental United States and Europe. J. Geophys. Res. 2012, 117, D17106. [Google Scholar] [CrossRef]
- Nieuwstadt, F.T.M. The Turbulent Structure of the Stable, Nocturnal Boundary Layer. J. Atmos. Sci. 1984, 41, 2202–2216. [Google Scholar] [CrossRef]
- Bonner, W.D. Climatology of the low level jet. Mon. Weather. Rev. 1968, 96, 833–850. [Google Scholar] [CrossRef]
Type | A | B | C | D |
---|---|---|---|---|
Frequency | 16,840 | 16,521 | 1460 | 18,995 |
Proportion | 31.3% | 30.7% | 2.7% | 35.3% |
Correlation Coefficient | Average Error (m) | Relative Error (%) |
---|---|---|
0.8520 | 27.48 | 17.17 |
Metrics | Technical Performance Requirements |
---|---|
Minimum detection altitude | ≤30 m |
Maximum detection altitude | 6 km |
Distance resolution | 15 m |
Temporal resolution of wind profile | 5 s |
Errors of wind speed measurement (standard deviation) | ≤0.3 m s−1 |
Errors of wind direction measurement (root mean squared error) | ≤3° |
Range of vertical wind speed measurement | 0–60 m s−1 |
Range of wind direction measurement | 0°–360° |
Correlation Coefficient | Average Error (m) | Relative Error (%) |
---|---|---|
0.9209 | 17.62 | 8.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xian, J.; Zhang, N.; Lu, C.; Yang, H.; Qiu, Z. Novel Method for Determining the Height of the Stable Boundary Layer under Low-Level Jet by Judging the Shape of the Wind Velocity Variance Profile. Remote Sens. 2023, 15, 3638. https://doi.org/10.3390/rs15143638
Xian J, Zhang N, Lu C, Yang H, Qiu Z. Novel Method for Determining the Height of the Stable Boundary Layer under Low-Level Jet by Judging the Shape of the Wind Velocity Variance Profile. Remote Sensing. 2023; 15(14):3638. https://doi.org/10.3390/rs15143638
Chicago/Turabian StyleXian, Jinhong, Ning Zhang, Chao Lu, Honglong Yang, and Zongxu Qiu. 2023. "Novel Method for Determining the Height of the Stable Boundary Layer under Low-Level Jet by Judging the Shape of the Wind Velocity Variance Profile" Remote Sensing 15, no. 14: 3638. https://doi.org/10.3390/rs15143638
APA StyleXian, J., Zhang, N., Lu, C., Yang, H., & Qiu, Z. (2023). Novel Method for Determining the Height of the Stable Boundary Layer under Low-Level Jet by Judging the Shape of the Wind Velocity Variance Profile. Remote Sensing, 15(14), 3638. https://doi.org/10.3390/rs15143638