A Novel Assessment of the Surface Heat Flux Role in Radon (Rn-222) Gas Flow within Subsurface Geological Porous Media
Abstract
:1. Introduction
- —diffusion transport. D is the Rn diffusion coefficient in air-filled pores (m2·s−1); ∇Ca is Rn concentration gradient (Bq·m−4).
- —advective transport. K is intrinsic permeability (m2); μ is the dynamic viscosity of air (1.83·10−5 kg·m−1·s−1 or Pa·s at T = 293 K).
- –Rn decay. β is the partition-corrected porosity; λ is the Rn decay constant (2.1 × 10−6 s−1).
2. Experimental Setup
3. Results
3.1. Daily Profiles
3.2. Temperature on the Surface and Rn within the Ground Relationship
- Days with the low signal where there were no detectable peaks (daily maximum Rn < twice the largest minimum value of the entire dataset. The values are 0.356, 0 and 0.396 kBq/m3 for Rn at 10, 40, and 60 m depth, respectively).
- Days where daily maximum Rn appeared ±3 h from the average time of maximum Rn for that specific month.
3.3. The Temperature Dependency of the Rn Flow within the Borehole Airspace and in the Bedrock
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Iyengar, M.A.R. The natural distribution of radium. Environ. Behav. Radium 1990, 1, 59–128. [Google Scholar]
- Hassan, N.M.; Hosoda, M.; Ishikawa, T.; Sorimachi, A.; Sahoo, S.K.; Tokonami, S.; Fukushi, M. Radon migration process and its influence factors; review. Jpn. J. Health Phys. 2009, 44, 218–231. [Google Scholar] [CrossRef]
- Sahu, P.; Panigrahi, D.C.; Mishra, D.P. A comprehensive review on sources of radon and factors affecting radon concentration in underground uranium mines. Environ. Earth Sci. 2016, 75, 617. [Google Scholar] [CrossRef]
- Reuveni, Y.; Yair, Y.; Price, C.; Steinitz, G. Ground level gamma-ray and electric field enhancements during disturbed weather: Combined signatures from convective clouds, lightning and rain. Atmos. Res. 2017, 196, 142–150. [Google Scholar] [CrossRef]
- Barberio, M.D.; Gori, F.; Barbieri, M.; Billi, A.; Devoti, R.; Doglioni, C.; Petitta, M.; Riguzzi, F.; Rusi, S. Diurnal and Semidiurnal, 2018. Cyclicity of Radon (222Rn) in Groundwater, Giardino Spring, Central Apennines, Italy. Water 2018, 10, 1276. [Google Scholar] [CrossRef]
- Cho, B.W.; Choo, C.O. 2019. Geochemical Behavior of Uranium and Radon in Groundwater of Jurassic Granite Area, Icheon, Middle Korea. Water 2019, 11, 1278. [Google Scholar] [CrossRef]
- Giustini, F.; Ruggiero, L.; Sciarra, A.; Beaubien, S.E.; Graziani, S.; Galli, G.; Pizzino, L.; Tartarello, M.C.; Lucchetti, C.; Sirianni, P.; et al. Radon Hazard in Central Italy: Comparison among Areas with Different Geogenic Radon Potential. Int. J. Environ. Res. Public Health 2022, 19, 666. [Google Scholar] [CrossRef]
- Salikhov, N.; Shepetov, A.; Pak, G.; Nurakynov, S.; Ryabov, V.; Saduyev, N.; Sadykov, T.; Zhantayev, Z.; Zhukov, V. Monitoring of Gamma Radiation Prior to Earthquakes in a Study of Lithosphere-Atmosphere-Ionosphere Coupling in Northern Tien Shan. Atmosphere 2022, 13, 1667. [Google Scholar] [CrossRef]
- Morawska, L.; Phillips, C.R. Dependence of the radon emanation coefficient on radium distribution and internal structure of the material. Geochim. Et Cosmochim. Acta 1993, 57, 1783–1797. [Google Scholar] [CrossRef]
- Barbosa, S.M.; Zafrir, H.; Malik, U.; Piatibratova, O. Multi-year to daily radon variability from continuous monitoring at the Amram tunnel, southern Israel. Geophys. J. Int. 2010, 182, 829–842. [Google Scholar] [CrossRef]
- Yang, J.; Busen, H.; Scherb, H.; Hürkamp, K.; Guo, Q.; Tschiersch, J. Modeling of radon exhalation from soil influenced by environmental parameters. Sci. Total Environ. 2019, 656, 1304–1311. [Google Scholar] [CrossRef] [PubMed]
- Mercier, J.-F.; Tracy, B.; D’Amours, R.; Chagnon, F.; Hoffman, I.; Korpach, E.; Johnson, S.; Ungar, R. Increased environmental gamma-ray dose rate during precipitation: A strong correlation with contributing air mass. J. Environ. Radioact. 2009, 100, 527–533. [Google Scholar] [CrossRef] [PubMed]
- Livesay, R.; Blessinger, C.; Guzzardo, T.; Hausladen, P. Rain-induced increase in background radiation detected by Radiation Portal Monitors. J. Environ. Radioact. 2014, 137, 137–141. [Google Scholar] [CrossRef]
- Yair, Y.; Reuveni, Y.; Katz, S.; Price, C.; Yaniv, R. Strong electric fields observed during snow storms on Mt. Hermon, Israel. Atmos. Res. 2019, 215, 208–213. [Google Scholar] [CrossRef]
- Tzadok, T. Near Surface Gamma Ray Enhancements Related to Precipitation and Thunderstorm Activity. Master’s Thesis, Tel-Aviv University, Tel Aviv, Israel, 2020. [Google Scholar]
- Steinitz, G.; Piatibratova, O.; Barbosa, S.M. Radon daily signals in the Elat Granite, southern Arava, Israel. J. Geophys. Res. 2007, 112, B10211. [Google Scholar] [CrossRef]
- Choubey, V.M.; Arora, B.R.; Barbosa, S.M.; Kumar, N.; Kamra, L. Seasonal and daily variation of radon at 10m depth in borehole, Garhwal Lesser Himalaya, India. Appl. Radiat. Isot. 2011, 69, 1070–1078. [Google Scholar] [CrossRef]
- Zafrir, H.; Barbosa, S.M.; Malik, U. Differentiation between the effect of temperature and pressure on radon within the subsurface geological media. Radiat. Meas. 2013, 49, 39–56. [Google Scholar] [CrossRef]
- Perrier, F.; Girault, F. Harmonic response of soil radon-222 flux and concentration induced by barometric oscillations. Geophys. J. Int. 2013, 195, 945–971. [Google Scholar] [CrossRef]
- Ouzounov, D.; Pulinets, S.; Karastathis, V.; Eleftheriou, G.; Lee, L.; Fu, C.C.; Kafatos, M. The role of radon and other geogases in the Lithosphere-Atmosphere–Ionosphere Coupling associated with pre-earthquake processes. Geophys. Res. Abstr. 2019, 21, EGU2019-4459-1. [Google Scholar]
- Levintal, E.; Dragila, M.I.; Zafrir, H.; Weisbrod, N. The role of atmospheric conditions in CO2 and radon emissions from an abandoned water well. Sci. Total Environ. 2020, 722, 137857. [Google Scholar] [CrossRef]
- King, C.-Y.; Zhang, W.; King, B.-S. Radon anomalies on three kinds of faults in California. Pure Appl. Geophys. 1993, 141, 111–124. [Google Scholar] [CrossRef]
- Ioannides, K.; Papachristodoulou, C.; Stamoulis, K.; Karamanis, D.; Pavlides, S.; Chatzipetros, A.; Karakala, E. Soil gas radon: A tool for exploring active fault zones. Appl. Radiat. Isot. 2003, 59, 205–213. [Google Scholar] [CrossRef]
- López, J.A.; Ornelas, O.D.; Sajo-Bohus, L.; Rodriguez, G.; Chavarria, I. Correlation between underground radon gas and dormant geological faults. J. Nucl. Phys. Mater. Sci. Radiat. Appl. 2016, 4, 265–275. [Google Scholar] [CrossRef]
- Mogro-Campero, A.; Fleischer, R. Subterrestrial fluid convection: A hypothesis for long distance migration of radon within the earth. Earth Planet. Sci. Lett. 1977, 34, 321–325. [Google Scholar] [CrossRef]
- Cicerone, R.D.; Ebel, J.E.; Britton, J. A systematic compilation of earthquake precursors. Tectonophysics 2009, 476, 371–396. [Google Scholar] [CrossRef]
- Woith, H. Radon earthquake precursor: A short review. Eur. Phys. J. Spec. Top. 2015, 224, 611–627. [Google Scholar] [CrossRef]
- Falsaperla, S.; Neri, M.; Di Grazia, G.; Langer, H.; Spampinato, S. What happens to in-soil Radon activity during a long-lasting eruption? Insights from Etna by multidisciplinary data analysis. Geochem. Geophys. Geosyst. 2017, 18, 2162–2176. [Google Scholar] [CrossRef]
- Oh, Y.H.; Kim, G. A radon-thoron isotope pair as a reliable earthquake precursor. Sci. Rep. 2015, 5, 13084. [Google Scholar] [CrossRef]
- Zafrir, H.; Ben Horin, Y.; Malik, U.; Chemo, C.; Zalevsky, Z. Novel determination of radon-222 velocity in deep subsurface rocks and the feasibility to using radon as an earthquake precursor. J. Geophys. Res. Solid Earth 2016, 121, 6346–6364. [Google Scholar] [CrossRef]
- Zafrir, H.; Barbosa, S.; Levintal, E.; Weisbrod, N.; Ben Horin, Y.; Zalevsky, Z. The impact of temperature, pressure and tectonic driving forces on radon and CO2 flow within the subsurface porous media -a dozen-year research summary. Front. Earth Sci. 2020, 8, 433. [Google Scholar] [CrossRef]
- Eppelbaum, L.V.; Finkelstein, M.I. Radon emanation, magnetic and VLF temporary variations: Removing components not associated with dynamic processes. In Collection of Selected Papers of the XXVI General Assembly of the European Seismological Commission; Proceedings and Activity Report 1996–1998; ESC XXVI General Assembly: Tel Aviv, Israel, 1998; pp. 122–126. [Google Scholar]
- Finkelstein, M.; Brenner, S.; Eppelbaum, L.; Ne’Eman, E. Identification of anomalous radon concentrations due to geodynamic processes by elimination of Rn variations caused by other factors. Geophys. J. Int. 1998, 133, 407–412. [Google Scholar] [CrossRef]
- Finkelstein, M.; Eppelbaum, L.V.; Price, C. Analysis of temperature influences on the amplitude–frequency characteristics of Rn gas concentration. J. Environ. Radioact. 2006, 86, 251–270. [Google Scholar] [CrossRef]
- Rogers, V.C.; Nielson, K.K. Multiphase radon generation and transport in porous materials. Health Phys. 1991, 60, 807–815. [Google Scholar] [CrossRef] [PubMed]
- Van der Spoel, W.H. Radon Transport in Sand: A Laboratory Study. Ph.D. Thesis, Technical University Eindhoven, Eindhoven, The Netherlands, 1998. [Google Scholar]
- Andersen, C.E. Radon Transport Modeling e RnMod3d; Risø-R-1201; Risø National Laboratory: Roskilde, Denmark, 2000. [Google Scholar]
- Andersen, C.E. Entry of Soil Gas and Radon into Houses; RISO-R-623-EN; Risø National Laboratory: Roskilde, Denmark, 1992. [Google Scholar]
- Tanner, A.B. Radon migration in the ground: A supplementary review. In Natural Radiation Environment III: Proceedings of a Symposium Held at Houston, Texas, 23–28 April 1978; Volume 1; DOE Symposium Series 51; Technical Information Center, U.S. Department of Energy: Washington, DC, USA, 1980. [Google Scholar] [CrossRef]
- Fleischer, R.L. Dislocation model for radon response to distant earthquakes. Geophys. Res. Lett. 1981, 8, 477–480. [Google Scholar] [CrossRef]
- Fleischer, R.L.; Turner, L.G.; George, A.C. Passive measurement of working level and the effective diffusion constants of radon daughters by the nuclear track technique. Health Phys. 1984, 47, 9–19. [Google Scholar] [CrossRef]
- Baskaran, M. Radon: A Tracer for Geological, Geophysical, and Geochemical Studies, 1st ed.; Springer: Cham, Switzerland, 2016; ISBN 13: 978-3319213286. [Google Scholar]
- Bigu, J. Theoretical models for determining 222Rn and 220Rn progeny levels in Canadian underground U mines--a comparison with experimental data. Health Phys. 1985, 48, 371–399. [Google Scholar] [CrossRef] [PubMed]
- Sextro, R.G.; Nazaroff, W.W.; Turk, B.H. Spatial and Temporal Variation in Factors Governing the Radon Source Potential of Soil. In Proceedings of the U.S. EPA Symposium on Radon and Radon Reduction Technology, Denver, CO, USA, 17–21 October 1988; p. V-5. [Google Scholar]
- Chen, C.; Thomas, D.M.; Green, R.E. Modeling of radon transport in unsaturated soil. J. Geophys. Res. 1995, 100, 15517–15525. [Google Scholar] [CrossRef]
- Richon, P.; Perrier, F.; Sabroux, J.C.; Trique, M.; Ferry, C.; Voisin, V.; Pili, E. Spatial and time variations of Radon-222 concentration in the atmosphere of a dead-end horizontal tunnel. J. Environ. Radioact. 2005, 78, 179–198. [Google Scholar] [CrossRef]
- Siino, M.; Scudero, S.; Cannelli, V.; Piersanti, A.; D’alessandro, A. Multiple seasonality in soil radon time series. Sci. Rep. 2019, 9, 8610. [Google Scholar] [CrossRef]
- Cozmuta, I.; van der Graaf, E.R.; de Meijer, R.J. Modeling radon transport in concrete. In Proceedings of the MSC2001 Conference, Cambridge, UK, 2–4 July 2001. [Google Scholar]
- Van der Pal, M. Radon Transport in Autoclaved Aerated Concrete. Ph.D. Thesis, Technical University Eindhoven, Eindhoven, The Netherlands, 2004. [Google Scholar]
- Haquin, G.; Zafrir, H.; Ilzycer, D.; Weisbrod, N. Effect of atmospheric temperature on underground radon: A laboratory experiment. J. Environ. Radioac. 2022, 253–254, 106992. [Google Scholar] [CrossRef]
- Zafrir, H.; Barbosa, S.; Ilzycer, D.; Haquin, G.; Weisbrod, N.; Zalevsky, Z. Recovery of Pre-Seismic Gas Flow Anomalous Signals at Deep Boreholes as a Proxy for Investigating Tectonic Activity. In SIPS 2022, Vol.13: Virk International Symposium on Physics, Technology & Interdisciplinary Research for Sustainable Development; FLOGEN Stars Outreach: Montreal, QU, Canada, 2023; ISSN 2291-1227. [Google Scholar]
- Haquin, G.; Zafrir, H.; Ilzycer, D.; Weisbrod, N. Monte Carlo modeling of scintillation detectors for continuous underground radon monitoring. J. Environ. Radioac. 2021, 237, 106693. [Google Scholar] [CrossRef] [PubMed]
- Katase, A.; Narahara, Y.; Ishihara, Y.; Tanaka, K.; Matsuyama, H. Variation of intensity of environmental gamma-rays measured with Ge (Li) spectrometer. J. Nucl. Sci. Technol. 1982, 19, 918–927. [Google Scholar] [CrossRef]
- Litaor, M.I.; Reichmann, O.; Shenker, M. Genesis, classification and human modification of peat and mineral-organic soils, Hula Valley, Israel. Mires Peat 2011, 9, 1–9. [Google Scholar]
- Zafrir, H.; Haquin, G.; Malik, U.; Barbosa, S.M.; Piatibratova, O.; Steinitz, G. Gamma versus alpha sensors for Rn-222 long-term monitoring in geological environments. Radiat. Meas. 2011, 46, 611–620. [Google Scholar] [CrossRef]
Depth [m] | Before Filtering Data | After Filtering Data |
---|---|---|
10 | 1167 | 999 |
40 | 1167 | 995 |
60 | 1167 | 991 |
Maximum Rn-60 m − Rn-40 m | Maximum Rn-60 m | |
---|---|---|
Parameter a [% CV] | 6.13 | 5.68 |
Parameter b [% CV] | 1.7 | 1.53 |
SSE [%CV] | 11.35 | 11.26 |
averaged RMSE [kBq/m3 ] | 4.82 ± 0.28 | 5.15 ± 0.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benkovitz, A.; Zafrir, H.; Reuveni, Y. A Novel Assessment of the Surface Heat Flux Role in Radon (Rn-222) Gas Flow within Subsurface Geological Porous Media. Remote Sens. 2023, 15, 4094. https://doi.org/10.3390/rs15164094
Benkovitz A, Zafrir H, Reuveni Y. A Novel Assessment of the Surface Heat Flux Role in Radon (Rn-222) Gas Flow within Subsurface Geological Porous Media. Remote Sensing. 2023; 15(16):4094. https://doi.org/10.3390/rs15164094
Chicago/Turabian StyleBenkovitz, Ayelet, Hovav Zafrir, and Yuval Reuveni. 2023. "A Novel Assessment of the Surface Heat Flux Role in Radon (Rn-222) Gas Flow within Subsurface Geological Porous Media" Remote Sensing 15, no. 16: 4094. https://doi.org/10.3390/rs15164094
APA StyleBenkovitz, A., Zafrir, H., & Reuveni, Y. (2023). A Novel Assessment of the Surface Heat Flux Role in Radon (Rn-222) Gas Flow within Subsurface Geological Porous Media. Remote Sensing, 15(16), 4094. https://doi.org/10.3390/rs15164094