Trend of Changes in Phenological Components of Iran’s Vegetation Using Satellite Observations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodology
2.2.1. NDVI Data Series
2.2.2. Theoretical Foundations
HANTS Algorithm
- Valid data range: The permissible range of observed values. By giving zero weight to values outside of this range, they are eliminated at the first stage.
- Period: the total number of observations in the Fourier series for each periodic component.
- Number of frequency (NOF): The number of frequencies affects how much information is used to reconstruct the signal. Compared to a high frequency number, a low frequency number generates a signal with less clarity.
- Direction of outlier: This shows the direction of an outlier (outliers) regarding the current curve model. For example, cloud cover leads to a decrease in NDVI values, so the direction of an outlier can be selected low in the algorithm.
- Fit Error Tolerance (FET): The fit error tolerance (FET) parameter specifies the maximum deviation from the curve’s current form that is still allowable in the selected direction. If an observation’s deviation exceeds the FET, it is labeled as an outlier and removed from the calculations by being given 0 weight after each iteration.
- Degree of Over-determinedness (DOD): This statistic illustrates the absolute minimal number of additional data points that should be used to fit a curve. The number of valid observations should always be greater than the number of parameters required to fully describe the signal (2NOF-1).
Fast Fourier Transform (FFT) and the Amplitude and Phase Concepts
2.2.3. Analysis of Changing Trend in Phenology Components
- (A)
- Computing the difference between observations, applying the sign function, and extracting the parameters based on Equation (7):
- (B)
- Variance calculation based on Equations (9) and (10):
- (C)
- Extracting the z statistic using Equation (11):
3. Results
3.1. Trends in Amplitude Characteristics
3.2. Trends in Annual Phase
3.3. Trends in the Start of the Season
3.4. Trends in the End of the Season
3.5. Trends in the Length of the Season
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, A.; He, B.; Wang, H.; Huang, L.; Zhu, Y.; Lv, A. Notable shifting in the responses of vegetation activity to climate change in China. Phys. Chem. Earth Parts A/B/C 2015, 87, 60–66. [Google Scholar] [CrossRef]
- Cheng, M.; Jin, J.; Zhang, J.; Jiang, H.; Wang, R. Effect of climate change on vegetation phenology of different land-cover types on the Tibetan Plateau. Int. J. Remote Sens. 2018, 39, 470–487. [Google Scholar] [CrossRef]
- Brown, C.J.; O’Connor, M.I.; Poloczanska, E.S.; Schoeman, D.S.; Buckley, L.B.; Burrows, M.T.; Richardson, A.J. Ecological and methodological drivers of species’ distribution and phenology responses to climate change. Glob. Chang. Biol. 2016, 22, 1548–1560. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Abbas, Q.; Abbas, G.; Fatima, Z.; Atique-ur-Rehman; Naz, S.; Younis, H.; Khan, R.J.; Nasim, W.; Habib ur Rehman, M.; et al. Quantification of climate warming and crop management impacts on cotton phenology. Plants 2017, 6, 7. [Google Scholar] [CrossRef] [PubMed]
- Intergovernmental Panel on Climate Change (IPCC). Impacts, Adaptation, and Vulnerability; Fifth Assessment Report on the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, MA, USA, 2014; p. 688. [Google Scholar]
- Richardson, A.D.; Keenan, T.F.; Migliavacca, M.; Ryu, Y.; Sonnentag, O.; Toomey, M. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric. For. Meteorol. 2013, 169, 156–173. [Google Scholar] [CrossRef]
- Shen, M.; Tang, Y.; Chen, J.; Zhu, X.; Zheng, Y. Influences of temperature and precipitation before the growing season on spring phenology in grasslands of the central and eastern Qinghai-Tibetan Plateau. Agric. For. Meteorol. 2011, 151, 1711–1722. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhu, W.; Chen, G.; Jiang, N.; Fan, D.; Zhang, D. Continuous but diverse advancement of spring-summer phenology in response to climate warming across the Qinghai-Tibetan Plateau. Agric. For. Meteorol. 2016, 223, 194–202. [Google Scholar] [CrossRef]
- Liu, L.; Liang, L.; Schwartz, M.D.; Donnelly, A.; Wang, Z.; Schaaf, C.B.; Liu, L. Evaluating the potential of MODIS satellite data to track temporal dynamics of autumn phenology in a temperate mixed forest. Remote Sens. Environ. 2015, 160, 156–165. [Google Scholar] [CrossRef]
- Liu, Q.; Fu, Y.H.; Zhu, Z.; Liu, Y.; Liu, Z.; Huang, M.; Janssens, I.A.; Piao, S. Delayed autumn phenology in the Northern Hemisphere is related to change in both climate and spring phenology. Glob. Chang. Biol. 2016, 22, 3702–3711. [Google Scholar] [CrossRef]
- Peñuelas, J.; Filella, I. Responses to a warming world. Science 2001, 294, 793–795. [Google Scholar] [CrossRef]
- Guo, L.; Dai, J.; Wang, M.; Xu, J.; Luedeling, E. Responses of spring phenology in temperate zone trees to climate warming: A case study of apricot flowering in China. Agric. For. Meteorol. 2015, 201, 1–7. [Google Scholar] [CrossRef]
- Saxe, H.; Cannell, M.G.; Johnsen, Ø.; Ryan, M.G.; Vourlitis, G. Tree and forest functioning in response to global warming. New Phytol. 2001, 149, 369–399. [Google Scholar] [CrossRef] [PubMed]
- Pudas, E.; Leppälä, M.; Tolvanen, A.; Poikolainen, J.; Venäläinen, A.; Kubin, E. Trends in phenology of Betula pubescens across the boreal zone in Finland. Int. J. Biometeorol. 2008, 52, 251–259. [Google Scholar] [CrossRef]
- Han, H.; Bai, J.; Ma, G.; Yan, J. Vegetation Phenological Changes in Multiple Landforms and Responses to Climate Change. ISPRS Int. J. Geoinf. 2020, 9, 111. [Google Scholar] [CrossRef]
- Wang, L.; Chen, S.; Li, D.; Wang, C.; Jiang, H.; Zheng, Q.; Peng, Z. Estimation of paddy rice nitrogen content and accumulation both at leaf and plant levels from UAV hyperspectral imagery. Remote Sens. 2021, 13, 2956. [Google Scholar] [CrossRef]
- Zheng, J.; Fu, H.; Li, W.; Wu, W.; Yu, L.; Yuan, S.; Tao, W.Y.W.; Pang, T.K.; Kanniah, K.D. Growing status observation for oil palm trees using Unmanned Aerial Vehicle (UAV) images. ISPRS J. Photogramm. Remote Sens. 2021, 173, 95–121. [Google Scholar] [CrossRef]
- Workie, T.G.; Debella, H.J. Climate change and its effects on vegetation phenology across ecoregions of Ethiopia. Glob. Ecol. Conserv. 2017, 13, e00366. [Google Scholar] [CrossRef]
- Zare Khormizie, H.; Ghafarian Malamiri, H. Effect of height and temperature on plant phenological processes using harmonic analysis of MODIS NDVI time series (Case study: Shirkouh, Yazd province). Iran. J. Remote Sens. GIS 2020, 12, 1–22. [Google Scholar] [CrossRef]
- Pellerin, M.; Delestrade, A.; Mathieu, G.; Rigault, O.; Yoccoz, N.G. Spring tree phenology in the Alps: Effects of air temperature, altitude and local topography. Eur. J. For. Res. 2012, 131, 1957–1965. [Google Scholar] [CrossRef]
- Piao, S.; Friedlingstein, P.; Ciais, P.; Viovy, N.; Demarty, J. Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades. Glob. Biogeochem. Cycles 2007, 21, GB3018. [Google Scholar] [CrossRef]
- Dubovyk, O.; Landmann, T.; Erasmus, B.F.; Tewes, A.; Schellberg, J. Monitoring vegetation dynamics with medium resolution MODIS-EVI time series at sub-regional scale in southern Africa. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 175–183. [Google Scholar] [CrossRef]
- Zhou, J.; Cai, W.; Qin, Y.; Lai, L.; Guan, T.; Zhang, X.; Zheng, Y. Alpine vegetation phenology dynamic over 16 years and its covariation with climate in a semi-arid region of China. Sci. Total Environ. 2016, 572, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Zare Khormizi, H.; Hosseini, S.Z.; Mokhtari, M.H.; Ghafarian Malamiri, H.R. Reconstruction of MODIS NDVI Time Series using Harmonic AN analysis of Time Series algorithm (HANTS). J. Spat. Plan. 2017, 21, 221–255. [Google Scholar]
- Ghafarian Malamiri, H.R.; Zare, H.; Rousta, I.; Olafsson, H.; Izquierdo Verdiguier, E.; Zhang, H.; Mushore, T.D. Comparison of Harmonic Analysis of Time Series (HANTS) and Multi-Singular Spectrum Analysis (M-SSA) in Reconstruction of Long-Gap Missing Data in NDVI Time Series. Remote Sens. 2020, 12, 2747. [Google Scholar] [CrossRef]
- Atkinson, P.M.; Jeganathan, C.; Dash, J.; Atzberger, C. Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology. Remote Sens. Environ. 2012, 123, 400–417. [Google Scholar] [CrossRef]
- De Beurs, K.M.; Henebry, G.M. Spatio-temporal statistical methods for modelling land surface phenology. In Phenological Research; Springer: Dordrecht, The Netherland, 2010; pp. 177–208. [Google Scholar]
- Tang, H.; Li, Z.; Zhu, Z.; Chen, B.; Zhang, B.; Xin, X. Variability and climate change trend in vegetation phenology of recent decades in the Greater Khingan Mountain area, Northeastern China. Remote Sens. 2015, 7, 11914–11932. [Google Scholar] [CrossRef]
- Julien, Y.; Sobrino, J.A. Global land surface phenology trends from GIMMS database. Int. J. Remote Sens. 2009, 30, 3495–3513. [Google Scholar] [CrossRef]
- Khormizi, H.Z.; Malamiri, H.R.G.; Alian, S.; Stein, A.; Kalantari, Z.; Ferreira, C.S. Proof of evidence of changes in global terrestrial biomes using historic and recent NDVI time series. Heliyon 2023, 9, e18686. [Google Scholar] [CrossRef]
- Jeong, S.J.; Ho, C.H.; Gim, H.J.; Brown, M.E. Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982–2008. Glob. Chang. Biol. 2011, 17, 2385–2399. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, H.; Zhang, Z.; Guo, X.; Li, X.; Chen, C. Spatial and temporal changes in vegetation phenology at middle and high latitudes of the Northern Hemisphere over the past three decades. Remote Sens. 2015, 7, 10973–10995. [Google Scholar] [CrossRef]
- Yu, X.; Wang, Q.; Yan, H.; Wang, Y.; Wen, K.; Zhuang, D.; Wang, Q. Forest phenology dynamics and its responses to meteorological variations in Northeast China. Adv. Meteorol. 2014, 2014, 592106. [Google Scholar] [CrossRef]
- Yu, L.; Liu, T.; Bu, K.; Yan, F.; Yang, J.; Chang, L.; Zhang, S. Monitoring the long term vegetation phenology change in Northeast China from 1982 to 2015. Sci. Rep. 2018, 7, 14770. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Du, X.; Hong, J.; Du, Z.; Lu, X.; Wang, X. Effects of climate change on the growing season of alpine grassland in Northern Tibet, China. Glob. Ecol. Conserv. 2020, 23, e01126. [Google Scholar] [CrossRef]
- Zare Khormizi, H.; Ghafarian Malamiri, H. Investigation of phenological components changes of Iranian vegetation in response to climate change using NDVI products of AVHRR sensor from 1982 to 2018. J. RS GIS Nat. Res. 2020, 11, 87–113. [Google Scholar]
- Ghafarian Malamiri, H.; Zare Khormizi, H. Investigating vegetation changes in Iran using NDVI time series of NOAA-AVHRR sensor and Harmonic ANalysis of Time Series (HANTS). Sci.-Res. Q. Geogr. Data 2020, 29, 141–158. [Google Scholar]
- Verhoef, W. Application of Harmonic Analysis of NDVI Time Series (HANTS). In Fourier Analysis of Temporal NDVI in Southern Africa and America Continent; Azzali, S., Menenti, M., Eds.; Report 108; DLO Winand Staring Centre: Wageningen, The Netherlands, 1996; pp. 19–24. [Google Scholar]
- Jönsson, P.; Eklundh, L. TIMESAT—A program for analyzing time-series of satellite sensor data. Comput. Geosci. 2004, 30, 833–845. [Google Scholar] [CrossRef]
- Vermote, E.; Justice, C.; Csiszar, I.; Eidenshink, J.; Myneni, R.; Baret, F.; Masuoka, E.D.; Masuoka, E.; Wolfe, R.E.; Claverie, M. NOAA CDR Program: NOAA Climate Data Record (CDR) of Normalized Difference Vegetation Index (NDVI), Version 4; NOAA National Climatic Data Center: Asheville, NC, USA, 2014. [Google Scholar]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. In Third Earth Resources Technology Satellite-1 Symposium: Section A-B. Technical Presentations; NASA SP-351 I; NASA: Washington, DC, USA, 1973; pp. 309–317. [Google Scholar]
- Fourier, J. Note relative aux vibrations des surfaces e’lastiques et au movement desondes. Bull. Sci. Socie’te’philomatique 1818, 1, 126–136. [Google Scholar]
- Ghafarian Malamiri, H.; Zare Khormizie, H. Reconstruction of cloud-free time series satellite observations of land surface temperature (LST) using harmonic analysis of time series algorithm (HANTS). J. RS GIS Nat. Res. 2017, 8, 37–55. [Google Scholar]
- Julien, Y.; Sobrino, J.A. Optimizing and comparing gap-filling techniques using simulated NDVI time series from remotely sensed global data. Int. J. Appl. Earth Obs. Geoinf. 2019, 76, 93–111. [Google Scholar] [CrossRef]
- Roerink, G.J.; Menenti, M. Reconstructing cloudfree NDVI composites using Fourier analysis of time series. Int. J. Remote Sens. 2000, 21, 1911–1917. [Google Scholar] [CrossRef]
- Zare Khormizie, H.; Hosseini, S.Z.; Mokhtari, M.H.; Ghafarian Malamiri, H.R. Analysis of relationship between drought and NDVI variations in different vegetation types (Case study: Southern rangelands of Yazd Province). J. Arid Biome 2017, 7, 85–101. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econom. J. Econ. Soc. 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M. Rank Correlation Methods; Griffin: London, UK, 1975. [Google Scholar]
- Theil, H. A rank invariant method of linear and Polynomial regression analysis, Part 3. Netherlands Akad. Wetensch. Proc. 1950, 53, 1379–1412. [Google Scholar]
- Sen, P. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Eastman, J.R.; Sangermano, F.; Machado, E.A.; Rogan, J.; Anyamba, A. Global trends in seasonality of normalized difference vegetation index (NDVI), 1982–2011. Remote Sens. 2013, 5, 4799–4818. [Google Scholar] [CrossRef]
- Guay, K.C.; Beck, P.S.; Berner, L.T.; Goetz, S.J.; Baccini, A.; Buermann, W. Vegetation productivity patterns at high northern latitudes: A multi-sensor satellite data assessment. Glob. Chang. Biol. 2014, 20, 3147–3158. [Google Scholar] [CrossRef]
- Rayegani, B.; Arzani, H.; Heydari Alamdarloo, E.; Moghadami, M.M. Application of Remote Sens. to assess climate change effects on plant productivity and phenology (Case study area: Tehran Province). J. Rang. 2019, 3, 450–460. [Google Scholar]
- Malayeri, F.; Ashourloo, D.; Shakiba, A.; Matkan, A.A.; Aghighi, H. Investigating the Effects of Climate Change on Vegetation Phenology Using AVHRR Time Series Data. J. Agroecol. 2018, 8, 98–117. [Google Scholar]
- Zhang, G.; Zhang, Y.; Dong, J.; Xiao, X. Greenup dates in the Tibetan Plateau have continuously advanced from 1982 to 2011. Proc. Natl. Acad. Sci. USA 2013, 110, 4309–4314. [Google Scholar] [CrossRef]
- Vrieling, A.; De Leeuw, J.; Said, M.Y. Length of growing period over Africa: Variability and trends from 30 years of NDVI time series. Remote Sens. 2013, 5, 982–1000. [Google Scholar] [CrossRef]
- Fu, Y.H.; Piao, S.; Op de Beeck, M.; Cong, N.; Zhao, H.; Zhang, Y.; Menzel, A.; Janssens, I.A. Recent spring phenology shifts in western Central E urope based on multiscale observations. Glob. Ecol. Biogeogr. 2014, 23, 1255–1263. [Google Scholar] [CrossRef]
- Forkel, M.; Migliavacca, M.; Thonicke, K.; Reichstein, M.; Schaphoff, S.; Weber, U.; Carvalhais, N. Codominant water control on global interannual variability and trends in land surface phenology and greenness. Glob. Chang. Biol. 2015, 21, 3414–3435. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Song, X.; Tao, F.; Zhang, S.; Shi, W. Climate trends and crop production in China at county scale, 1980 to 2008. Theor. Appl. Climatol. 2016, 123, 291–302. [Google Scholar] [CrossRef]
Parameters | Rate |
---|---|
Valid data range | 0–1 |
Base period | 365 images |
Number of Frequencies (NOF) | 3 |
Fit Error Tolerance (FET) | 0.1 |
Direction of outliers | Low |
Degree of Over-Determinedness (DOD) | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khormizi, H.Z.; Malamiri, H.R.G.; Kalantari, Z.; Ferreira, C.S.S. Trend of Changes in Phenological Components of Iran’s Vegetation Using Satellite Observations. Remote Sens. 2023, 15, 4468. https://doi.org/10.3390/rs15184468
Khormizi HZ, Malamiri HRG, Kalantari Z, Ferreira CSS. Trend of Changes in Phenological Components of Iran’s Vegetation Using Satellite Observations. Remote Sensing. 2023; 15(18):4468. https://doi.org/10.3390/rs15184468
Chicago/Turabian StyleKhormizi, Hadi Zare, Hamid Reza Ghafarian Malamiri, Zahra Kalantari, and Carla Sofia Santos Ferreira. 2023. "Trend of Changes in Phenological Components of Iran’s Vegetation Using Satellite Observations" Remote Sensing 15, no. 18: 4468. https://doi.org/10.3390/rs15184468
APA StyleKhormizi, H. Z., Malamiri, H. R. G., Kalantari, Z., & Ferreira, C. S. S. (2023). Trend of Changes in Phenological Components of Iran’s Vegetation Using Satellite Observations. Remote Sensing, 15(18), 4468. https://doi.org/10.3390/rs15184468