RTV-SIFT: Harnessing Structure Information for Robust Optical and SAR Image Registration
Abstract
:1. Introduction
- How to find homology and effective feature points on optical and SAR images that have significantly different inherent natures?
- How to overcome nonlinear intensity differences and construct feature descriptors that are similar at corresponding points but distinguishable at non-corresponding points?
- Based on the RTV theory and multi-scale Harris detector, an RTV-Harris feature point detector is proposed so that the detected feature points are distributed at the structural edges with higher matching potential.
- To mitigate the effect of nonlinear intensity difference between optical and SAR images, an enhanced phase consistency edge (EPCE) descriptor is proposed for the structural feature description of the feature points.
- A coarse-to-fine matching strategy based on feature point position and orientation Euclidean distance (POED) is introduced to improve the registration precision.
2. Proposed Method
2.1. Iterative Structure Preserving Smoothing Using RTV
2.2. Multiscale Feature Point Detection
2.3. Feature Point Description
2.4. Coarse-to-Fine Feature Point Matching
3. Experiments and Results
3.1. Evaluation Metrics
3.2. Test Images
3.3. Parameter Settings
3.4. Performance of RTV-Harris Feature Point Detector
3.5. Performance of EPCE Feature Descriptor
3.6. Overall Registration Performance of RTV-SIFT
3.7. Validation under Different Conditions
3.7.1. Illumination Intensity
3.7.2. Noise Interference
3.7.3. Cloud Covering
3.8. Summary of Experimental Results
- Our proposed RTV-Harris feature point detector is robust to speckle noise and texture, so the extracted feature points are mainly distributed at the edges of the structure with a higher repeatability rate than the traditional DoG and multiscale-Harris approaches.
- The EPCE feature descriptor can effectively overcome the nonlinear intensity differences between optical and SAR images, and is more accurate than the descriptors constructed on the Sobel and PC edges.
- The POED based fine matching method can effectively increase the number of correct corresponding points and make their distribution more uniform, as shown in the last two rows of Table 2.
- The RTV-SIFT method outperforms other algorithms in various scenes and imaging conditions, showcasing its superior robustness and adaptability.
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wan, L.; Xiang, Y.; You, H. An Object-Based Hierarchical Compound Classification Method for Change Detection in Heterogeneous Optical and SAR Images. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9941–9959. [Google Scholar] [CrossRef]
- Nie, M.; Ling, L.; Wei, X. A Novel Fusion and Target Detection Method of Airborne SAR Images and Optical Images. In Proceedings of the International Conference on Radar, Shanghai, China, 16–19 October 2006. [Google Scholar]
- Poulain, V.; Inglada, J.; Spigai, M.; Tourneret, J.Y.; Marthon, P. High-resolution optical and SAR image fusion for building database updating. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2900–2910. [Google Scholar] [CrossRef]
- Jiang, X.; Ma, J.; Xiao, G.; Shao, Z.; Guo, X. A review of multimodal image matching: Methods and applications. Inf. Fusion 2021, 73, 22–71. [Google Scholar] [CrossRef]
- Suri, S.; Reinartz, P. Mutual-Information-Based Registration of TerraSAR-X and Ikonos Imagery in Urban Areas. IEEE Trans. Geosci. Remote Sens. 2010, 48, 939–949. [Google Scholar] [CrossRef]
- Lewis, J.P. Fast Normalized Cross-Correlation. Circuits Syst. Signal Process. 2009, 28, 819–843. [Google Scholar]
- Liu, Y.; Wang, Q. Multi-sensor image registration based on local feature and its attributes set. In Proceedings of the IEEE 10th International Conference on Signal Processing Proceedings, Beijing, China, 24–28 October 2010; pp. 1053–1055. [Google Scholar]
- Ma, W.; Zhang, J.; Wu, Y.; Jiao, L.; Zhu, H.; Zhao, W. A novel two-step registration method for remote sensing images based on deep and local features. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4834–4843. [Google Scholar] [CrossRef]
- Quan, D.; Wang, S.; Liang, X.; Wang, R.; Fang, S.; Hou, B.; Jiao, L. Deep generative matching network for optical and SAR image registration. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 6215–6218. [Google Scholar]
- Merkle, N.; Auer, S.; Müller, R.; Reinartz, P. Exploring the potential of conditional adversarial networks for optical and SAR image matching. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1811–1820. [Google Scholar] [CrossRef]
- Hughes, L.H.; Marcos, D.; Lobry, S.; Tuia, D.; Schmitt, M. A deep learning framework for matching of SAR and optical imagery. ISPRS J. Photogramm. Remote Sens. 2020, 169, 166–179. [Google Scholar] [CrossRef]
- Zampieri, A.; Charpiat, G.; Girard, N.; Tarabalka, Y. Multimodal image alignment through a multiscale chain of neural networks with application to remote sensing. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 657–673. [Google Scholar]
- Li, J.; Xu, W.; Shi, P.; Zhang, Y.; Hu, Q. LNIFT: Locally normalized image for rotation invariant multimodal feature matching. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Ye, Y.; Zhu, B.; Tang, T.; Yang, C.; Xu, Q.; Zhang, G. A robust multimodal remote sensing image registration method and system using steerable filters with first-and second-order gradients. ISPRS J. Photogramm. Remote Sens. 2022, 188, 331–350. [Google Scholar] [CrossRef]
- Ma, W.; Wen, Z.; Wu, Y.; Jiao, L.; Gong, M.; Zheng, Y.; Liu, L. Remote Sensing Image Registration With Modified SIFT and Enhanced Feature Matching. IEEE Geosci. Remote Sens. Lett. 2016, 14, 3–7. [Google Scholar] [CrossRef]
- Dellinger, F.; Delon, J.; Gousseau, Y.; Michel, J.; Tupin, F. SAR-SIFT: A SIFT-like algorithm for SAR images. IEEE Trans. Geosci. Remote Sens. 2013, 53, 453–466. [Google Scholar] [CrossRef]
- Low, D.G. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Lindeberg, T. Feature Detection with Automatic Scale Selection. Int. J. Comput. Vis. 1998, 30, 79–116. [Google Scholar] [CrossRef]
- Zhang, W. Combination of SIFT and Canny Edge Detection for Registration Between SAR and Optical Images. IEEE Geosci. Remote Sens. Lett. 2020, 19, 1–5. [Google Scholar] [CrossRef]
- Fan, B.; Huo, C.; Pan, C.; Kong, Q. Registration of optical and SAR satellite images by exploring the spatial relationship of the improved SIFT. IEEE Geosci. Remote Sens. Lett. 2012, 10, 657–661. [Google Scholar] [CrossRef]
- Xie, Z.; Liu, J.; Liu, C.; Zuo, Y.; Chen, X. Optical and SAR Image Registration Using Complexity Analysis and Binary Descriptor in Suburban Areas. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [Google Scholar] [CrossRef]
- Li, J.; Hu, Q.; Ai, M. RIFT: Multi-modal image matching based on radiation-variation insensitive feature transform. IEEE Trans. Image Process. 2019, 29, 3296–3310. [Google Scholar] [CrossRef] [PubMed]
- Forero, M.G.; Mambuscay, C.L.; Monroy, M.F.; Miranda, S.L.; Méndez, D.; Valencia, M.O.; Gomez Selvaraj, M. Comparative analysis of detectors and feature descriptors for multispectral image matching in rice crops. Plants 2021, 10, 1791. [Google Scholar] [CrossRef]
- Sharma, S.K.; Jain, K.; Shukla, A.K. A Comparative Analysis of Feature Detectors and Descriptors for Image Stitching. Appl. Sci. 2023, 13, 6015. [Google Scholar] [CrossRef]
- Mikolajczyk, K.; Schmid, C. Indexing based on scale invariant interest points. In Proceedings of the Proceedings Eighth IEEE International Conference on Computer Vision, ICCV 2001, Vancouver, BC, Canada, 7–14 July 2001; Volume 1, pp. 525–531. [Google Scholar]
- Mikolajczyk, K.; Schmid, C. A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 1615–1630. [Google Scholar] [CrossRef]
- Chen, J.; Tian, J.; Lee, N.; Zheng, J.; Smith, R.T.; Laine, A.F. A Partial Intensity Invariant Feature Descriptor for Multimodal Retinal Image Registration. IEEE Trans. Biomed. Eng. 2010, 57, 1707–1718. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Wu, Y.; Li, M.; Liang, W.; Cao, Y. SAR and optical image registration using nonlinear diffusion and phase congruency structural descriptor. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5368–5379. [Google Scholar] [CrossRef]
- Shuai, J.; Jzang, U.; Wang, B.; Zhu, X.; Sun, X. Registration of SAR and Optical Images by Weighted Sift Based on Phase Congruency. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018. [Google Scholar]
- Yu, Q.; Jiang, Y.; Zhao, W.; Sun, T. High-Precision Pixelwise SAR—Optical Image Registration via Flow Fusion Estimation Based on an Attention Mechanism. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 3958–3971. [Google Scholar] [CrossRef]
- Kovesi, P. Image Features from Phase Congruency. Videre J. Comput. Vis. Res. 1999, 1, 1–26. [Google Scholar]
- Kovesi, P. Phase congruency: A low-level image invariant. Psychol. Res. 2000, 64, 136–148. [Google Scholar] [CrossRef] [PubMed]
- Kovesi, P. Phase congruency detects corners and edges. In The Australian Pattern Recognition Society Conference: DICTA; Csiro Publishing: Clayton, Australia, 2003; pp. 309–318. [Google Scholar]
- Xu, L.; Yan, Q.; Xia, Y.; Jia, J. Structure extraction from texture via relative total variation. ACM Trans. Graph. (TOG) 2012, 31, 1–10. [Google Scholar] [CrossRef]
- Wu, Y.; Ma, W.; Gong, M.; Su, L.; Jiao, L. A Novel Point-Matching Algorithm Based on Fast Sample Consensus for Image Registration. IEEE Geosci. Remote Sens. Lett. 2015, 12, 43–47. [Google Scholar] [CrossRef]
- Schmid, C.; Mohr, R.; Bauckhage, C. Evaluation of interest point detectors. Int. J. Comput. Vis. 2000, 37, 151–172. [Google Scholar] [CrossRef]
- Gonçalves, H.; Gonçalves, J.A.; Corte-Real, L. Measures for an objective evaluation of the geometric correction process quality. IEEE Geosci. Remote Sens. Lett. 2009, 6, 292–296. [Google Scholar] [CrossRef]
- Xiang, Y.; Tao, R.; Wang, F.; You, H.; Han, B. Automatic Registration of Optical and SAR Images Via Improved Phase Congruency Model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5847–5861. [Google Scholar] [CrossRef]
- Xiang, Y.; Wang, F.; You, H. OS-SIFT: A robust SIFT-like algorithm for high-resolution optical-to-SAR image registration in suburban areas. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3078–3090. [Google Scholar] [CrossRef]
- Ye, Y.; Shan, J.; Bruzzone, L.; Shen, L. Robust registration of multimodal remote sensing images based on structural similarity. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2941–2958. [Google Scholar] [CrossRef]
- Konnik, M.; Welsh, J. High-level numerical simulations of noise in CCD and CMOS photosensors: Review and tutorial. arXiv 2014, arXiv:1412.4031. [Google Scholar]
- Jaruwatanadilok, S.; Ishimaru, A.; Kuga, Y. Optical imaging through clouds and fog. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1834–1843. [Google Scholar] [CrossRef]
Type | Image Pairs | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | ||
Size | SAR | 1025 × 800 | 600 × 675 | 735 × 768 | 788 × 888 | 350 × 675 | 975 × 925 | 875 × 552 | 975 × 800 | 501 × 494 | 900 × 898 | 705 × 878 |
Optical | 832 × 640 | 496 × 544 | 468 × 528 | 720 × 704 | 224 × 416 | 656 × 624 | 677 × 482 | 864 × 608 | 356 × 366 | 665 × 689 | 919 × 643 | |
Resolution | SAR | 1 m | 1 m | 1 m | 1 m | 1 m | 1 m | 1 m | 1 m | 1 m | 1 m | 1 m |
Optical | 2 m | 2 m | 2 m | 2 m | 2 m | 2 m | 2 m | 2 m | 2 m | 2 m | 2 m | |
Source | SAR | GF-3 | GF-3 | GF-3 | GF-3 | GF-3 | GF-3 | GF-3 | GF-3 | GF-3 | GF-3 | GF-3 |
Optical | Google Earth | Google Earth | Google Earth | Google Earth | Google Earth | Google Earth | Google Earth | Google Earth | Google Earth | Google Earth | Google Earth | |
Scene | Airport | Airport | Airport | Airport | Airport | Airport | Dense urban area | Airport | Airport | Airport | Suburb with large rotation angle |
Method | Criterion | Image Pairs | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | ||
SAR-SIFT | CMN | 1 | 0 | 1 | 5 | 0 | 2 | 0 | 0 | 0 | 0 | 24 |
CMR(%) | 20.00 | 0 | 33.33 | 71.43 | 0 | 18.18 | 0 | 0 | 0 | 0 | 88.89 | |
RMSE | 10.68 | 130.21 | 322.64 | 2.36 | 71.54 | 3.50 | 486.83 | 477.25 | 165.60 | 386.00 | 1.72 | |
- | - | - | 0.021 | - | - | - | - | - | - | 0.175 | ||
Time(s) | 14.70 | 10.25 | 10.81 | 17.22 | 1.06 | 122.65 | 5.72 | 5.82 | 1.86 | 21.36 | 28.52 | |
PC-SIFT | CMN | 1 | 16 | 1 | 0 | 0 | 0 | 0 | 4 | 1 | 0 | 1 |
CMR(%) | 33.33 | 100 | 33.33 | 0 | 0 | 0 | 0 | 80.00 | 25.00 | 0 | 33.33 | |
RMSE | 240.54 | 1.16 | 108.66 | 324.02 | 31.41 | 289.85 | 342.71 | 1.92 | 42.07 | 357.27 | 284.56 | |
- | 0.172 | - | - | - | - | - | 0.240 | - | - | - | ||
Time(s) | 10.15 | 3.97 | 6.13 | 8.65 | 0.61 | 8.64 | 5.36 | 4.84 | 0.77 | 12.69 | 14.70 | |
PCG-SIFT | CMN | 7 | 27 | 0 | 7 | 0 | 8 | 0 | 7 | 1 | 1 | 8 |
CMR(%) | 77.78 | 100 | 0 | 87.50 | 0 | 72.73 | 0 | 63.64 | 25.00 | 25.00 | 88.89 | |
RMSE | 4.56 | 1.18 | 181.67 | 5.20 | 213.82 | 2.61 | 295.51 | 2.69 | 56.42 | 36.66 | 4.65 | |
0.094 | 0.182 | - | 0.197 | - | 0.187 | - | 0.167 | - | - | 0.067 | ||
Time(s) | 9.28 | 4.11 | 6.03 | 7.90 | 0.6 | 8.15 | 5.25 | 4.86 | 0.79 | 11.89 | 17.81 | |
Harris-PIIFD | CMN | 8 | 23 | 13 | 9 | 5 | 8 | 3 | 8 | 8 | 12 | 0 |
CMR(%) | 80.00 | 100 | 100 | 64.29 | 83.33 | 57.14 | 27.27 | 66.67 | 80.00 | 68.42 | 0 | |
RMSE | 2.41 | 0.71 | 1.39 | 3.82 | 1.94 | 3.77 | 5.33 | 4.62 | 2.77 | 3.26 | 625.37 | |
0.146 | 0.206 | 0.208 | 0.368 | 0.337 | 0.272 | 0.298 | 0.321 | 0.345 | 0.266 | - | ||
Time(s) | 1.48 | 1.14 | 1.26 | 1.32 | 1.06 | 1.41 | 1.26 | 1.39 | 1.27 | 2.23 | 1.35 | |
LNIFT | CMN | 0 | 0 | 0 | 0 | 0 | 0 | 19 | 19 | 18 | 15 | 70 |
CMR(%) | 0 | 0 | 0 | 0 | 0 | 0 | 37.25 | 44.19 | 40.00 | 39.47 | 86.42 | |
RMSE | 235.57 | 206.51 | 239.47 | 517.31 | 106.19 | 285.63 | 3.41 | 3.67 | 3.51 | 6.90 | 2.19 | |
- | - | - | - | - | - | 0.284 | 0.253 | 0.251 | 0.319 | 0.296 | ||
Time(s) | 44.27 | 32.82 | 36.26 | 50.77 | 20.04 | 45.08 | 34.58 | 50.98 | 24.00 | 49.93 | 40.49 | |
OS-SIFT | CMN | 11 | 25 | 5 | 15 | 3 | 15 | 1 | 4 | 5 | 11 | 1 |
CMR(%) | 100 | 100 | 83.33 | 88.24 | 75.00 | 88.24 | 20.00 | 80.00 | 62.50 | 73.33 | 33.33 | |
RMSE | 1.37 | 1.08 | 2.05 | 1.99 | 28.33 | 1.89 | 5.44 | 4.01 | 3.80 | 2.67 | 126.29 | |
0.109 | 0.201 | 0.276 | 0.265 | 0.284 | 0.243 | - | 0.253 | 0.366 | 0.182 | - | ||
Time(s) | 18.65 | 10.83 | 12.37 | 18.36 | 1.04 | 23.53 | 6.97 | 11.36 | 2.17 | 22.31 | 27.31 | |
PSO-SIFT | CMN | 33 | 63 | 4 | 10 | 9 | 27 | 0 | 2 | 17 | 6 | 14 |
CMR(%) | 100 | 96.92 | 26.67 | 71.43 | 90.00 | 80.95 | 0 | 28.57 | 100 | 66.67 | 46.67 | |
RMSE | 1.26 | 1.38 | 5.09 | 5.13 | 1.67 | 2.76 | 61.36 | 6.71 | 1.80 | 2.55 | 5.20 | |
0.087 | 0.174 | 0.109 | 0.168 | 0.364 | 0.174 | - | - | 0.228 | 0.053 | 0.246 | ||
Time(s) | 41.00 | 9.91 | 22.44 | 27.48 | 0.48 | 40.21 | 11.24 | 6.55 | 0.88 | 70.73 | 99.19 | |
RTV-SIFT with POED (N = 5) | CMN | 34 | 53 | 26 | 35 | 7 | 86 | 30 | 10 | 18 | 32 | 36 |
CMR(%) | 100 | 100 | 86.67 | 100 | 70 | 94.51 | 93.75 | 58.82 | 85.71 | 84.21 | 81.81 | |
RMSE | 1.18 | 1.52 | 2.09 | 1.68 | 2.39 | 1.78 | 2.64 | 3.28 | 2.33 | 1.54 | 2.27 | |
0.197 | 0.226 | 0.276 | 0.439 | 0.318 | 0.283 | 0.313 | 0.129 | 0.333 | 0.267 | 0.241 | ||
Time(s) | 23.96 | 10.86 | 14.52 | 21.72 | 1.79 | 38.34 | 22.84 | 22.29 | 2.29 | 22.32 | 26.41 | |
RTV-SIFT without POED (N = 8) | CMN | 46 | 51 | 23 | 31 | 8 | 78 | 10 | 12 | 21 | 17 | 55 |
CMR(%) | 97.87 | 100 | 100 | 100 | 100 | 89.66 | 76.92 | 100 | 91.3 | 100 | 100 | |
RMSE | 1.04 | 1.11 | 1.02 | 0.85 | 0.72 | 1.95 | 2.86 | 1.85 | 2.03 | 1.75 | 1.01 | |
0.161 | 0.195 | 0.230 | 0.291 | 0.355 | 0.257 | 0.247 | 0.165 | 0.277 | 0.266 | 0.206 | ||
Time(s) | 31.08 | 15.75 | 18.8 | 29.84 | 2.22 | 46.39 | 26.07 | 28.99 | 3.10 | 29.42 | 44.94 | |
RTV-SIFT with POED (N = 8) | CMN | 94 | 127 | 69 | 108 | 47 | 126 | 96 | 23 | 44 | 58 | 87 |
CMR(%) | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 54.76 | 95.65 | 100 | 100 | |
RMSE | 0.64 | 0.75 | 0.80 | 0.68 | 2.27 | 0.75 | 0.69 | 3.89 | 1.91 | 0.77 | 3.12 | |
0.258 | 0.272 | 0.30 | 0.416 | 0.35 | 0.274 | 0.266 | 0.237 | 0.296 | 0.312 | 0.328 | ||
Time(s) | 32.43 | 17.29 | 20.35 | 31.59 | 2.41 | 49.45 | 28.81 | 28.11 | 3.10 | 30.59 | 48.62 |
RTV-Harris Space Construction | Keypoints Detection | EPCE Feature Description | Corse-to-Fine Match | Final Time |
---|---|---|---|---|
5.82 s | 0.38 s | 18.39 s | 2.02 s | 26.61 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pang, S.; Ge, J.; Hu, L.; Guo, K.; Zheng, Y.; Zheng, C.; Zhang, W.; Liang, J. RTV-SIFT: Harnessing Structure Information for Robust Optical and SAR Image Registration. Remote Sens. 2023, 15, 4476. https://doi.org/10.3390/rs15184476
Pang S, Ge J, Hu L, Guo K, Zheng Y, Zheng C, Zhang W, Liang J. RTV-SIFT: Harnessing Structure Information for Robust Optical and SAR Image Registration. Remote Sensing. 2023; 15(18):4476. https://doi.org/10.3390/rs15184476
Chicago/Turabian StylePang, Siqi, Junyao Ge, Lei Hu, Kaitai Guo, Yang Zheng, Changli Zheng, Wei Zhang, and Jimin Liang. 2023. "RTV-SIFT: Harnessing Structure Information for Robust Optical and SAR Image Registration" Remote Sensing 15, no. 18: 4476. https://doi.org/10.3390/rs15184476
APA StylePang, S., Ge, J., Hu, L., Guo, K., Zheng, Y., Zheng, C., Zhang, W., & Liang, J. (2023). RTV-SIFT: Harnessing Structure Information for Robust Optical and SAR Image Registration. Remote Sensing, 15(18), 4476. https://doi.org/10.3390/rs15184476