Design of a Digital Array Signal Processing System with Full Array Element
Abstract
:1. Introduction
2. System Architectural Design
2.1. System Hardware Architecture Design
2.1.1. Overall Framework Design
2.1.2. Hardware Design of the Transceiver Module
2.1.3. Clock Network Design
2.1.4. Design of Digital HIF Architecture
2.2. System Software Architecture Design
2.2.1. Multi-Channel Synchronous Design
2.2.2. Broadband Calibration Design
3. Implementation and Verification of the DBF Algorithm
3.1. Principle and Simulation of the MIMO Phased Array DBF Algorithm
3.2. Hardware Implementation of the MIMO Phased Array DBF Algorithm
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Arnieri, E.; Boccia, L.; Amendola, G.; Glisic, S.; Mao, C.; Gao, S.; Rommel, T.; Penkala, P.; Krstic, M.; Yodprasit, U.; et al. An integrated radar tile for digital beamforming X-/Ka-band synthetic aperture radar instruments. IEEE Trans. Microw. Theory Tech. 2019, 67, 1197–1206. [Google Scholar] [CrossRef]
- Despoisse, T.; Ghiotto, A.; Busson, P.; Deltimple, N. A comparison of beamforming schemes for 5G mm-wave small cell transmitters. In Proceedings of the 2018 16th IEEE International New Circuits and Systems Conference (NEWCAS), Montreal, QC, Canada, 24–27 June 2018. [Google Scholar]
- Coutinho, V.A.; Ariyarathna, V.; Coelho, D.F.G.; Pulipati, S.K.; Cintra, R.J.; Madanayake, A.; Bayer, F.M.; Dimitrov, V.S. A low-SWaP 16-beam 2.4 GHz digital phased array receiver using DFT approximation. IEEE Trans. Aerosp. Electron. Syst. 2020, 56, 3645–3654. [Google Scholar] [CrossRef]
- Curtis, D.D.; Thomas, R.W.; Payne, W.J.; Weedon, W.H.; Deaett, M.A. 32-channel X-band digital beamforming plug-and-play receive array. In Proceedings of the IEEE International Symposium on Phased Array Systems and Technology, Boston, MA, USA, 14–17 October 2003. [Google Scholar]
- Mao, C.-X.; Gao, S.; Tienda, C.; Rommel, T.; Patyuchenko, A.; Younis, M.; Boccia, L.; Arnieri, E.; Glisic, S.; Yodprasit, U.; et al. X/Ka-band dual-polarized digital beamforming synthetic aperture radar. IEEE Trans. Microw. Theory Tech. 2017, 65, 4400–4407. [Google Scholar] [CrossRef]
- Song, Y.-J.; Lim, S.-J.; Lee, S.-K.; Jang, J.-S. Adaptive digital beamforming for uplink coverage enhancement in 5G NR system. In Proceedings of the 2019 27th Telecommunications Forum (TELFOR), Belgrade, Serbia, 26–27 November 2019. [Google Scholar]
- Aldowesh, A.; Alnuaim, T.; Alzogaiby, A. Slow-moving micro-UAV detection with a small scale digital array radar. In Proceedings of the 2019 IEEE Radar Conference (RadarConf), Boston, MA, USA, 22–26 April 2019. [Google Scholar]
- Codau, C.; Buta, R.; Pastrav, A.; Palade, T.; Dolea, P.; Puschita, E. ULA transmit beamforming on SDR platform. In Proceedings of the 2020 International Workshop on Antenna Technology (iWAT), Bucharest, Romania, 25–28 February 2020. [Google Scholar]
- Patyuchenko, A.; Younis, M.; Krieger, G.; Wang, Z.; Gao, S.; Qin, F.; Mao, C.; Glisic, S.; Debski, W.; Boccia, L.; et al. Highly integrated dual-band digital beamforming synthetic aperture radar. In Proceedings of the 2015 European Radar Conference (EuRAD), Paris, France, 9–11 September 2015. [Google Scholar]
- Wu, B.; Quan, Y.; Xiao, G.; Li, Y.; Xing, M. Design of high-IF DBF system based on RF transceiver. Syst. Eng. Electron. 2022, 44, 365–375. [Google Scholar]
- Pozdnyakov, I.Y.; Turkanov, G.I.; Negrov, D.V. Reconfigurable and scalable architecture of a system for digital processing of broadband radar signals. J. Commun. Technol. Electron. 2017, 62, 229–235. [Google Scholar] [CrossRef]
- Liang, Z.; Liu, Q.; Long, T. A novel subarray digital modulation technique for wideband phased array radar. IEEE Trans. Instrum. Meas. 2020, 69, 7365–7376. [Google Scholar] [CrossRef]
- Farley, B.; Erdmann, C.; Vaz, B.; McGrath, J.; Cullen, E.; Verbruggen, B.; Pelliconi, R.; Breathnach, D.; Lim, P.; Boumaalif, A.; et al. A programmable RFSoC in 16nm FinFET technology for wideband communications. In Proceedings of the 2017 IEEE Asian Solid-State Circuits Conference (A-SSCC), Seoul, Republic of Korea, 6–8 November 2017. [Google Scholar]
- Feng, Z.; Yao, Y.; Gao, D. Low power structure digital up converter design for software radio system. J. Circuits Syst. Comput. 2020, 30, 2150019. [Google Scholar] [CrossRef]
- Boulogeorgos, A.-A.A.; Kapinas, V.M.; Schober, R.; Karagiannidis, G.K. I/Q-imbalance self-interference coordination. IEEE Trans. Wirel. Commun. 2016, 15, 4157–4170. [Google Scholar] [CrossRef]
- Jenq, Y.-C. Direct digital synthesizer with jittered clock. IEEE Trans. Instrum. Meas. 1997, 46, 653–655. [Google Scholar] [CrossRef]
- Towfic, Z.J.; Sayed, A.H. Clock jitter estimation in noise. In Proceedings of the 2011 IEEE International Symposium of Circuits and Systems (ISCAS), Rio de Janeiro, Brazil, 15–18 May 2011. [Google Scholar]
- Liu, L.; Pokharel, R. Compact modeling of phase-locked loop frequency synthesizer for transient phase noise and jitter simulation. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2016, 35, 166–170. [Google Scholar] [CrossRef]
- IEEE Std 2414-2020; IEEE Standard for Jitter and Phase Noise. IEEE: New York City, NY, USA, 2021; pp. 1–42.
- Peng, X.; Zhang, Y.; Wang, W.; Yang, S. Broadband mismatch calibration for time-interleaved ADC based on linear frequency modulated signal. IEEE Trans. Circuits Syst. I Regul. Pap. 2021, 68, 3621–3630. [Google Scholar] [CrossRef]
- Shao, T.; Wang, Z.; Fang, S.; Liu, H.; Chen, Z.N. A full-passband linear-phase band-pass filter equalized with negative group delay circuits. IEEE Access 2020, 8, 43336–43343. [Google Scholar] [CrossRef]
- Lee, J.; Uhm, M.S.; Park, J.H. Synthesis of a self-equalized dual-passband filter. IEEE Microw. Wirel. Compon. Lett. 2005, 15, 256–258. [Google Scholar]
- Reza, A.; Muttaqin, H.; Miftachul, U. Phased-MIMO radar: Angular resolution. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1125, 012046. [Google Scholar] [CrossRef]
- Hassanien, A.; Vorobyov, S.A. Phased-MIMO radar: A tradeoff between phased-array and MIMO radars. IEEE Trans. Signal Process. 2010, 58, 3137–3151. [Google Scholar] [CrossRef]
- Chen, Y.-J.; Zhang, Q.; Luo, Y.; Li, K.-M. Multi-target radar imaging based on phased-MIMO technique—Part I: Imaging algorithm. IEEE Sens. J. 2017, 17, 6185–6197. [Google Scholar] [CrossRef]
- Chen, Y.-J.; Zhang, Q.; Luo, Y.; Li, K.-M. Multi-target radar imaging based on phased-MIMO technique—Part II: Adaptive resource allocation. IEEE Sens. J. 2017, 17, 6198–6209. [Google Scholar] [CrossRef]
- Pei, X.; Wang, N.; Werthimer, D.; Duan, X.F.; Li, J.; Ergesh, T.; Liu, Q.; Cai, M.H. Design of RFSoC-based digital phased array feed (PAF) and hybrid architecture beamforming system. Res. Astron. Astrophys. 2022, 22, 045016. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, G.; Quan, Y.; Sun, Z.; Wen, B.; Liao, G. Design of a Digital Array Signal Processing System with Full Array Element. Remote Sens. 2023, 15, 4043. https://doi.org/10.3390/rs15164043
Xiao G, Quan Y, Sun Z, Wen B, Liao G. Design of a Digital Array Signal Processing System with Full Array Element. Remote Sensing. 2023; 15(16):4043. https://doi.org/10.3390/rs15164043
Chicago/Turabian StyleXiao, Guoyao, Yinghui Quan, Zongzheng Sun, Bo Wen, and Guisheng Liao. 2023. "Design of a Digital Array Signal Processing System with Full Array Element" Remote Sensing 15, no. 16: 4043. https://doi.org/10.3390/rs15164043
APA StyleXiao, G., Quan, Y., Sun, Z., Wen, B., & Liao, G. (2023). Design of a Digital Array Signal Processing System with Full Array Element. Remote Sensing, 15(16), 4043. https://doi.org/10.3390/rs15164043