Tree-Structured Parzan Estimator–Machine Learning–Ordinary Kriging: An Integration Method for Soil Ammonia Spatial Prediction in the Typical Cropland of Chinese Yellow River Delta with Sentinel-2 Remote Sensing Image and Air Quality Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of Study Area
2.2. Soil Sample Collection and Analysis
2.3. Environmental Variables
2.3.1. Remote Sensing Data
2.3.2. Air Quality
2.4. Machine Learning Model
2.4.1. Random Forest
2.4.2. GBDT
2.4.3. XGB
2.4.4. TPE Search Algorithm
2.5. The Integration Method
2.6. Verification
3. Results and Analysis
3.1. Statistical Analysis
3.2. Spatial Prediction of Soil NH3 Using TPE–ML–OK Method
3.2.1. Evaluation of Hyperparameter Optimization Process
3.2.2. Prediction Accuracy of TPE–ML Model for Soil NH3
3.2.3. The Semi-Variation Analysis of Residual Values from TPE–GBDT, TPE–RF, and TPE–XGB Models
3.2.4. Spatial Prediction and Mapping Using the TPE–ML–OK Method
4. Discussion
4.1. Importance Analysis of Environmental Variables on Soil NH3
4.2. The Mechanism of Influence of Environmental Variables on Soil NH3
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, M.; Huang, X.; Song, Y.; Tang, J.; Cao, J.; Zhang, X.; Zhang, Q.; Wang, S.; Xu, T.; Kang, L.; et al. Ammonia emission control in China would mitigate haze pollution and nitrogen deposition, but worsen acid rain. Proc. Natl. Acad. Sci. USA 2019, 116, 7760–7765. [Google Scholar] [CrossRef]
- Zhang, Z.; Yan, Y.; Kong, S.; Deng, Q.; Qin, S.; Yao, L.; Zhao, T.; Qi, S. Benefits of refined NH3 emission controls on PM2.5 mitigation in Central China. Sci. Total Environ. 2021, 814, 151957. [Google Scholar] [CrossRef] [PubMed]
- Erisman, J.W.; Sutton, M.A.; Galloway, J.; Klimont, Z.; Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci. 2008, 1, 636–639. [Google Scholar] [CrossRef]
- Galloway, J.N.; Townsend, A.R.; Erisman, J.W.; Bekunda, M.; Cai, Z.; Freney, J.R.; Martinelli, L.A.; Seitzinger, S.P.; Sutton, M.A. Transformation of the Nitrogen Cycle: Recent Trends, Questions, and Potential Solutions. Science 2008, 320, 889–892. [Google Scholar] [CrossRef] [PubMed]
- Gu, B.; Ge, Y.; Ren, Y.; Xu, B.; Luo, W.; Jiang, H.; Gu, B.; Chang, J. Atmospheric Reactive Nitrogen in China: Sources, Recent Trends, and Damage Costs. Environ. Sci. Technol. 2012, 46, 9420–9427. [Google Scholar] [CrossRef] [PubMed]
- The IPCC Working Group. Climate Change 2013: The Physical Science Basis—Conclusions. Bull. Angew. Geol. 2013, 18, 5–19. [Google Scholar]
- Tian, H.; Xu, R.; Canadell, J.G.; Thompson, R.L.; Winiwarter, W.; Suntharalingam, P.; Davidson, E.A.; Ciais, P.; Jackson, R.B.; Janssens-Maenhout, G.; et al. Comprehensive Quantification of Global Nitrous Oxide Sources and Sinks. Nature 2020, 586, 248–256. [Google Scholar] [CrossRef]
- Sutton, M.A.; Reis, S.; Riddick, S.N.; Dragosits, U.; Nemitz, E.; Theobald, M.R.; Tang, Y.S.; Braban, C.F.; Vieno, M.; Dore, A.J.; et al. Towards a climate-dependent paradigm of ammonia emission and deposition. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20130166. [Google Scholar] [CrossRef]
- Recio, J.; Montoya, M.; Ginés, C.; Sanz-Cobena, A.; Alvarez, J.M. Joint mitigation of NH3 and N2O emissions by using two synthetic inhibitors in an irrigated cropping soil. Geoderma 2020, 373, 114423. [Google Scholar] [CrossRef]
- Nelson, A.J.; Koloutsou-Vakakis, S.; Rood, M.J.; Myles, L.; Lehmann, C.; Bernacchi, C.; Balasubramanian, S.; Joo, E.; Heuer, M.; Vieira-Filho, M.; et al. Season-long ammonia flux measurements above fertilized corn in central Illinois, USA, using relaxed eddy accumulation. Agric. For. Meteorol. 2017, 239, 202–212. [Google Scholar] [CrossRef]
- Walker, J.T.; Jones, M.R.; Bash, J.O.; Myles, L.; Meyers, T.; Schwede, D.; Herrick, J.; Nemitz, E.; Robarge, W. Processes of ammonia air–surface exchange in a fertilized Zea mays canopy. Biogeosciences 2013, 10, 981–998. [Google Scholar] [CrossRef]
- Bao, Z.; Xu, H.; Li, K.; Chen, L.; Zhang, X.; Wu, X. Effects of NH3 on secondary aerosol formation from toluene/NOx photo-oxidation in different O3 formation regimes. Atmos. Environ. 2021, 9, 261. [Google Scholar] [CrossRef]
- Gu, M.; Pan, Y.; Sun, Q.; Walters, W.W.; Song, L.; Fang, Y. Is fertilization the dominant source of ammonia in the urban atmosphere? Sci. Total Environ. 2022, 838, 155890. [Google Scholar] [CrossRef] [PubMed]
- Bhattarai, N.; Wang, S.; Xu, Q.; Dong, Z.; Chang, X.; Jiang, Y.; Zheng, H. Nitrogen isotopes suggest agricultural and non-agricultural sources contribute equally to NH3 and NH4+ in urban Beijing during December 2018. Environ. Pollut. 2023, 326, 121455. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Chen, L.; White, S.J.; Yu, H.; Wu, X.; Gao, X.; Azzi, M.; Cen, K. Smog chamber study of the role of NH3 in new particle formation from photo-oxidation of aromatic hydrocarbons. Sci. Total Environ. 2018, 619–620, 927–937. [Google Scholar] [CrossRef]
- Na, K.; Song, C.; Cocker, D.R., III. Formation of secondary organic aerosol from the reaction of styrene with ozone in the presence and absence of ammonia and water. Atmos. Environ. 2006, 40, 1889–1900. [Google Scholar] [CrossRef]
- Goovaerts, P. Geostatistics in soil science: State-of-the-art and perspectives. Geoderma 1999, 89, 1–45. [Google Scholar] [CrossRef]
- Yfantis, E.A.; Flatman, G.T.; Behar, J.V. Efficiency of kriging estimation for square, triangular, and hexagonal grids. Math. Geol. 1987, 19, 183–205. [Google Scholar] [CrossRef]
- Di Martino, R.M.R.; Capasso, G.; Camarda, M. Spatial domain analysis of carbon dioxide from soils on Vulcano Island: Implications for CO2 output evaluation. Chem. Geol. 2016, 444, 59–70. [Google Scholar] [CrossRef]
- Oliver, M.A.; Webster, R. A tutorial guide to geostatistics: Computing and modelling variograms and kriging. Catena 2014, 113, 56–69. [Google Scholar] [CrossRef]
- Mirzaei, M.; Gorji Anari, M.; Diaz-Pines, E.; Saronjic, N.; Mohammed, S.; Szabo, S.; Nasir Mousavi, S.M.; Caballero-Calvo, A. Assessment of soil CO2 and NO fluxes in a semi-arid region using machine learning approaches. J. Arid Environ. 2023, 211, 104947. [Google Scholar] [CrossRef]
- Abbasi, N.A.; Hamrani, A.; Madramootoo, C.A.; Zhang, T.; Tan, C.S.; Goyal, M.K. Modelling carbon dioxide emissions under a maize-soy rotation using machine learning. Biosyst. Eng. 2021, 212, 1–18. [Google Scholar] [CrossRef]
- Meinshausen, N.; Ridgeway, G. Quantile Regression Forests. J. Mach. Learn. Res. 2006, 7, 983–999. [Google Scholar]
- Warner, D.L.; Guevara, M.; Inamdar, S.; Vargas, R. Upscaling soil-atmosphere CO2 and CH4 fluxes across a topographically complex forested landscape. Agric. For. Meteorol. 2019, 264, 80–91. [Google Scholar] [CrossRef]
- Yan, H.; Yan, K.; Ji, G. Optimization and prediction in the early design stage of office buildings using genetic and XGBoost algorithms. Build. Environ. 2022, 218, 109081. [Google Scholar] [CrossRef]
- Zhu, X.; Chu, J.; Wang, K.; Wu, S.; Yan, W.; Chiam, K. Prediction of rockhead using a hybrid N-XGBoost machine learning framework. J. Rock Mech. Geotech. Eng. 2021, 13, 1231–1245. [Google Scholar] [CrossRef]
- Yun, K.K.; Yoon, S.W.; Won, D. Prediction of stock price direction using a hybrid GA-XGBoost algorithm with a three-stage feature engineering process. Expert Syst. Appl. 2021, 186, 115716. [Google Scholar] [CrossRef]
- Guo, P.; Li, M.; Luo, W.; Tang, Q.; Liu, Z.; Lin, Z. Digital mapping of soil organic matter for rubber plantation at regional scale: An application of random forest plus residuals kriging approach. Geoderma 2015, 237–238, 49–59. [Google Scholar] [CrossRef]
- Demyanov, V.; Soltani, S.; Kanevski, M.; Canu, S.; Maignan, M.; Savelieva, E.; Timonin, V.; Pisarenko, V. Wavelet analysis residual kriging vs. neural network residual kriging. Stoch. Environ. Res. Risk Assess. 2001, 15, 18–32. [Google Scholar] [CrossRef]
- Song, Y.-Q.; Yang, L.-A.; Li, B.; Hu, Y.-M.; Wang, A.-L.; Zhou, W.; Cui, X.; Liu, Y.-L. Spatial Prediction of Soil Organic Matter Using a Hybrid Geostatistical Model of an Extreme Learning Machine and Ordinary Kriging. Sustainability 2017, 9, 754. [Google Scholar] [CrossRef]
- Demyanov, V.; Kanevsky, M.; Chernov, S.; Savelieva, E.; Timonin, V. Neural Network Residual Kriging Application for Climatic Data. J. Geogr. Inf. Decis. Anal. 1998, 2, 215–232. [Google Scholar]
- Kanevski, M.; Pozdnoukhov, A.; Timonin, V. Machine Learning for Spatial Environmental Data: Theory, Applications, and Software; EPFL Press: Lausanne, Switzerland, 2009; pp. 1–371. [Google Scholar]
- Seo, Y.; Kim, S.; Singh, V.P. Estimating Spatial Precipitation Using Regression Kriging and Artificial Neural Network Residual Kriging (RKNNRK) Hybrid Approach. Water Resour. Manag. 2015, 29, 2189–2204. [Google Scholar] [CrossRef]
- Kanevski, M.; Parkin, R.; Pozdnukhov, A.; Timonin, V.; Maignan, M.; Demyanov, V.; Canu, S. Environmental data mining and modeling based on machine learning algorithms and geostatistics. Environ. Modell. Softw. 2004, 19, 845–855. [Google Scholar] [CrossRef]
- Kanevski, M.; Arutyunyan, R.; Bolshov, L.; Demyanov, V.; Maignan, M. Artificial Neural Networks and Spatial Estimation of Chernobyl Fallout. Geoinformatica 1996, 7, 5–11. [Google Scholar] [CrossRef]
- Chen, T.H.; Hsu, Y.C.; Zeng, Y.T.; Lung, S.C.C.; Su, H.J.; Chao, H.J.; Wu, C.D. A hybrid kriging/land-use regression model with Asian culture-specific sources to assess NO2 spatial-temporal variations. Environ. Pollut. 2020, 259, 113875. [Google Scholar] [CrossRef] [PubMed]
- Yang, T. Response of Soil Ammonia Volatilization and Canopy Ammonia Exchange to Conservation Tillage in Spring Maize Field of Guanzhong Region; Northwest A & F University: Xianyang, China, 2021; p. 77. [Google Scholar]
- Thottathil, S.D.; Reis, P.C.J.; Prairie, Y.T. Magnitude and Drivers of Oxic Methane Production in Small Temperate Lakes. Environ. Sci. Technol. 2022, 56, 11041–11050. [Google Scholar] [CrossRef]
- Hua, S.; Qing, W.; Guangxing, W.; Hui, L.; Peng, L.; Jiping, L.; Siqi, Z.; Xiaoyu, X.; Lanxiang, R. Optimizing kNN for Mapping Vegetation Cover of Arid and Semi-Arid Areas Using Landsat Images. Remote Sens. 2018, 10, 1248. [Google Scholar]
- Huete, A.R.; Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Mccrady, J.K.; Andersen, C.P. The effect of ozone on below-ground carbon allocation in wheat. Environ. Pollut. 2000, 107, 465–472. [Google Scholar] [CrossRef]
- Merzlyak, M.N.; Gitelson, A.A.; Chivkunova, O.B.; Rakitin, V.Y. Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiol. Plant. 1999, 106, 135–141. [Google Scholar] [CrossRef]
- Xiang, X.; Du, J.; Jacinthe, P.A.; Zhao, B.; Zhou, H.; Liu, H.; Song, K. Integration of tillage indices and textural features of sentinel-2a multispectral images for maize residue cover estimation. Soil Tillage Res. 2022, 221, 105405. [Google Scholar] [CrossRef]
- Koley, S.; Jeganathan, C. Sentinel 1 and Sentinel 2 for Cropland Mapping with Special Emphasis on the usability of Textural and Vegetation Indices. Adv. Space Res. 2021, 69, 1768–1785. [Google Scholar] [CrossRef]
- Duan, M.; Zhang, X. Using remote sensing to identify soil types based on multiscale image texture features. Comput. Electron. Agric. 2021, 187, 106272. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, 3, 610–621. [Google Scholar] [CrossRef]
- Kupidura, P. The comparison of different methods of texture analysis for their efficacy for land use classification in satellite imagery. Remote Sens. 2019, 11, 1233. [Google Scholar] [CrossRef]
- Lu, H.; Liu, C.; Li, N.; Fu, X.; Li, L. Optimal segmentation scale selection and evaluation of cultivated land objects based on high-resolution remote sensing images with spectral and texture features. Environ. Sci. Pollut. Res. 2021, 28, 27067–27083. [Google Scholar] [CrossRef]
- Cutler, D.R.; Edwards, T.C.J.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J. Random forests for classification in ecology. Ecology 2007, 88, 2783–2792. [Google Scholar] [CrossRef]
- Jiang, F.; Kutia, M.; Sarkissian, A.J.; Lin, H.; Long, J.; Sun, H.; Wang, G. Estimating the Growing Stem Volume of Coniferous Plantations Based on Random Forest Using an Optimized Variable Selection Method. Sensors 2020, 20, 7248. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System; ACM: Ithaca, NY, USA, 2016; pp. 785–794. [Google Scholar]
- Ha, N.T.; Manley-Harris, M.; Pham, T.D.; Hawes, I. The use of radar and optical satellite imagery combined with advanced machine learning and metaheuristic optimization techniques to detect and quantify above ground biomass of intertidal seagrass in a New Zealand estuary. Int. J. Remote Sens. 2021, 42, 4712–4738. [Google Scholar] [CrossRef]
- Albaqami, H.; Hassan, G.M.; Subasi, A.; Datta, A. Automatic detection of abnormal EEG signals using wavelet feature extraction and gradient boosting decision tree. Biomed. Signal Process. Control 2020, 70, 102957. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Ngo, H.H.; Guo, W.; Chang, S.W.; Nguyen, D.D.; Nguyen, C.T.; Zhang, J.; Liang, S.; Bui, X.T.; Hoang, N.B. A low-cost approach for soil moisture prediction using multi-sensor data and machine learning algorithm. Sci. Total Environ. 2022, 833, 155066. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Geng, Y.; Chen, J.; Liu, M.; Haase, D.; Lausch, A. Mapping soil organic carbon content using multi-source remote sensing variables in the Heihe River Basin in China. Ecol. Indic. 2020, 114, 106288. [Google Scholar] [CrossRef]
- Zhou, T.; Geng, Y.; Chen, J.; Pan, J.; Lausch, A. High-resolution digital mapping of soil organic carbon and soil total nitrogen using DEM derivatives, Sentinel-1 and Sentinel-2 data based on machine learning algorithms. Sci. Total Environ. 2020, 729, 138244. [Google Scholar] [CrossRef] [PubMed]
- Ozaki, Y.; Tanigaki, Y.; Watanabe, S.; Onishi, M. Multiobjective tree-structured parzen estimator for computationally expensive optimization problems. In Proceedings of the 2020 Genetic and Evolutionary Computation Conference, Cancún, Mexico, 8–12 July 2020; Volume 73, pp. 1209–1250. [Google Scholar]
- Webster, R.; Oliver, M.A. Statistics for earth and environmental scientists. In Geostatistics for Environmental Scientists, 2nd ed.; John Wiley & Sons: New York, NY, USA, 2008; Volume 41, pp. 487–489. [Google Scholar]
- Mirzaee, S.; Ghorbani-Dashtaki, S.; Mohammadi, J.; Asadi, H.; Asadzadeh, F. Spatial variability of soil organic matter using remote sensing data. CATENA 2016, 145, 118–127. [Google Scholar] [CrossRef]
- Chen, C.; Seo, H. Prediction of rock mass class ahead of TBM excavation face by ML and DL algorithms with Bayesian TPE optimization and SHAP feature analysis. Acta Geotech. 2023, 18, 3825–3848. [Google Scholar] [CrossRef]
- Cambardella, C.A.; Moorman, T.B.; Novak, J.M.; Parkin, T.B.; Konopka, A.E. Field-Scale Variability of Soil Properties in Central Iowa Soils. Soil Sci. Soc. Am. J. 1994, 58, 1501–1511. [Google Scholar] [CrossRef]
- Blum, U.; Tingey, D.T. A study of the potential ways in which ozone could reduce root growth and nodulation of soybean. Atmos. Environ. 1977, 11, 737–739. [Google Scholar] [CrossRef]
- Nie, G.Y.; Tomasevic, M.; Baker, N.R. Effects of ozone on the photosynthetic apparatus and leaf proteins during leaf development in wheat. Plant Cell Environ. 2010, 16, 643–651. [Google Scholar] [CrossRef]
- Karberg, N.J.; Pregitzer, K.S.; King, J.S.; Friend, A.L.; Wood, J.R. Soil carbon dioxide partial pressure and dissolved inorganic carbonate chemistry under elevated carbon dioxide and ozone. Oecologia 2005, 142, 296–306. [Google Scholar] [CrossRef]
- Nouchi, I.; Ito, O.; Harazono, Y.; Kobayashi, K. Effects of chronic ozone exposure on growth, root respiration and nutrient uptake of rice plants. Environ. Pollut. 1991, 74, 149–164. [Google Scholar] [CrossRef]
- Shi, G.; Yang, L.; Wang, Y.; Kobayashi, K.; Zhu, J.; Tang, H.; Pan, S.; Chen, T.; Liu, G.; Wang, Y. Impact of elevated ozone concentration on yield of four Chinese rice cultivars under fully open-air field conditions. Agric. Ecosyst. Environ. 2009, 131, 178–184. [Google Scholar] [CrossRef]
- Maggs, R.; Ashmore, M.R. Growth and yield responses of Pakistan rice (Oryza sativa L.) cultivars to O3 and NO2. Environ. Pollut. 1998, 103, 159–170. [Google Scholar] [CrossRef]
- Kobayashi, K.; Okada, M. Effects of ozone on the light use of rice (Oryza sativa L.) plants. Agric. Ecosyst. Environ. 1995, 53, 1–12. [Google Scholar] [CrossRef]
- Feng, Z.; Kobayashi, K.; Ainsworth, E.A. Impact of elevated ozone concentration on growth, physiology, and yield of wheat (Triticum aestivum L.): A meta-analysis. Global Chang. Biol. 2008, 14, 2696–2708. [Google Scholar] [CrossRef]
- Kou, T.J.; Yu, W.W.; Zhu, J.G.; Zhu, X.K. Effects of ozone pollution on the accumulation and distribution of dry matter and biomass carbon of different varieties of wheat. Huan Jing Ke Xue = Huanjing Kexue 2012, 33, 2862–2867. [Google Scholar] [PubMed]
- Kanerva, T.; Palojrvi, A.; Rm, K.; Ojanper, K.; Esala, M.; Manninen, S. A 3-year exposure to CO2 and O3 induced minor changes in soil N cycling in a meadow ecosystem. Plant Soil 2006, 286, 61–73. [Google Scholar] [CrossRef]
- Jones, T.G.; Freeman, C.; Lloyd, A.; Mills, G. Impacts of elevated atmospheric ozone on peatland below-ground DOC characteristics. Ecol. Eng. 2009, 35, 971–977. [Google Scholar] [CrossRef]
- Fiscus, E.L.; Booker, F.L.; Burkey, K.O. Crop responses to ozone: Uptake, modes of action, carbon assimilation and partitioning. Plant Cell Environ. 2010, 28, 997–1011. [Google Scholar] [CrossRef]
- Larson, J.L.; Zak, D.R.; Sinsabaugh, R.L. Extracellular Enzyme Activity Beneath Temperate Trees Growing Under Elevated Carbon Dioxide and Ozone. Soil Sci. Soc. Am. J. 2002, 66, 1848–1856. [Google Scholar] [CrossRef]
- Islam, K.R.; Mulchi, C.L.; Ali, A.A. Interactions of tropospheric CO2 and O3 enrichments and moisture variations on microbial biomass and respiration in soil. Global Chang. Biol. 2001, 6, 255–265. [Google Scholar] [CrossRef]
- Lu, Y.; Conrad, R. In situ stable isotope probing of methanogenic archaea in the rice rhizosphere. Science 2005, 309, 1088–1090. [Google Scholar] [CrossRef] [PubMed]
- Kou, T.J.; Cheng, X.H.; Zhu, J.G.; Xie, Z.B. The influence of ozone pollution on CO2, CH4, and N2O emissions from a Chinese subtropical rice–wheat rotation system under free-air O3 exposure. Agric. Ecosyst. Environ. 2015, 204, 72–81. [Google Scholar] [CrossRef]
- Sánchez-Martín, L.; Bermejo-Bermejo, V.; García-Torres, L.; Alonso, R.; de la Cruz, A.; Calvete-Sogo, H.; Vallejo, A. Nitrogen soil emissions and belowground plant processes in Mediterranean annual pastures are altered by ozone exposure and N-inputs. Atmos. Environ. 2017, 165, 12–22. [Google Scholar] [CrossRef]
- Yang, Y.; Zhou, C.; Li, N.; Han, K.; Meng, Y.; Tian, X.; Wang, L. Effects of conservation tillage practices on ammonia emissions from Loess Plateau rain-fed winter wheat fields. Atmos. Environ. 2015, 104, 59–68. [Google Scholar] [CrossRef]
- Delon, C.; Galy-Lacaux, C.; Serça, D.; Loubet, B.; Camara, N.; Gardrat, E.; Saneh, I.; Fensholt, R.; Tagesson, T.; Le Dantec, V.; et al. Soil and vegetation-atmosphere exchange of NO, NH3, and N2O from field measurements in a semi arid grazed ecosystem in Senegal. Atmos. Environ. 2017, 156, 36–51. [Google Scholar] [CrossRef]
- Bosch-Serra, À.D.; Yagüe, M.R.; Teira-Esmatges, M.R. Ammonia emissions from different fertilizing strategies in Mediterranean rainfed winter cereals. Atmos. Environ. 2014, 84, 204–212. [Google Scholar] [CrossRef]
- Nye, P.H. Towards the quantitative control of crop production and quality. J. Plant Nutr. 1992, 15, 1129. [Google Scholar] [CrossRef]
- Pelster, D.E.; Watt, D.; Strachan, I.B.; Rochette, P.; Chantigny, M.H. Effects of Initial Soil Moisture, Clod Size, and Clay Content on Ammonia Volatilization after Subsurface Band Application of Urea. J. Environ. Qual. 2019, 48, 549–558. [Google Scholar] [CrossRef]
- Sommer, S.G.; Schjoerring, J.K.; Denmead, O.T. Ammonia emission from mineral fertilizers and fertilized crops. Adv. Agron. 2004, 82, 557–622. [Google Scholar]
- Sun, R.; Li, W.; Hu, C.; Liu, B. Long-term urea fertilization alters the composition and increases the abundance of soil ureolytic bacterial communities in an upland soil. FEMS Microbiol. Ecol. 2019, 95, fiz044. [Google Scholar] [CrossRef]
- Wali, P.; Kumar, V.; Singh, J.P. Effect of soil type, exchangeable sodium percentage, water content, and organic amendments on urea hydrolysis in some tropical Indian soils. Soil Res. 2003, 41, 1171–1176. [Google Scholar] [CrossRef]
- Blagodatsky, S.; Smith, P. Soil physics meets soil biology: Towards better mechanistic prediction of greenhouse gas emissions from soil. Soil Biol. Biochem. 2012, 47, 78–92. [Google Scholar] [CrossRef]
- Duan, Z.C.A.O.; Xiao, H. Effects of soil properties on ammonia volatilization. Soil Sci. Plant Nutr. 2000, 46, 845–852. [Google Scholar]
- Chen, S.; Li, D.; He, H.; Zhang, Q.; Lu, H.; Xue, L.; Feng, Y.; Sun, H. Substituting urea with biogas slurry and hydrothermal carbonization aqueous product could decrease NH3 volatilization and increase soil DOM in wheat growth cycle. Environ. Res. 2022, 214, 113997. [Google Scholar] [CrossRef]
- Hagner, M.; Räty, M.; Nikama, J.; Rasa, K.; Peltonen, S.; Vepsäläinen, J.; Keskinen, R. Slow pyrolysis liquid in reducing NH3 emissions from cattle slurry—Impacts on plant growth and soil organisms. Sci. Total Environ. 2021, 784, 147139. [Google Scholar] [CrossRef]
- Zheng, J.; Zhang, Y.; Ma, Y.; Ye, N.; Khalizov, A.F.; Yan, J. Radiatively driven NH3 release from agricultural field during wintertime slack season. Atmos. Environ. 2021, 247, 118228. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, X.; Tang, A.; Fang, Y.; Misselbrook, T.; Liu, X. Source Apportionment of Atmospheric Ammonia at 16 Sites in China Using a Bayesian Isotope Mixing Model Based on δ15N–NHx Signatures. Environ. Sci. Technol. 2023, 57, 6599–6608. [Google Scholar] [CrossRef]
- Wang, H.; Guo, R.; Tian, Y.; Cui, N.; Wang, X.; Wang, L.; Yang, Z.; Li, S.; Guo, J.; Shi, L.; et al. Arbuscular mycorrhizal fungi reduce NH3 emissions under different land-use types in agro-pastoral areas. Pedosphere 2023, 33, 1–24. [Google Scholar] [CrossRef]
- Zhan, X.; Adalibieke, W.; Cui, X.; Winiwarter, W.; Reis, S.; Zhang, L.; Bai, Z.; Wang, Q.; Huang, W.; Zhou, F. Improved estimates of ammonia emissions from global croplands. Environ. Sci. Technol. 2020, 55, 1329–1338. [Google Scholar] [CrossRef]
- Zhou, F.; Ciais, P.; Hayashi, K.; Galloway, J.; Kim, D.G.; Yang, C.; Li, S.; Liu, B.; Shang, Z.; Gao, S. Re-estimating NH3 Emissions from Chinese Cropland by a New Nonlinear Model. Environ. Sci. Technol. 2016, 50, 564–572. [Google Scholar] [CrossRef]
- Bi, S.; Luo, X.; Chen, Z.; Li, P.; Yu, C.; Liu, Z.; Peng, X. Fate of fertilizer nitrogen and residual nitrogen in paddy soil in Northeast China. J. Integr. Agric. 2023, in press. [Google Scholar] [CrossRef]
- Pan, Y.; Tian, S.; Zhao, Y.; Zhang, L.; Zhu, X.; Gao, J.; Huang, W.; Zhou, Y.; Song, Y.; Zhang, Q.; et al. Identifying ammonia hotspots in china using a national observation network. Environ. Sci. Technol. 2018, 52, 3926–3934. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Benedict, K.B.; Tang, A.; Sun, Y.; Fang, Y.; Liu, X. Persistent nonagricultural and periodic agricultural emissions dominate sources of ammonia in urban Beijing: Evidence from 15N stable isotope in vertical profiles. Environ. Sci. Technol. 2019, 54, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Tang, X.; Zhu, J.; Wang, Z.; Pan, Y.; Wu, H.; Wu, L.; Wu, Q.; He, Y.; Tian, S.; et al. Improved inversion of monthly ammonia emissions in China based on the Chinese ammonia monitoring network and ensemble Kalman filter. Environ. Sci. Technol. 2019, 53, 12529–12538. [Google Scholar] [CrossRef] [PubMed]
Hyperparameters | Type | Range | Explanation |
---|---|---|---|
n_estimators | int | (50, 80) | Number of trees |
max_depth | int | (10, 17) | The maximum depth of a tree |
min_impurity_decrease | float | (0, 0.1) | Minimum impurity in the node split |
min_samples_split | int | (2, 8) | The minimum samples required for node re-split |
max_features | int, float, string | (0, 64, “log2”, sqrt”, “auto”) | The number of features needed to find the best segmentation |
Hyperparameters | Type | Range | Explanation |
---|---|---|---|
n_estimators | int | (90, 120) | Number of trees |
learning_rate | float | (0.2, 0.3) | The learning speed |
subsample | float | (0.6, 0.72) | The proportion of subsampling |
max_depth | int | (5, 10) | The maximum depth of a tree |
max_features | int, float, string | (2, 16, “log2”, “sqrt”, “auto”) | The number of features needed to find the best segmentation |
min_impurity_decrease | float | (2, 4) | The amount of information gained to consider when splitting nodes |
Hyperparameters | Type | Range | Explanation |
---|---|---|---|
subsample | float | (0.85, 1) | Construct the sampling rate of each tree to the sample |
num_round | int | (30, 50) | The number of trees |
eta | float | (0.2, 0.3) | Learning rate |
lambda | float | (0, 4) | Regularization section for processing XGB |
min_child_weight | float | (0.1, 2.8) | The sum of weights of the minimum leaf node sample |
colsample_bytree | float | (0.92, 1) | The proportion of features used in training out of all features |
colsample_bynode | float | (0.95, 1) | Sub-sampling rate of columns split per node |
max_depth | int | (1, 4) | Maximum depth of a tree |
Model | RMSE (kg N ha−1 d−1) | R2 (%) | Model | RMSE (kg N ha−1 d−1) | R2 (%) |
---|---|---|---|---|---|
TPE–GBDT | 10.40 | 65.90% | TPE–GBDT–OK | 8.28 | 75.48% |
TPE–RF | 8.85 | 71.78% | TPE–RF–OK | 7.11 | 80.92% |
TPE–XGB | 8.13 | 74.22% | TPE–XGB–OK | 6.42 | 85.97% |
Variogram | Function | Nugget (Co) | Sill (Co + C) | Nugget/Sill [Co/(Co + C)] (%) |
---|---|---|---|---|
Residuals of TPE–GBDT | Exponential | 120.57 | 163.07 | 73.94 |
Residuals of TPE–RF | K-Bessed | 122.10 | 178.82 | 68.28 |
Residuals of TPE–XGB | Exponential | 119.80 | 161.17 | 74.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Ye, M.; Zheng, Z.; Zhan, D.; Duan, W.; Lu, M.; Song, Z.; Sun, D.; Yao, K.; Ding, Z. Tree-Structured Parzan Estimator–Machine Learning–Ordinary Kriging: An Integration Method for Soil Ammonia Spatial Prediction in the Typical Cropland of Chinese Yellow River Delta with Sentinel-2 Remote Sensing Image and Air Quality Data. Remote Sens. 2023, 15, 4268. https://doi.org/10.3390/rs15174268
Song Y, Ye M, Zheng Z, Zhan D, Duan W, Lu M, Song Z, Sun D, Yao K, Ding Z. Tree-Structured Parzan Estimator–Machine Learning–Ordinary Kriging: An Integration Method for Soil Ammonia Spatial Prediction in the Typical Cropland of Chinese Yellow River Delta with Sentinel-2 Remote Sensing Image and Air Quality Data. Remote Sensing. 2023; 15(17):4268. https://doi.org/10.3390/rs15174268
Chicago/Turabian StyleSong, Yingqiang, Mingzhu Ye, Zhao Zheng, Dexi Zhan, Wenxu Duan, Miao Lu, Zhenqi Song, Dengkuo Sun, Kaizhong Yao, and Ziqi Ding. 2023. "Tree-Structured Parzan Estimator–Machine Learning–Ordinary Kriging: An Integration Method for Soil Ammonia Spatial Prediction in the Typical Cropland of Chinese Yellow River Delta with Sentinel-2 Remote Sensing Image and Air Quality Data" Remote Sensing 15, no. 17: 4268. https://doi.org/10.3390/rs15174268
APA StyleSong, Y., Ye, M., Zheng, Z., Zhan, D., Duan, W., Lu, M., Song, Z., Sun, D., Yao, K., & Ding, Z. (2023). Tree-Structured Parzan Estimator–Machine Learning–Ordinary Kriging: An Integration Method for Soil Ammonia Spatial Prediction in the Typical Cropland of Chinese Yellow River Delta with Sentinel-2 Remote Sensing Image and Air Quality Data. Remote Sensing, 15(17), 4268. https://doi.org/10.3390/rs15174268