Spatiotemporal Change in Evapotranspiration across the Indus River Basin Detected by Combining GRACE/GRACE-FO and Swarm Observations
Abstract
:1. Introduction
2. Study Area
3. Data
3.1. GRACE/GRACE-FO Data
3.2. Swarm Data
3.3. PPT, ET and Runoff Data
3.4. Other ET Products
3.4.1. GLDAS Products
3.4.2. GLEAM Products
3.4.3. A Harmonized Global Land Evaporation Dataset from Model-Based Products Covering the Period 1980–2017 (AHGLED)
3.5. Other Hydrometeorological Data
3.6. Land Cover Type Data
4. Methods
4.1. Uncertainty of TWSC
4.2. ET Estimation
4.3. Evaluation Indicators
4.4. Partial Least Squares Regression Model
5. Results
5.1. Construction of Combined TWSC Observations
5.2. Evaluation of ET Result Based on GRACE and Swarm Results
5.3. Spatiotemporal Distribution of ET in the IRB
5.4. ET in the Different Land Cover Types
5.5. Impacts of Climate Change on ET in the IRB
6. Discussion
6.1. Influencing Factors of ET
6.2. Uncertainty of Observations
6.3. Limitation and Future Work
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wey, H.; Lo, M.; Lee, S.; Yu, J.; Hsu, H. Potential impacts of wintertime soil moisture anomalies from agricultural irrigation at low latitudes on regional and global climates. Geophys. Res. Lett. 2015, 42, 8605–8614. [Google Scholar] [CrossRef]
- Cui, L.; He, M.; Zou, Z.; Yao, C.; Wang, S.; An, C.; Wang, X. The Influence of Climate Change on Droughts and Floods in the Yangtze River Basin from 2003 to 2020. Sensors 2022, 22, 8178. [Google Scholar] [CrossRef] [PubMed]
- Zou, Z.; Li, Y.; Cui, L.; Yao, C.; Xu, C.; Yin, M.; Zhu, C. Spatiotemporal evaluation of the flood potential index and its driving factors across the Volga River basin based on combined satellite gravity observations. Remote Sens. 2023, 15, 4144. [Google Scholar] [CrossRef]
- Mahdian, M.; Hosseinzadeh, M.; Siadatmousavi, S.; Chalipa, Z.; Delavar, M.; Guo, M.; Abolfathi, S.; Noori, R. Modelling impact of climate change and anthropogenic activities on inflows and sediment loads of wetlands: Case study of the Anzali wetland. Sci. Rep. 2023, 13, 5399. [Google Scholar] [CrossRef]
- Cui, L.; Zhu, C.; Zou, Z.; Yao, C.; Zhang, C.; Li, Y. The spatiotemporal characteristics of wildfires across Australia and their connection to extreme climate based on a combined hydrological drought index. Fire 2023, 6, 42. [Google Scholar] [CrossRef]
- Vinukollu, R.; Wood, E.; Fergison, C.; Fisher, J. Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing data: Evaluation of three process-based approaches. Remote Sens. Environ. 2011, 115, 801–823. [Google Scholar] [CrossRef]
- Bai, Y.; Zhang, J.; Zhang, S.; Koju, U.; Yao, F.; Igbawua, T. Using precipiation, vertical root distribution, and satelite-retrieved vegetation information to parameterize water stress in a Penman-Monteith approach to evapotranspiration modeling under Mediterranean climate. J. Adv. Model. Earth Syst. 2017, 9, 168–192. [Google Scholar] [CrossRef]
- Lobell, D.; Bonfils, C. The effect of irrigation on regional temperatures: A spatial and temporal analysis of trends in California, 1934–2002. J. Clim. 2008, 21, 2063–2071. [Google Scholar] [CrossRef]
- Sterling, S.; Ducharne, A.; Polcher, J. The impact of global land-cover change on the terrestrial water cycle. Nat. Clim. Chang. 2013, 3, 385–390. [Google Scholar] [CrossRef]
- Yeh, J.; Irizary, M.; Eltahir, E. Hydroclimatology of illinois: A comparison of monthly evaporation estimates based on atmospheric water balance and soil water balance. J. Geophys. Res. Atmos. 1998, 103, 19823–19837. [Google Scholar] [CrossRef]
- Cui, L.; Zhu, C.; Wu, Y.; Yao, C.; Wang, X.; An, J.; Wei, P. Natural- and human- induced influences on terrestrial water storage change in Sichuan, Southwest China from 2003 to 2020. Remote Sens. 2020, 14, 1369. [Google Scholar] [CrossRef]
- Memon, J.; Thapa, G. The Indus irrigation system, natural resources, and community occupational quality in the delta region of Pakistan. Environ. Manag. 2011, 47, 173–187. [Google Scholar] [CrossRef] [PubMed]
- Noori, R.; Maghrebi, M.; Jessen, S.; Bateni, S.; Heggy, E.; Javadi, S.; Nouri, M.; Pistre, S.; Abolfathi, S.; Aghakouchak, A. Deline in Iran’s groundwater recharge. Nat. Portfolio 2023, in press. [Google Scholar]
- Ali, S.; Cheema, M.; Waqas, M.; Waseem, M.; Awan, U.; Khaliq, T. Changes in snow cover dynamics over the Indus basin: Evidences from 2008 to 2018 MODIS NDSI trends analysis. Remote Sens. 2020, 12, 2782. [Google Scholar] [CrossRef]
- Oureshi, A. Water management in the Indus Basin in Pakistan: Challenges and opportunities. Mt. Res. Dev. 2011, 31, 252–260. [Google Scholar]
- Jiang, D.; Wang, J.; Huang, Y.; Zhou, K.; Ding, X.; Fu, J. The review of GRACE data applications in terrestrial hydrology monitoring. Adv. Meteorol. 2014, 2014, 725131. [Google Scholar] [CrossRef]
- Tapley, D.; Bettadpur, S.; Ries, J.; Thompson, P.; Watkins, M. GRACE measurements of mass variability in the Earth system. Science 2004, 305, 503–505. [Google Scholar] [CrossRef]
- Winsemius, H.; Savenije, H.; van de Giesen, N.; van de Hurk, B.; Zapreeva, E.; Klees, R. Assessment of Gravity Recovery and Climate Experiment (GRACE) temporal signature over the upper Zambezi. Water Resour. Res. 2006, 42, W12201. [Google Scholar] [CrossRef]
- Qu, W.; Jin, Z.; Zhang, Q.; Gao, Y.; Zhang, P.; Chen, P. Estimation of Evapotranspiration in the Yellow River basin from 2002 to 2020 based on GRACE and GRACE-FO Observations. Remote Sens. 2022, 14, 730. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, L.; Chen, C.; Fu, Z.; Peng, Z. Using satellite gravity and hydrological data to estimate changes in evapotranspiration induced by water storage fluctuations in the Three Gorges Reservoir of China. Remote Sens. 2020, 12, 2143. [Google Scholar] [CrossRef]
- Madeleine, A.; Pascolini, C.; Reager, J.T.; Fisher, J.B. GRACE-based Mass Conservation as a Validation Target for Basin-Scale Evapotranspiration in the Contiguous United States. Water Resour. Res. 2020, 56, e2019WR026594. [Google Scholar]
- Liu, Y.; Mo, X.; Hu, S.; Chen, X.; Liu, S. Assessment of human-induced evapotranspiration with GRACE satellites in the Ziya-Daqing Basins, China. Hydrol. Sci. J. 2020, 65, 2577–2589. [Google Scholar] [CrossRef]
- Da Encarnação, T.; Visser, P.; Arnold, D.; Bezděk, A.; Doornbos, E.; Ellmer, M.; Guo, J.; van den IJssel, J.; Iorfida, E.; Jäggi, A.; et al. Description of the multi-approach gravity field models from Swarm GPS data. Earth Syst. Sci. Data 2020, 12, 1385–1417. [Google Scholar] [CrossRef]
- Cui, L.; Song, Z.; Luo, Z.; Zhong, B.; Wang, X.; Zou, Z. Comparison of terrestrial water storage changes derived from GRACE/GRACE-FO and Swarm: A case study in the Amazon River Basin. Water 2020, 12, 3128. [Google Scholar] [CrossRef]
- Bezděk, A.; Sebera, J.; Teixeira da Encarnação, J.; Klokocnik, J. Time-variable gravity fields derived from GPS tracking of Swarm. Geophys. J. Int. 2016, 205, 1665–1669. [Google Scholar] [CrossRef]
- Lück, C.; Kusche, J.; Rietbroek, R.; Löcher, A. Time-variable gravity fields and ocean mass change from 37 months of kinematic Swarm orbits. Solid Earth 2018, 9, 323–339. [Google Scholar] [CrossRef]
- Cui, L.; Yin, M.; Huang, Z.; Yao, C.; Wang, X.; Lin, X. The drought events over the Amazon River basin from 2003 to 2020 detected by GRACE/GRACE-FO and Swarm satellites. Remote Sens. 2022, 14, 2887. [Google Scholar] [CrossRef]
- Li, F.; Wang, Z.; Chao, N.; Feng, J.; Zhang, B.; Tian, K.; Han, Y. 2015–2016 drought event in the Amazon River Basin as measured by Swarm constellation. Geomat. Inf. Sci. Wuhan Univ. 2020, 45, 595–603. (In Chinese) [Google Scholar]
- Zhang, C.; Shum, C.; Bezděk, A.; Bevis, M.; de Encarnação, T.; Tapley, B.; Zhang, Y.; Su, X.; Shen, Q. Rapid mass loss in west Antractica revealed by Swarm Gravimetry in the Absence of GRACE. Geophys. Res. Lett. 2021, 48, e2021GL095141. [Google Scholar] [CrossRef]
- Chen, W.; Zhong, M.; Feng, W.; Wang, C.; Li, W.; Liang, L. Using GRACE/GRACE-FO and Swarm to estimate ice-sheets mass loss in Antarctica and Greenland during 2003–2020. Chin. J. Geophys. 2022, 65, 952–964. (In Chinese) [Google Scholar]
- Cui, L.; Zhang, C.; Yao, C.; Luo, Z.; Wang, X.; Li, Q. Analysis of the influencing factors of drought events based on GRACE data under different climatic conditions: A case study in Mainland China. Water 2021, 13, 2575. [Google Scholar] [CrossRef]
- Jean, Y.; Meyer, U.; Jäggi, A. Combination of GRACE monthly gravity field solutions from different processing strategies. J. Geod. 2018, 92, 1313–1328. [Google Scholar] [CrossRef]
- Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.-J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The Global Land Data Assimilation System. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef]
- Khan, M.; Liaqat, U.; Baik, J. Stand-alone uncertainty characterization of GLEAM, GLDAS and MOD16 evapotranspiration products using an extended triple collocation approach. Agric. Forest Meteorol. 2018, 252, 256–268. [Google Scholar] [CrossRef]
- Martens, B.; Gonzalez Miralles, D.; Lievens, H.; Van Der Schalie, R.; De Jeu, R.; Fernández-Prieto, D.; Beck, H.; Dorigo, W.; Verhoest, N. GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 2017, 10, 1903–1925. [Google Scholar] [CrossRef]
- Wagner, S.; Fersch, B.; Yuan, F.; Yu, Z.; Kunstmann, H. Fully coupled atmospheric-hydrological modeling at regional and long-term scales: Development, application, and analysis of WRF-HMS. Water Resour. Res. 2016, 52, 3187–3211. [Google Scholar] [CrossRef]
- Lu, J.; Wang, G.; Chen, T.; Li, S.; Hagan, D.; Kattel, G.; Peng, J.; Jiang, T.; Su, B. A harmonized global land evaporation dataset from model-based products covering 1980–2017. Earth Syst. Sci. Data 2021, 13, 5879–5898. [Google Scholar] [CrossRef]
- He, Y. Based on MODIS land vegetation cover classification product Sixth Edition (mcd12q1)_ The pan third pole vegatation cover product data set of V06 (2001–2017). A Big Earth Data Platform for Three Ploes. 2019. [Google Scholar]
- Friedl, M.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. MODIS collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, L.; Yao, Y.; van Dam, T.; Khan, S. Improving the estimate of the secular variation of Greenland ice mass in the recent decades by incorporating a stochastic process. Earth Planet Sci. Lett. 2020, 549, 116518. [Google Scholar] [CrossRef]
- Long, D.; Pan, Y.; Zhou, J.; Chen, Y.; Hou, X.; Hong, Y.; Scanlon, B.; Longuevergne, L. Global analysis of spatiotemporal variability in merged total water storage changes using multiple GRACE products and global hydrological models. Remote Sens. Environ. 2017, 192, 198–216. [Google Scholar] [CrossRef]
- Cui, L.; Luo, C.; Yao, C.; Zou, Z.; Wu, G.; Li, Q.; Wang, X. The influence of climate change on forest fires in Yunnan province, Southwest China detected by GRACE satellites. Remote Sens. 2020, 14, 712. [Google Scholar] [CrossRef]
- Ramillien, G.; Frappart, F.; Guntner, A.; Ngo-Duc, T.; Cazenave, A.; Laval, K. Time variations of the regional evapotranspiration rate from Gravity Recovery and Climate Experiment (GRACE) satellite gravimetry. Water Resour. Res. 2006, 42, 1–8. [Google Scholar] [CrossRef]
- Moriasi, D.; Arnold, J.; van Liew, M.; Bingner, R.; Harmel, R.; Veith, T. Model evalution guidelines for systematic quantification of accurary in watershed sumulation. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Zhao, D.; Arshad, M.; Li, N.; Triantafilis, J. Predicting soil physical and chemical properties using vis-NIR in Australian cotton areas. Catena 2021, 196, 104938. [Google Scholar] [CrossRef]
- Zhao, D.; Wang, J.; Zhao, X.; Triantafilis, J. Clay content mapping and uncertainty estimation using weighted model averaging. Catena 2022, 209, 105791. [Google Scholar] [CrossRef]
- Cui, L.; Chen, X.; An, J.; Yao, C.; Su, Y.; Zhu, C.; Li, Y. Spatiotemporal Variation Characteristics of Droughts and Its Connection to Climate Variability and Human Activities in the Pearl River Basin, South China. Water 2023, 15, 1720. [Google Scholar] [CrossRef]
- Farrés, M.; Platikanov, S.; Tsakovski, S.; Tauler, R. Comparison of the variable importance in projection (VIP) and of the selectivity ratio (SR) methods for variable selection and interpretation. J. Chemom. 2015, 29, 528–536. [Google Scholar] [CrossRef]
- Iqbal, N.; Hossain, F.; Lee, H.; Akhter, G. Satellite gravimetric estimation of groundwater storage variations over Indus Basin 608 in Pakistan. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 3524–3534. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, S.; Yi, Y.; Xie, F.; Grunwald, R.; Miao, W.; Wu, K.; Qi, M.; Gao, Y.; Singh, D. Overview of terrestrial water storage 610 changes over the Indus River basin based on GRACE/GRACE-FO solution. Sci. Total Environ. 2021, 799, 149366. [Google Scholar] [CrossRef] [PubMed]
- Gao, G.; Chen, D.; Xu, C.-Y.; Simelton, E. Trend of estimated actual evapotranspiration over China during 1960–2002. J. Geophys. Res. Atmos. 2007, 112, D11120. [Google Scholar] [CrossRef]
- Shen, M.; Piao, S.; Jeong, S.-J.; Zhou, L.; Zeng, Z.; Ciais, P.; Chen, D.; Huang, M.; Jin, C.-S.; Li, L.Z.X.; et al. Evaporative cooling over the Tibetan Plateau induced by vegetation growth. Proc. Natl. Acad. Sci. USA 2015, 112, 9299. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.; Wang, T.; Gao, C.; Pan, S.; Sun, Z.; Xu, Y. Potential evapotranspiration changes in Lancang River Basin and Yarlung Zangbo River Basin, southwest China. Hydrol. Sci. J. 2018, 63, 1653–1668. [Google Scholar] [CrossRef]
- Goyal, R.K. Sensitivity of evapotranspiration to global warming: A case study of arid zone of Rajasthan (India). Agric. Water Manag. 2004, 69, 1–11. [Google Scholar] [CrossRef]
- Burn, D.H.; Hesch, N.M. Trends in evaporation for the Canadian Prairies. J. Hydrol. 2007, 336, 61–73. [Google Scholar] [CrossRef]
- Li, X.; Zou, L.; Xia, J.; Dou, M.; Li, H.; Song, Z. Untangling the effects of climate change and land use/cover change on spatiotemporal variation of evapotranspiration over China. J. Hydrol. 2022, 612, 128189. [Google Scholar] [CrossRef]
- Li, M.; Chu, R.; Islam, A.; Shen, S. Characteristics of surface evapotranspiration and its response to climate and land use and land cover in the Huai River basin of eastern China. Environ. Sci. Pollut. Res. 2021, 28, 683–699. [Google Scholar] [CrossRef]
- Li, G.; Zhang, F.; Jing, Y.; Liu, Y.; Sun, G. Response of evapotranspiration to changes in land use and land cover and climate in China during 2001–2013. Sci. Total Environ. 2017, 596, 256–265. [Google Scholar] [CrossRef]
- Chen, H.; Huang, J.; Wang, K.; McBean, E. Quantitative assessment of agricultural pracices on farmland evapotranspiration using eddycovariance method and numerical modelling. Water Resour. Manag. 2020, 34, 515–527. [Google Scholar] [CrossRef]
- Yao, T.; Lu, H.; Yu, Q.; Feng, W.; Xue, Y. Change and attribution of pan evaporation throughout the Qinghai-Tibet Plateau during 1979–2017 using China meteorological forcing dataset. Int. J. Climatol. 2022, 42, 1445–1459. [Google Scholar] [CrossRef]
- Bruinsma, S.; Lemoine, J.; Biancale, R. GNES/GRGS 10-day gravity field models (release 2) and their evaluation. Adv. Space Res. 2010, 45, 587–601. [Google Scholar] [CrossRef]
- Nanteza, J.; De Linge, C.; Thomas, B.; Famiglietti, J. Monitoring groundwater storage changes in complex basement aquifers: An evaluation of the GRACE satellites over East Africa. Water Resour. Res. 2016, 52, 9542–9564. [Google Scholar] [CrossRef]
- Steffen, H.; Petrovic, S.; Müller, J.; Schmidt, R.; Wūnsch, J.; Barthelmes, F.; Kusche, J. Significance of secular trends of mass variations determined from GRACE solutions. J. Geodyn. 2009, 48, 157–165. [Google Scholar] [CrossRef]
- Syed, T.; Famiglietti, J.; Rodell, M.; Chen, J.; Wilson, C. Analysis of terrestrial water storage changes from GRACE and GLDAS. Water Resour. Res. 2008, 44, W02433. [Google Scholar] [CrossRef]
- Werth, S.; Gūntner, A.; Schmidt, R.; Kusche, J. Evaluation of GRACE filter tools from a hydrological perspective. Geophys. J. Int. 2009, 179, 1499–1515. [Google Scholar] [CrossRef]
- Swenson, S.; Yeh, P.; Wahr, J.; Famiglietti, J. A comparison of terrestrial water storage variations from GRACE with in situ measurement from Illinois. Geophys. Res. Lett. 2006, 33, L16401. [Google Scholar] [CrossRef]
- Strassberg, G.; Scanlon, B.; Chambers, D. Evaluation of groundwater storage monitoring with the GRACE satellite: Case study of the High Plain aquifer, central United States. Water Resour. Res. 2009, 45, W05410. [Google Scholar] [CrossRef]
- Famiglietti, J.; Lo, M.; Ho, S. Satellites measure recent rates of groundwater depletion in Californa’s Central Valley. Geophys. Res. Lett. 2011, 38, L03403. [Google Scholar] [CrossRef]
- Long, D.; Shen, Y.; Sun, A.; Hong, Y.; Longuevergne, L.; Yang, Y.; Li, B.; Chen, L. Drought and flood monitoring for a large karst plateau in Southwest China using extended GRACE data. Remote Sens. Environ. 2014, 155, 145–160. [Google Scholar] [CrossRef]
- Wang, Z.; Tian, K.; Li, F.; Xiong, S.; Gao, Y.; Wang, L.; Zhang, B. Using Swarm to detect total water storage changes in 26 global basins (taking the Amazon Basin, Volga Basin and Zambezi Basin as example). Remote Sens. 2021, 13, 2659. [Google Scholar] [CrossRef]
TWSC | Long-Term Trend Change | Annual Amplitude | Annual Phase |
---|---|---|---|
GRACE | −6.17 ± 1.80 mm/a | 2.05 cm | 2.17 rad |
Swarm | −4.09 ± 3.18 cm/a | 1.25 cm | 3.15 rad |
Region | Long-Term Trend Change | Annual Amplitude | Annual Phase |
---|---|---|---|
Indus | 0.80 ± 0.62 mm/a | 2.36 cm | 0.77 rad |
BL | 0.49 ± 0.39 mm/a | 1.41 cm | 1.08 rad |
Farmland | 0.83 ± 0.80 mm/a | 2.98 cm | 0.73 rad |
Grassland | 1.10 ± 0.72 mm/a | 2.89 cm | 0.58 rad |
IS | 0.05 ± 0.44 mm/a | 1.98 cm | 1.249 rad |
Factors | IRB | BL | Farmland | Grassland | IS | |||||
---|---|---|---|---|---|---|---|---|---|---|
Correlation Coefficient | VIP | Correlation Coefficient | VIP | Correlation Coefficient | VIP | Correlation Coefficient | VIP | Correlation Coefficient | VIP | |
ST | 0.58 | 1.01 | 0.49 | 0.90 | 0.57 | 1.03 | 0.64 | 1.09 | 0.54 | 1.16 |
TCWS | 0.75 | 1.46 | 0.57 | 1.04 | 0.76 | 1.53 | 0.79 | 1.62 | 0.26 | 0.57 |
GW | 0.32 | 0.27 | 0.39 | 0.59 | 0.25 | 0.17 | 0.29 | 0.20 | 0.36 | 0.56 |
SH | 0.80 | 1.62 | 0.68 | 1.48 | 0.80 | 1.63 | 0.83 | 1.68 | 0.66 | 1.69 |
Runoff | 0.36 | 0.76 | 0.17 | 0.36 | 0.40 | 0.71 | 0.42 | 0.76 | −0.07 | 0.20 |
PPT | 0.93 | 2.46 | 0.78 | 2.13 | 0.94 | 2.55 | 0.93 | 2.36 | 0.53 | 1.12 |
SMC | 0.32 | 0.27 | 0.31 | 0.34 | 0.27 | 0.19 | 0.35 | 0.31 | 0.15 | 0.10 |
WS | 0.42 | 0.99 | 0.22 | 0.75 | 0.46 | 0.98 | 0.52 | 0.95 | 0.22 | 0.76 |
SWE | −0.19 | 0.15 | −0.25 | 0.36 | −0.21 | 0.20 | −0.11 | 0.03 | −0.49 | 1.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, L.; Yin, M.; Zou, Z.; Yao, C.; Xu, C.; Li, Y.; Mao, Y. Spatiotemporal Change in Evapotranspiration across the Indus River Basin Detected by Combining GRACE/GRACE-FO and Swarm Observations. Remote Sens. 2023, 15, 4469. https://doi.org/10.3390/rs15184469
Cui L, Yin M, Zou Z, Yao C, Xu C, Li Y, Mao Y. Spatiotemporal Change in Evapotranspiration across the Indus River Basin Detected by Combining GRACE/GRACE-FO and Swarm Observations. Remote Sensing. 2023; 15(18):4469. https://doi.org/10.3390/rs15184469
Chicago/Turabian StyleCui, Lilu, Maoqiao Yin, Zhengbo Zou, Chaolong Yao, Chuang Xu, Yu Li, and Yiru Mao. 2023. "Spatiotemporal Change in Evapotranspiration across the Indus River Basin Detected by Combining GRACE/GRACE-FO and Swarm Observations" Remote Sensing 15, no. 18: 4469. https://doi.org/10.3390/rs15184469
APA StyleCui, L., Yin, M., Zou, Z., Yao, C., Xu, C., Li, Y., & Mao, Y. (2023). Spatiotemporal Change in Evapotranspiration across the Indus River Basin Detected by Combining GRACE/GRACE-FO and Swarm Observations. Remote Sensing, 15(18), 4469. https://doi.org/10.3390/rs15184469