MLGNet: Multi-Task Learning Network with Attention-Guided Mechanism for Segmenting Agricultural Fields
Abstract
:1. Introduction
- (1)
- The MLGNet employs a guided attention fusion module to progressively learn edge details, thereby guiding the network to enhance region of targets. The learnable distance features are employed as a shared carrier for learning the segmentation and edge detection tasks.
- (2)
- A regional edge connectivity algorithm (i.e., ReCA) is designed based on principles of visual perception, which employs broken edges from detect task to divide merged fields into several sub-regions.
- (3)
- The effectiveness of various methods is compared, and the final results are evaluated based on edge and region indicators.
2. Materials and Methods
2.1. Study Area and Data
2.2. Methods
2.2.1. Architecture of MLGNet
- (1)
- Adaptive channel fusion module
- (2)
- Attention-guided fusion module
2.2.2. Multi-Task Learning Scheme
- (1)
- Signed distance loss
- (2)
- Segmentation loss
- (3)
- Buffered edge Loss
2.2.3. Dividing Fields with Broken Edges
3. Results
3.1. Experimental Settings
- (1)
- Network architecture
- (2)
- Parameter settings
- (3)
- Evaluation metric
3.2. Agricultural Fields Extraction
3.3. Comparative Analysis
4. Discussion
4.1. Module Convergence Analysis
4.2. Component Effectiveness Analysis
4.3. Uncertainty in Dividing Fields
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Debats, S.R.; Luo, D.; Estes, L.D.; Fuchs, T.J.; Caylor, K.K. A generalized computer vision approach to mapping crop fields in heterogeneous agricultural landscapes. Remote Sens. Environ. 2016, 179, 210–221. [Google Scholar] [CrossRef] [Green Version]
- Yli-Heikkila, M.; Wittke, S.; Luotamo, M.; Puttonen, E.; Sulkava, M.; Pellikka, P.; Heiskanen, J.; Klami, A. Scalable Crop Yield Prediction with Sentinel-2 Time Series and Temporal Convolutional Network. Remote Sens. 2022, 14, 4193. [Google Scholar] [CrossRef]
- Adeyemi, O.; Grove, I.; Peets, S.; Norton, T. Advanced monitoring and management systems for improving sustainability in precision irrigation. Sustainability 2017, 9, 353. [Google Scholar] [CrossRef] [Green Version]
- Masoud, K.M.; Persello, C.; Tolpekin, V.A. Delineation of agricultural field boundaries from Sentinel-2 images using a novel super-resolution contour detector based on fully convolutional networks. Remote Sens. 2019, 12, 59. [Google Scholar] [CrossRef] [Green Version]
- Basnyat, P.; McConkey, B.; Meinert, B.; Gatkze, C.; Noble, G. Agriculture field characterization using aerial photograph and satellite imagery. IEEE Geosci. Remote Sens. Lett. 2004, 1, 7–10. [Google Scholar] [CrossRef]
- Wagner, M.P.; Oppelt, N. Extracting agricultural fields from remote sensing imagery using graph-based growing contours. Remote Sens. 2020, 12, 1205. [Google Scholar] [CrossRef] [Green Version]
- Persello, C.; Tolpekin, V.; Bergado, J.R.; De By, R. Delineation of agricultural fields in smallholder farms from satellite images using fully convolutional networks and combinatorial grouping. Remote Sens. Environ. 2019, 231, 111253. [Google Scholar] [CrossRef] [PubMed]
- Cheng, T.; Ji, X.; Yang, G.; Zheng, H.; Ma, J.; Yao, X.; Zhu, Y.; Cao, W. DESTIN: A new method for delineating the boundaries of crop fields by fusing spatial and temporal information from World View and Planet satellite imagery. Comput. Electron. Agric. 2020, 178, 105787. [Google Scholar] [CrossRef]
- Hong, R.; Park, J.; Jang, S.; Shin, H.; Kim, H.; Song, I. Development of a parcel-level land boundary extraction algorithm for aerial imagery of regularly arranged agricultural areas. Remote Sens. 2021, 13, 1167. [Google Scholar] [CrossRef]
- Wang, M.; Wang, J.; Cui, Y.; Liu, J.; Chen, L. Agricultural Field Boundary Delineation with Satellite Image Segmentation for High-Resolution Crop Mapping: A Case Study of Rice Paddy. Agronomy 2022, 12, 2342. [Google Scholar]
- Turker, M.; Kok, E.H. Field-based sub-boundary extraction from remote sensing imagery using perceptual grouping. ISPRS J. Photogramm. Remote Sens. 2013, 79, 106–121. [Google Scholar] [CrossRef]
- Yan, L.; Roy, D. Automated crop field extraction from multi-temporal Web Enabled Landsat Data. Remote Sens. Environ. 2014, 144, 42–64. [Google Scholar] [CrossRef] [Green Version]
- Graesser, J.; Ramankutty, N. Detection of cropland field parcels from Landsat imagery. Remote Sens. Environ. 2017, 201, 165–180. [Google Scholar] [CrossRef]
- Garcia-Pedrero, A.; Gonzalo-Martin, C.; Lillo-Saavedra, M. A machine learning approach for agricultural parcel delineation through agglomerative segmentation. Int. J. Remote Sens. 2017, 38, 1809–1819. [Google Scholar] [CrossRef] [Green Version]
- Su, T.; Li, H.; Zhang, S.; Li, Y. Image segmentation using mean shift for extracting croplands from high-resolution remote sensing imagery. Remote Sens. Lett. 2015, 6, 952–961. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Luo, W.; Zhang, C.; Li, Y.; Yang, F.; Zhang, D.; Hong, Z. Deeply-supervised pseudo learning with small class-imbalanced samples for hyperspectral image classification. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102949. [Google Scholar] [CrossRef]
- Diakogiannis, F.I.; Waldner, F.; Caccetta, P.; Wu, C. ResUNet-a: A deep learning framework for semantic segmentation of remotely sensed data. ISPRS J. Photogramm. Remote Sens. 2020, 162, 94–114. [Google Scholar] [CrossRef] [Green Version]
- Wei, S.; Ji, S.; Lu, M. Toward automatic building footprint delineation from aerial images using CNN and regularization. IEEE Trans. Geosci. Remote Sens. 2019, 58, 2178–2189. [Google Scholar] [CrossRef]
- Waldner, F.; Diakogiannis, F.I. Deep learning on edge: Extracting field boundaries from satellite images with a convolutional neural network. Remote Sens. Environ. 2020, 245, 111741. [Google Scholar] [CrossRef]
- Long, J.; Li, M.; Wang, X.; Stein, A. Delineation of agricultural fields using multi-task BsiNet from high-resolution satellite images. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102871. [Google Scholar] [CrossRef]
- Jong, M.; Guan, K.; Wang, S.; Huang, Y.; Peng, B. Improving field boundary delineation in ResUNets via adversarial deep learning. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102877. [Google Scholar] [CrossRef]
- Pan, S.; Tao, Y.; Chen, X.; Chong, Y. Progressive Guidance Edge Perception Network for Semantic Segmentation of Remote-Sensing Images. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [Google Scholar] [CrossRef]
- Li, M.; Long, J.; Stein, A.; Wang, X. Using a semantic edge-aware multi-task neural network to delineate agricultural parcels from remote sensing images. ISPRS J. Photogramm. Remote Sens. 2023, 200, 24–40. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Zhou, L.; Zhang, C.; Wu, M. D-LinkNet: LinkNet with pretrained encoder and dilated convolution for high resolution satellite imagery road extraction. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 182–186. [Google Scholar]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar]
- Chen, S.; Tan, X.; Wang, B.; Hu, X. Reverse attention for salient object detection. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 234–250. [Google Scholar]
- Sun, D.; Yao, A.; Zhou, A.; Zhao, H. Deeply-supervised knowledge synergy. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 6997–7006. [Google Scholar]
- Zhen, M.; Wang, J.; Zhou, L.; Li, S.; Shen, T.; Shang, J.; Fang, T.; Quan, L. Joint semantic segmentation and boundary detection using iterative pyramid contexts. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 13666–13675. [Google Scholar]
- Berman, M.; Triki, A.R.; Blaschko, M.B. The lovász-softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 4413–4421. [Google Scholar]
- Zhang, Y.; Yang, Q. A survey on multi-task learning. IEEE Trans. Knowl. Data Eng. 2021, 34, 5586–5609. [Google Scholar] [CrossRef]
- Xu, L.; Yang, P.; Yu, J.; Peng, F.; Xu, J.; Song, S.; Wu, Y. Extraction of cropland field parcels with high resolution remote sensing using multi-task learning. Eur. J. Remote Sens. 2023, 56, 2181874. [Google Scholar] [CrossRef]
- Wang, Y.; Gu, L.; Jiang, T.; Gao, F. MDE-UNet: A Multitask Deformable UNet Combined Enhancement Network for Farmland Boundary Segmentation. IEEE Geosci. Remote Sens. Lett. 2023, 20, 1–5. [Google Scholar] [CrossRef]
- Wang, Z.; Acuna, D.; Ling, H.; Kar, A.; Fidler, S. Object instance annotation with deep extreme level set evolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 7500–7508. [Google Scholar]
- Kim, Y.; Kim, S.; Kim, T.; Kim, C. CNN-based semantic segmentation using level set loss. In Proceedings of the 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 7–11 January 2019; pp. 1752–1760. [Google Scholar]
- Wang, X.; Shrivastava, A.; Gupta, A. A-fast-rcnn: Hard positive generation via adversary for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2606–2615. [Google Scholar]
- Kendall, A.; Gal, Y.; Cipolla, R. Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7482–7491. [Google Scholar]
- Turker, M.; Koc-San, D. Building extraction from high-resolution optical spaceborne images using the integration of support vector machine (SVM) classification, Hough transformation and perceptual grouping. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 58–69. [Google Scholar] [CrossRef]
- Meyer, F.; Beucher, S. Morphological segmentation. J. Vis. Commun. Image Represent. 1990, 1, 21–46. [Google Scholar] [CrossRef]
- Suzuki, S. Topological structural analysis of digitized binary images by border following. Comput. Vis. Graph. Image Process. 1985, 30, 32–46. [Google Scholar] [CrossRef]
- Wiedemann, C.; Heipke, C.; Mayer, H.; Jamet, O. Empirical evaluation of automatically extracted road axes. Int. J. Comput. Vis. 1998, 12, 172–187. [Google Scholar]
- Zhang, Z.; Liu, Q.; Wang, Y. Road extraction by deep residual u-net. IEEE Geosci. Remote Sens. Lett. 2018, 15, 749–753. [Google Scholar] [CrossRef] [Green Version]
Cities | wo/ReCA | w/ReCA | Ref-N | ||||||
---|---|---|---|---|---|---|---|---|---|
Com% | Cor% | Qua% | Pre-N | Com% | Cor% | Qua% | Pre-N | ||
Paulowna | 68.46 | 82.93 | 60.09 | 1114 | 75.64 | 80.75 | 65.97 | 1858 | 1750 |
Wieringermeer | 62.76 | 79.12 | 53.49 | 1429 | 69.29 | 78.34 | 59.83 | 3385 | 3367 |
Niedorp | 65.00 | 79.32 | 55.64 | 942 | 71.45 | 78.39 | 61.00 | 1602 | 1513 |
Cities | Methods | Evaluation Metrics (%) | |||
---|---|---|---|---|---|
IoU | F1 | Recall | Precision | ||
Paulowna | ResUNet | 85.47 | 92.17 | 90.08 | 94.36 |
DLinkNet | 86.26 | 92.62 | 90.50 | 94.84 | |
ResUNet-a | 89.39 | 94.40 | 95.76 | 93.08 | |
BsiNet | 87.01 | 93.05 | 91.84 | 94.31 | |
MLGNet | 91.27 | 95.44 | 96.98 | 93.94 | |
Wieringermeer | ResUNet | 90.71 | 95.13 | 94.78 | 95.49 |
DLinkNet | 91.29 | 95.45 | 95.20 | 95.70 | |
ResUNet-a | 91.86 | 95.69 | 96.71 | 94.70 | |
BsiNet | 90.19 | 94.83 | 94.00 | 95.68 | |
MLGNet | 93.05 | 96.40 | 97.24 | 95.58 | |
Niedorp | ResUNet | 86.59 | 92.81 | 92.82 | 92.80 |
DLinkNet | 87.05 | 93.07 | 93.09 | 93.05 | |
ResUNet-a | 88.11 | 93.68 | 95.99 | 91.49 | |
BsiNet | 87.60 | 93.39 | 94.26 | 92.53 | |
MLGNet | 89.76 | 94.61 | 96.54 | 92.75 |
Cities | Components | Metrics | ||||
---|---|---|---|---|---|---|
ACFM | AGFM | MLS | ReCA | IoU/% | Qua/% | |
Paulowna | 86.26 | 52.03 | ||||
87.14 | 54.21 | |||||
89.62 | 58.35 | |||||
91.27 | 60.09 | |||||
92.13 | 65.97 | |||||
Wieringermeer | 91.29 | 50.19 | ||||
91.52 | 50.24 | |||||
92.36 | 52.37 | |||||
93.05 | 53.49 | |||||
93.71 | 59.83 | |||||
Niedorp | 87.05 | 50.59 | ||||
87.14 | 50.81 | |||||
89.08 | 53.47 | |||||
89.76 | 55.64 | |||||
90.35 | 61.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, W.; Zhang, C.; Li, Y.; Yan, Y. MLGNet: Multi-Task Learning Network with Attention-Guided Mechanism for Segmenting Agricultural Fields. Remote Sens. 2023, 15, 3934. https://doi.org/10.3390/rs15163934
Luo W, Zhang C, Li Y, Yan Y. MLGNet: Multi-Task Learning Network with Attention-Guided Mechanism for Segmenting Agricultural Fields. Remote Sensing. 2023; 15(16):3934. https://doi.org/10.3390/rs15163934
Chicago/Turabian StyleLuo, Weiran, Chengcai Zhang, Ying Li, and Yaning Yan. 2023. "MLGNet: Multi-Task Learning Network with Attention-Guided Mechanism for Segmenting Agricultural Fields" Remote Sensing 15, no. 16: 3934. https://doi.org/10.3390/rs15163934
APA StyleLuo, W., Zhang, C., Li, Y., & Yan, Y. (2023). MLGNet: Multi-Task Learning Network with Attention-Guided Mechanism for Segmenting Agricultural Fields. Remote Sensing, 15(16), 3934. https://doi.org/10.3390/rs15163934