Spatiotemporal Weighted for Improving the Satellite-Based High-Resolution Ground PM2.5 Estimation Using the Light Gradient Boosting Machine
Abstract
:1. Introduction
2. Datasets and Processing
2.1. In Situ PM2.5 Measurements
2.2. MAIAC AOD
2.3. Auxiliary Data
2.4. Data Processing
3. Models and Methods
3.1. STW-LightGBM Model
3.2. Parameter Selection
3.3. Standard Deviational Ellipse
3.4. Model Verification
4. Results
4.1. Model Fitting Performance and Overall Evaluation
4.2. Interannual-, Seasonal-, and Monthly Scale Performance
4.3. Site-Based and Time-Based Authentication
4.4. Standard Error Ellipse
4.5. Mapping of PM2.5 Concentrations in China from 2015 to 2020
5. Discussion
5.1. Model Fitting Performance
5.2. Comparison with Traditional Models
5.3. Comparison with Relevant Studies
5.4. Model Prediction Results
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Y.; Tong, D.; Cheng, J.; Davis, S.J.; Yu, S.; Yarlagadda, B.; Clarke, L.E.; Brauer, M.; Cohen, A.J.; Kan, H.; et al. Role of climate goals and clean-air policies on reducing future air pollution deaths in China: A modelling study. Lancet Planet. Health 2022, 6, e92–e99. [Google Scholar] [CrossRef] [PubMed]
- China Environmental Monitoring Station. 2013–2016 China Environmental Status Bulletin, 2017–2020 China Eco-Environmental Status Bulletin [EB/OL]. Available online: http://www.cnemc.cn/jcbg/zghjzkgb/ (accessed on 12 August 2022).
- Peng, Y.; Wang, H.; Zhang, X.; Wang, P.; Li, S.; Liu, Z.; Zhang, W.; Che, H. Combined effect of surface PM2.5 assimilation and aerosol-radiation interaction on winter severe haze prediction in central and eastern China. Atmos. Pollut. Res. 2023, 14, 101802. [Google Scholar] [CrossRef]
- Zhang, Y.; Yin, Z.; Li, S.; Zhang, J.; Sun, H.Z.; Liu, K.; Shirai, K.; Hu, K.; Qiu, C.; Liu, X.; et al. Ambient PM2.5, ozone and mortality in Chinese older adults: A nationwide cohort analysis (2005–2018). J. Hazard. Mater. 2023, 454, 131539. [Google Scholar] [CrossRef] [PubMed]
- Cui, F.; Sun, Y.; Xie, J.; Li, D.; Wu, M.; Song, L.; Hu, Y.; Tian, Y. Air pollutants, genetic susceptibility and risk of incident idiopathic pulmonary fibrosis. Eur. Respir. J. 2023, 61, 2200777. [Google Scholar] [CrossRef] [PubMed]
- Mo, S.; Wang, Y.; Peng, M.; Wang, Q.; Zheng, H.; Zhan, Y.; Ma, Z.; Yang, Z.; Liu, L.; Hu, K.; et al. Sex disparity in cognitive aging related to later-life exposure to ambient air pollution. Sci. Total Environ. 2023, 886, 163980. [Google Scholar] [CrossRef]
- Huang, W.; Zhou, Y.; Chen, X.; Zeng, X.; Knibbs, L.D.; Zhang, Y.; Jalaludin, B.; Dharmage, S.C.; Morawska, L.; Guo, Y.; et al. Individual and joint associations of long-term exposure to air pollutants and cardiopulmonary mortality: A 22-year cohort study in Northern China. Lancet Reg. Health 2023, 36, 100776. [Google Scholar] [CrossRef]
- Xia, F.; Xing, J.; Xu, J.; Pan, X. The short-term impact of air pollution on medical expenditures: Evidence from Beijing. J. Environ. Econ. Manag. 2022, 114, 102680. [Google Scholar] [CrossRef]
- Xie, Y.; Li, Z.; Zhong, H.; Feng, X.L.; Lu, P.; Xu, Z.; Guo, T.; Si, Y.; Wang, J.; Chen, L.; et al. Short-Term Ambient Particulate Air Pollution and Hospitalization Expenditures of Cause-Specific Cardiorespiratory Diseases in China: A Multicity Analysis. Lancet Reg. Health 2021, 15, 100232. [Google Scholar] [CrossRef]
- Rajagopalan, S.; Landrigan, P.J. The Inflation Reduction Act—Implications for climate change, air pollution, and health. Lancet Reg. Health 2023, 23, 100522. [Google Scholar] [CrossRef]
- Xu, M.; Qin, Z.; Zhang, S.; Xie, Y. Health and economic benefits of clean air policies in China: A case study for Beijing-Tianjin-Hebei region. Environ. Pollut. 2021, 285, 117525. [Google Scholar] [CrossRef]
- Cui, L.; Duan, H.; Mo, J.; Song, M. Ecological compensation in air pollution governance: China’s efforts, challenges, and potential solutions. Int. Rev. Financ. Anal. 2021, 74, 101701. [Google Scholar] [CrossRef]
- Pi, T.; Wu, H.; Li, X. Does Air Pollution Affect Health and Medical Insurance Cost in the Elderly: An Empirical Evidence from China. Sustainability 2019, 11, 1526. [Google Scholar] [CrossRef]
- Zhang, Y.-L.; Cao, F. Fine particulate matter (PM2.5) in China at a city level. Sci. Rep. 2015, 5, 14884. [Google Scholar] [CrossRef] [PubMed]
- Engel-Cox, J.; Nguyen Thi Kim, O.; van Donkelaar, A.; Martin, R.V.; Zell, E. Toward the next generation of air quality monitoring: Particulate Matter. Atmos. Environ. 2013, 80, 584–590. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, L.; Tao, J.; Zhang, Y.; Su, L. Satellite-based estimation of regional particulate matter (PM) in Beijing using vertical-and-RH correcting method. Remote Sens. Environ. 2010, 114, 50–63. [Google Scholar] [CrossRef]
- Chen, G.; Li, S.; Knibbs, L.D.; Hamm, N.A.S.; Cao, W.; Li, T.; Guo, J.; Ren, H.; Abramson, M.J.; Guo, Y. A machine learning method to estimate PM2.5 concentrations across China with remote sensing, meteorological and land use information. Sci. Total Environ. 2018, 636, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Du, L.; Wang, W.; Zhu, Q.; Bi, J.; Scovronick, N.; Naidoo, M.; Garland, R.M.; Liu, Y. A machine learning model to estimate ambient PM2.5 concentrations in industrialized highveld region of South Africa. Remote. Sens. Environ. 2021, 266, 112713. [Google Scholar] [CrossRef]
- He, Q.; Huang, B. Satellite-based mapping of daily high-resolution ground PM2.5 in China via space-time regression modeling. Remote. Sens. Environ. 2018, 206, 72–83. [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, Q.; Li, T.; Tan, S.; Zhang, L. Full-coverage spatiotemporal mapping of ambient PM2.5 and PM10 over China from Sentinel-5P and assimilated datasets: Considering the precursors and chemical compositions. Sci. Total Environ. 2021, 793, 148535. [Google Scholar] [CrossRef]
- Xue, Y.; Li, Y.; Guang, J.; Tugui, A.; She, L.; Qin, K.; Fan, C.; Che, Y.; Xie, Y.; Wen, Y.; et al. Hourly PM2.5 Estimation over Central and Eastern China Based on Himawari-8 Data. Remote Sens. 2020, 12, 855. [Google Scholar] [CrossRef]
- Sun, J.; Wang, Z.; Zhou, W.; Xie, C.; Wu, C.; Chen, C.; Han, T.; Wang, Q.; Li, Z.; Li, J.; et al. Measurement report: Long-term changes in black carbon and aerosol optical properties from 2012 to 2020 in Beijing, China. Atmos. Chem. Phys. 2022, 22, 561–575. [Google Scholar] [CrossRef]
- Sun, Y.; He, Y.; Kuang, Y.; Xu, W.; Song, S.; Ma, N.; Tao, J.; Cheng, P.; Wu, C.; Su, H.; et al. Chemical Differences between PM1 and PM2.5 in Highly Polluted Environment and Implications in Air Pollution Studies. Geophys. Res. Lett. 2020, 47, e2019GL086288. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, H.; Guo, Y.; Hu, X. Review of deep learning. Appl. Res. Comput. 2018, 35, 1921–1928+1936. [Google Scholar]
- Wei, J.; Huang, W.; Li, Z.; Xue, W.; Peng, Y.; Sun, L.; Cribb, M. Estimating 1-km-resolution PM2.5 concentrations across China using the space-time random forest approach. Remote Sens. Environ. 2019, 231, 111221. [Google Scholar] [CrossRef]
- Zhang, T.; He, W.; Zheng, H.; Cui, Y.; Song, H.; Fu, S. Satellite-based ground PM2.5 estimation using a gradient boosting decision tree. Chemosphere 2021, 268, 128801. [Google Scholar] [CrossRef]
- Yang, N.; Shi, H.; Tang, H.; Yang, X. Geographical and temporal encoding for improving the estimation of PM2.5 concentrations in China using end-to-end gradient boosting. Remote Sens. Environ. 2022, 269, 112828. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C.; Assoc Comp, M. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.-Y. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In Proceedings of the 31st Annual Conference on Neural Information Processing Systems (NIPS), Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Zhong, J.; Zhang, X.; Gui, K.; Wang, Y.; Che, H.; Shen, X.; Zhang, L.; Zhang, Y.; Sun, J.; Zhang, W. Robust prediction of hourly PM2.5 from meteorological data using LightGBM. Natl. Sci. Rev. 2021, 8, nwaa307. [Google Scholar] [CrossRef]
- Wei, J.; Li, Z.; Pinker, R.T.; Wang, J.; Sun, L.; Xue, W.; Li, R.; Cribb, M. Himawari-8-derived diurnal variations in ground-level PM2.5 pollution across China using the fast space-time Light Gradient Boosting Machine (LightGBM). Atmos. Chem. Phys. 2021, 21, 7863–7880. [Google Scholar] [CrossRef]
- He, W.; Zhang, S.; Meng, H.; Han, J.; Zhou, G.; Song, H.; Zhou, S.; Zheng, H. Full-Coverage PM2.5 Mapping and Variation Assessment during the Three-Year Blue-Sky Action Plan Based on a Daily Adaptive Modeling Approach. Remote Sens. 2022, 14, 3571. [Google Scholar] [CrossRef]
- GB 3095-2012; China, M. Ambient Air Quality Standards. China Environmental Science Press: Beijing, China, 2012.
- Guo, J.-P.; Zhang, X.-Y.; Che, H.-Z.; Gong, S.-L.; An, X.; Cao, C.-X.; Guang, J.; Zhang, H.; Wang, Y.-Q.; Zhang, X.-C.; et al. Correlation between PM concentrations and aerosol optical depth in eastern China. Atmos. Environ. 2009, 43, 5876–5886. [Google Scholar] [CrossRef]
- Martins, V.S.; Lyapustin, A.; de Carvalho, L.A.S.; Barbosa, C.C.F.; Novo, E.M.L.M. Validation of high-resolution MAIAC aerosol product over South America. J. Geophys. Res. Atmos. 2017, 122, 7537–7559. [Google Scholar] [CrossRef]
- Chudnovsky, A.A.; Kostinski, A.; Lyapustin, A.; Koutrakis, P. Spatial scales of pollution from variable resolution satellite imaging. Environ. Pollut. 2013, 172, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Tao, M.; Wang, J.; Li, R.; Wang, L.; Wang, L.; Wang, Z.; Tao, J.; Che, H.; Chen, L. Performance of MODIS high-resolution MAIAC aerosol algorithm in China: Characterization and limitation. Atmos. Environ. 2019, 213, 159–169. [Google Scholar] [CrossRef]
- Lyapustin, A.; Wang, Y.; Korkin, S.; Huang, D. MODIS Collection 6 MAIAC algorithm. Atmos. Meas. Technol. 2018, 11, 5741–5765. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, W.; Fan, M.; Wei, J.; Tan, Y.; Wang, Q. Evaluation of MAIAC aerosol retrievals over China. Atmos. Environ. 2019, 202, 8–16. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Crespo, R.; Yao, J. Geographical and Temporal Weighted Regression (GTWR). Geogr. Anal. 2015, 47, 431–452. [Google Scholar] [CrossRef]
- Fan, J.L.; Ma, X.; Wu, L.F.; Zhang, F.C.; Yu, X.; Zeng, W.Z. Light Gradient Boosting Machine: An efficient soft computing model for estimating daily reference evapotranspiration with local and external meteorological data. Agric. Water Manag. 2019, 225, 105758. [Google Scholar] [CrossRef]
- Bentejac, C.; Csorgo, A.; Martinez-Munoz, G. A comparative analysis of gradient boosting algorithms. Artif. Intell. Rev. 2021, 54, 1937–1967. [Google Scholar] [CrossRef]
- Wang, B.; Shi, W.; Miao, Z. Confidence Analysis of Standard Deviational Ellipse and Its Extension into Higher Dimensional Euclidean Space. PLoS ONE 2015, 10, e0118537. [Google Scholar] [CrossRef]
- Gong, J. Clarifying the Standard Deviational Ellipse. Geogr. Anal. 2002, 34, 155–167. [Google Scholar] [CrossRef]
- He, Q.; Gu, Y.; Zhang, M. Spatiotemporal trends of PM2.5 concentrations in central China from 2003 to 2018 based on MAIAC-derived high-resolution data. Environ. Int. 2020, 137, 105536. [Google Scholar] [CrossRef]
- Xue, T.; Zheng, Y.; Tong, D.; Zheng, B.; Li, X.; Zhu, T.; Zhang, Q. Spatiotemporal continuous estimates of PM2.5 concentrations in China, 2000–2016: A machine learning method with inputs from satellites, chemical transport model, and ground observations. Environ. Int. 2019, 123, 345–357. [Google Scholar] [CrossRef] [PubMed]
- Chinese State Council, Action Plan on Air Pollution Prevention and Control. 2013. Available online: http://www.gov.cn/zwgk/2013-09/12/content_2486773.htm (accessed on 26 July 2022). (In Chinese)
- Chinese State Council, Three-Year Action Plan on Defending the Blue Sky (In Chinese). 2018. Available online: http://www.gov.cn/zhengce/content/2018-07/03/content_5303158.htm (accessed on 26 July 2022).
- You, W.; Zang, Z.; Zhang, L.; Li, Y.; Pan, X.; Wang, W. National-Scale Estimates of Ground-Level PM2.5 Concentration in China Using Geographically Weighted Regression Based on 3 km Resolution MODIS AOD. Remote Sens. 2016, 8, 184. [Google Scholar] [CrossRef]
- Ma, Z.; Hu, X.; Huang, L.; Bi, J.; Liu, Y. Estimating Ground-Level PM2.5 in China Using Satellite Remote Sensing. Rev. Environ. Sci. Biol. 2014, 48, 7436–7444. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Meng, H.; Han, J.; Zhou, G.; Zheng, H.; Zhang, S. Spatiotemporal PM2.5 estimations in China from 2015 to 2020 using an improved gradient boosting decision tree. Chemosphere 2022, 296, 134003. [Google Scholar] [CrossRef]
- Boudriki Semlali, B.-E.; El Amrani, C. Satellite Big Data Ingestion for Environmentally Sustainable Development. In Emerging Trends in ICT for Sustainable Development; Springer: Cham, Switzerland, 2021; pp. 269–284. [Google Scholar] [CrossRef]
- Semlali, B.-E.B.; Amrani, C.E. Amrani, C.E. A Stream Processing Software for Air Quality Satellite Datasets. In Advanced Intelligent Systems for Sustainable Development (AI2SD’2020); Springer: Cham, Switzerland, 2022; pp. 839–853. [Google Scholar] [CrossRef]
- Semlali, B.-E.B.; Amrani, C.E.; Ortiz, G.; Boubeta-Puig, J.; Garcia-de-Prado, A. SAT-CEP-monitor: An air quality monitoring software architecture combining complex event processing with satellite remote sensing. Comput. Electr. Eng. 2021, 93, 107257. [Google Scholar] [CrossRef]
- Li, T.; Shen, H.; Yuan, Q.; Zhang, X.; Zhang, L. Estimating Ground-Level PM2.5 by Fusing Satellite and Station Observations: A Geo-Intelligent Deep Learning Approach. Geophys. Res. Lett. 2017, 44, 11,985–11,993. [Google Scholar] [CrossRef]
- Li, T.; Shen, H.; Zeng, C.; Yuan, Q.; Zhang, L. Point-surface fusion of station measurements and satellite observations for mapping PM2.5 distribution in China: Methods and assessment. Atmos. Environ. 2017, 152, 477–489. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, T.; Zhang, R.; Zhu, Z.-M.; Yang, J.; Chen, P.-Y.; Ou, C.-Q.; Guo, Y. Extreme gradient boosting model to estimate PM2.5 concentrations with missing-filled satellite data in China. Atmos. Environ. 2019, 202, 180–189. [Google Scholar] [CrossRef]
- Wei, J.; Li, Z.; Lyapustin, A.; Sun, L.; Peng, Y.; Xue, W.; Su, T.; Cribb, M. Reconstructing 1-km-resolution high-quality PM2.5 data records from 2000 to 2018 in China: Spatiotemporal variations and policy implications. Remote Sens. Environ. 2021, 252, 112136. [Google Scholar] [CrossRef]
- He, Q.; Gao, K.; Zhang, L.; Song, Y.; Zhang, M. Satellite-derived 1-km estimates and long-term trends of PM2.5 concentrations in China from 2000 to 2018. Environ. Int. 2021, 156, 106726. [Google Scholar] [CrossRef] [PubMed]
Time Scale | R2 | RMSE | MAE | Regression Equation |
---|---|---|---|---|
2015 | 0.877 | 14.376 | 8.796 | Y = 0.88X + 6.68 |
2016 | 0.892 | 13.339 | 8.055 | Y = 0.89X + 5.48 |
2017 | 0.915 | 11.131 | 6.79 | Y = 0.91X + 4.2 |
2018 | 0.918 | 8.892 | 5.55 | Y = 0.92X + 3.44 |
2019 | 0.917 | 8.689 | 5.168 | Y = 0.92X + 3.28 |
2020 | 0.917 | 7.833 | 4.446 | Y = 0.92X + 2.91 |
2015–2020 | 0.904 | 11.027 | 6.523 | Y = 0.9X + 4.27 |
monthly | 0.906 | 7.295 | 4.838 | Y = 0.91X + 3.88 |
seasonally | 0.907 | 6.342 | 4.838 | Y = 0.9X + 4.25 |
yearly | 0.866 | 5.78 | 3.929 | Y = 0.85X + 6.53 |
Data | Year | Short Half-Axis | Long Half-Axis | Flattening | Areal Coordinates |
---|---|---|---|---|---|
Observation data | 2015 | 8.741986 | 12.400678 | 0.295 | (113.2846, 33.078364) |
2016 | 8.743532 | 12.571961 | 0.305 | (113.303646, 33.141384) | |
2017 | 8.743532 | 12.571961 | 0.305 | (113.303646, 33.141384) | |
2018 | 8.704039 | 12.379003 | 0.297 | (113.393208, 33.188897) | |
2019 | 8.6856 | 12.345031 | 0.296 | (113.53484, 33.127374) | |
2020 | 8.711217 | 12.253378 | 0.289 | (113.517829, 33.161107) | |
Prediction data | 2015 | 8.797358 | 12.469937 | 0.295 | (113.293791, 33.102142) |
2016 | 8.691407 | 12.51929 | 0.306 | (113.335734, 33.115923) | |
2017 | 8.691407 | 12.51929 | 0.306 | (113.335734, 33.115923) | |
2018 | 8.698212 | 12.361702 | 0.296 | (113.381568, 33.166527) | |
2019 | 8.696882 | 12.344421 | 0.295 | (113.537326, 33.145294) | |
2020 | 8.65032 | 12.172791 | 0.289 | (113.558399, 33.152506) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, X.; Xi, M.; Wu, L.; Zheng, H. Spatiotemporal Weighted for Improving the Satellite-Based High-Resolution Ground PM2.5 Estimation Using the Light Gradient Boosting Machine. Remote Sens. 2023, 15, 4104. https://doi.org/10.3390/rs15164104
Yu X, Xi M, Wu L, Zheng H. Spatiotemporal Weighted for Improving the Satellite-Based High-Resolution Ground PM2.5 Estimation Using the Light Gradient Boosting Machine. Remote Sensing. 2023; 15(16):4104. https://doi.org/10.3390/rs15164104
Chicago/Turabian StyleYu, Xinyu, Mengzhu Xi, Liyang Wu, and Hui Zheng. 2023. "Spatiotemporal Weighted for Improving the Satellite-Based High-Resolution Ground PM2.5 Estimation Using the Light Gradient Boosting Machine" Remote Sensing 15, no. 16: 4104. https://doi.org/10.3390/rs15164104
APA StyleYu, X., Xi, M., Wu, L., & Zheng, H. (2023). Spatiotemporal Weighted for Improving the Satellite-Based High-Resolution Ground PM2.5 Estimation Using the Light Gradient Boosting Machine. Remote Sensing, 15(16), 4104. https://doi.org/10.3390/rs15164104