Studying Tropical Dry Forests Secondary Succession (2005–2021) Using Two Different LiDAR Systems
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
3.1. LVIS Data and RIEGL LMS-Q680i Data
3.2. Description of Workflow
3.3. Pseudo-Waveform Synthesis (RIEGL to LVIS)
3.3.1. Tree Height from Waveform
3.3.2. Waveform Metrics
3.3.3. Age Group and Succession Stages
4. Results
4.1. Change in Relative Height Traits and Canopy Height
4.2. Comparison of Waveform Centroid Metrics
4.3. Comparing Waveform Line-Shape Based Metrics
4.4. Comparison of Waveform Centroid Metrics
5. Discussion
5.1. Mapping Forest with Time Series by LiDAR
5.2. Seasonal Impact of the TDFs Comparison
6. Conclusions
- With 16 years of growth, TDFs revealed notable variations in height-related profiles, particularly from RH50-, RH100-, and waveform-produced canopy height. Line- and shape-based waveform metrics recorded all changes in the TDFs during the 16 years of growth. Cy and RG increased during forest growth, and Cy showed a positive relationship, particularly in the 2021 wet season results. Cx is shown to have relatively decreased because the ground returns are lower when the canopy density increases and the canopy height increases.
- Intermediate (2005) and late1 (2021) stage trees contributed to the main canopy height with the largest number of trees. By 2021, it is rare to notice early-stage forests in TDFs using LiDAR.
- The wet and dry seasons in TDFs drive significant changes in the waveform, especially in relation to the Canopy Height and RG. Thus, the same seasonal data introduces fewer influencers in the result, which means that the same season data results are more comparable.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marín, G.C.; Nygård, R.; Rivas, B.G.; Oden, P.C. Stand dynamics and basal area change in a tropical dry forest reserve in Nicaragua. For. Ecol. Manag. 2005, 208, 63–75. [Google Scholar] [CrossRef]
- Siyum, Z.G. Tropical dry forest dynamics in the context of climate change: Syntheses of drivers, gaps, and management perspectives. Ecol. Process. 2020, 9, 25. [Google Scholar] [CrossRef]
- Kennard, D.K. Secondary Forest succession in a tropical dry forest: Patterns of development across a 50-year chronosequence in lowland Bolivia. J. Trop. Ecol. 2002, 18, 53–66. [Google Scholar] [CrossRef]
- Li, W.; Cao, S.; Campos-Vargas, C.; Sanchez-Azofeifa, A. Identifying tropical dry forests extent and succession via the use of machine learning techniques. Int. J. Appl. Earth Obs. Geoinf. 2017, 63, 196–205. [Google Scholar] [CrossRef]
- Castillo-Núñez, M.; Sánchez-Azofeifa, G.A.; Croitoru, A.; Rivard, B.; Calvo-Alvarado, J.; Dubayah, R.O. Delineation of secondary succession mechanisms for tropical dry forests using LiDAR. Remote Sens. Environ. 2011, 115, 2217–2231. [Google Scholar] [CrossRef]
- Martinuzzi, S.; Gould, W.A.; Vierling, L.A.; Hudak, A.T.; Nelson, R.F.; Evans, J.S. Quantifying Tropical Dry Forest Type and Succession: Substantial Improvement with LiDAR. Biotropica 2013, 45, 135–146. [Google Scholar] [CrossRef]
- Gu, Z.; Cao, S.; Sanchez-Azofeifa, G.A. Using LiDAR waveform metrics to describe and identify successional stages of tropical dry forests. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 482–492. [Google Scholar] [CrossRef]
- Gillespie, T.W.; Saatchi, S.; Pau, S.; Bohlman, S.; Giorgi, A.P.; Lewis, S. Towards quantifying tropical tree species richness in 500 tropical forests. Int. J. Remote Sens. 2009, 30, 1629–1634. [Google Scholar] [CrossRef]
- Chitale, V.S.; Behera, M.D.; Roy, P.S. Deciphering plant richness using satellite remote sensing: A study from three biodiversity hotspots. Biodivers. Conserv. 2019, 28, 2183–2196. [Google Scholar] [CrossRef]
- Ghulam, A.; Porton, I.; Freeman, K. Detecting subcanopy invasive plant species in tropical rainforest by integrating optical and microwave (InSAR/PolInSAR) remote sensing data, and a decision tree algorithm. ISPRS J. Photogramm. Remote Sens. 2014, 88, 174–192. [Google Scholar] [CrossRef]
- Solberg, S.; Hansen, E.H.; Gobakken, T.; Naessset, E.; Zahabu, E. Biomass and InSAR height relationship in a dense tropical forest. Remote Sens. Environ. 2017, 192, 166–175. [Google Scholar] [CrossRef]
- Castillo, M.; Rivard, B.; Sánchez-Azofeifa, A.; Calvo-Alvarado, J.; Dubayah, R. LIDAR remote sensing for secondary Tropical Dry Forest identification. Remote Sens. Environ. 2012, 121, 132–143. [Google Scholar] [CrossRef]
- Park, H.; Turner, R.; Lim, S.; Trinder, J.; Moore, D. Analysis of pine tree height estimation using full waveform lidar. In Proceedings of the 34th International Symposium on Remote Sensing of Environment—The GEOSS Era: Towards Operational Environmental Monitoring, Sydney, Australia, 10–15 April 2011; pp. 3–6. [Google Scholar]
- Schneider, F.D.; Leiterer, R.; Morsdorf, F.; Gastellu-Etchegorry, J.P.; Lauret, N.; Pfeifer, N.; Schaepman, M.E. Simulating imaging spectrometer data: 3D forest modeling based on LiDAR and in situ data. Remote Sens. Environ. 2014, 152, 235–250. [Google Scholar] [CrossRef]
- Pirotti, F. Analysis of full-waveform LiDAR data for forestry applications: A review of investigations and methods. iForest-Biogeosciences For. 2011, 4, 100–106. [Google Scholar] [CrossRef]
- Stan, K.; Sanchez-Azofeifa, A. Tropical dry forest diversity, climatic response, and resilience in a changing climate. Forests 2019, 10, 443. [Google Scholar] [CrossRef]
- Sánchez-Azofeifa, A.; Portillo-Quintero, C.; Durán, S.M. Structural effects of liana presence Structural effects of liana presence in secondary tropical dry forests using ground LiDAR. Biogeosciences Discuss 2015, 12, 17153–17175. [Google Scholar]
- Janzen, D.H. Costa Rica’s Area de Conservación Guanacaste: A long march to survival through non-damaging biodevelopment. Biodiversity 2000, 1, 7–20. [Google Scholar] [CrossRef]
- Zhao, G.; Sanchez-Azofeifa, A.; Laakso, K.; Sun, C.; Fei, L. Hyperspectral and Full-Waveform LiDAR Improve Mapping of Tropical Dry Forest’s Successional Stages. Remote Sens. 2021, 13, 3830. [Google Scholar] [CrossRef]
- Phillips, J.D.; Šamonil, P.; Pawlik, Ł.; Trochta, J.; Danêk, P. Domination of hillslope denudation by tree uprooting in an old-growth forest. Geomorphology 2017, 276, 27–36. [Google Scholar] [CrossRef]
- Allen, W. Green Phoenix: Restoring the Tropical Forests of Guanacaste, Costa Rica; Oxford Univiversity Press: New York, NY, USA, 2001; p. 310. [Google Scholar]
- Meléndez Chaverri, C. Viajeros por Guanacaste Microform: [relatos]; Ministerio de Cultura: Juventud y Deportes, Departamento de Publicaciones: San José, Costa Rica, 1974. [Google Scholar]
- Sánchez-Azofeifa, G.A.; Quesada, M.; Rodríguez, J.P.; Nassar, J.M.; Stoner, K.E.; Castillo, A.; Garvin, T.; Zent, E.L.; Calvo-Alvarado, J.C.; Kalacska, M.E.R.; et al. Research priorities for neotropical dry forests. Biotropica 2005, 37, 477–485. [Google Scholar]
- Arroyo-Mora, J.P.; Sánchez-Azofeifa, G.A.; Kalacska, M.E.; Rivard, B.; Calvo-Alvarado, J.C.; Janzen, D.H. Secondary Forest detection in a neotropical dry forest landscape using Landsat 7 ETM+ and IKONOS imagery. Biotropica 2005, 37, 497–507. [Google Scholar] [CrossRef]
- Roberts, D.A.; Nelson, B.W.; Adams, J.B.; Palmer, F. Spectral changes with leaf aging in Amazon caatinga. Trees Struct. Funct. 1998, 12, 315–325. [Google Scholar] [CrossRef]
- Harding, D.J.; Carabajal, C.C. ICESat waveform measurements of within-footprint topographic relief and vegetation vertical structure. Geophys. Res. Lett. 2005, 32, 1–4. [Google Scholar] [CrossRef]
- Muss, J.D.; Aguilar-Amuchastegui, N.; Mladenoff, D.J.; Henebry, G.M. Analysis of waveform lidar data using shape-based metrics. IEEE Geosci. Remote Sens. Lett. 2013, 10, 106–110. [Google Scholar] [CrossRef]
- Quesada, M.; Sanchez-Azofeifa, G.A.; Alvarez-Añorve, M.; Stoner, K.E.; Avila-Cabadilla, L.; Calvo-Alvarado, J.; Castillo, A.; Espírito-Santo, M.M.; Fagundes, M.; Fernandes, G.W.; et al. Succession, and management of tropical dry forests in the Americas: Review and new perspectives. For. Ecol. Manag. 2009, 258, 1014–1024. [Google Scholar] [CrossRef]
- Mora, F.; Martínez-Ramos, M.; Ibarra-Manríquez, G.; Pérez-Jiménez, A.; Trilleras, J.; Balvanera, P. Testing Chronosequences through Dynamic Approaches: Time and Site Effects on Tropical Dry Forest Succession. Biotropica 2015, 47, 38–48. [Google Scholar] [CrossRef]
- Duan, M.; Bax, C.; Laakso, K.; Mashhadi, N.; Mattie, N.; Sanchez-Azofeifa, A. Characterizing Transitions between Successional Stages in a Tropical Dry Forest Using LiDAR Techniques. Remote Sens. 2023, 15, 479. [Google Scholar] [CrossRef]
- Nath, C.D.; Dattaraja, H.S.; Suresh, H.S.; Joshi, N.V.; Sukumar, R. Patterns of tree growth in relation to environmental variabilityin the tropical dry deciduous forest at Mudumalai, southern India. J. Biosci. 2006, 31, 651–669. [Google Scholar] [CrossRef]
- Borges, S.L.; Ferreira, M.C.; Walter, B.M.T.; dos Santos, A.C.; Scariot, A.O.; Schmidt, I.B. Secondary succession in swamp gallery forests along 65 fallow years after shifting cultivation. For. Ecol. Manag. 2023, 529, 120671. [Google Scholar] [CrossRef]
- Vieira, D.L.M.; Scariot, A. Principles of natural regeneration of tropical dry forests for restoration. Restor. Ecol. 2006, 55314, 11–20. [Google Scholar] [CrossRef]
- Poorter, L.; Rozendaal, D.M.; Bongers, F.; de Almeida-Cortez, J.S.; Almeyda Zambrano, A.M.; Álvarez, F.S.; Andrade, J.L.; Villa, L.F.A.; Balvanera, P.; Becknell, J.M.; et al. Wet and dry tropical forests show opposite successional pathways in wood density but converge over time. Nat. Ecol. Evol. 2019, 3, 928–934. [Google Scholar] [CrossRef] [PubMed]
- Reitberger, J.; Krzystek, P.; Stilla, U. Analysis of full waveform LIDAR data for the classification of deciduous and coniferous trees. Int. J. Remote Sens. 2008, 29, 1407–1431. [Google Scholar] [CrossRef]
- Silva, C.A.; Saatchi, S.; Garcia, M.; Labriere, N.; Klauberg, C.; Ferraz, A.; Meyer, V.; Jeffery, K.J.; Abernethy, K.; White, L.; et al. Comparison of Small- and Large-Footprint Lidar Characterization of Tropical Forest Aboveground Structure and Biomass:A Case Study From Central Gabon. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 3512–3526. [Google Scholar] [CrossRef]
Footprint Size | Wavelength | Accuracy | Operating Altitude | Pulse Firing Rate | Operation Date | |
---|---|---|---|---|---|---|
LVIS | 20 m | 1064 nm | ≤2 m | <10 km | 100–500 Hz | 1995–present |
RIEGL LMS-Q680I | 1 m | 1550 nm | ≤20 mm | 1–1.6 km | 80k–240 kHz | 2008–present |
Acronym | Source | Unit | Description |
---|---|---|---|
RH25 | NCE | meter | Relative Height related to at which 25% of the waveform energy occurs. |
RH50 | NCE | meter | Relative Height related to at which 50% of the waveform energy occurs. |
RH75 | NCE | meter | Relative Height related to at which 75% of the waveform energy occurs. |
RH100 | NCE | meter | Relative Height related to at which 100% of the waveform energy occurs. |
Cx | WAF | waveform amplitude | The x coordinate of the waveform centroid (under the waveform coordinate system) |
Cy | WAF | meter | The y coordinate of the waveform centroid (under the waveform coordinate system) |
RG | WAF | null | The second moment of the waveform or the radius of gyration is the root mean square of the sum of the two-dimension distances that all points on the waveform are from its centroid (under the waveform coordinate system) |
Annual rate | null | %/year | The annual rate is calculated by the increased value divided by the total years, then divided by the total increased amount. In the thesis, the time period is constant at 16 years. |
Year | 2005 (LVIS) | 2021 (RIEGL) | ||||
---|---|---|---|---|---|---|
Stage | Early | Intermediate | Late | Intermediate | Late1 | Late2 |
RH25 (m) | 0.40 ± 0.38 | 1.25 ± 1.43 | 2.71 ± 2.39 | 4.01 ± 2.10 | 6.15 ± 2.37 | 8.43 ± 3.34 |
RH50 (m) | 1.32 ± 1.20 | 4.21 ± 2.82 | 6.42 ± 3.88 | 6.25 ± 2.59 | 9.30 ± 2.74 | 12.16 ± 3.60 |
RH75 (m) | 3.39 ± 2.06 | 8.21 ± 3.31 | 10.11 ± 4.56 | 8.18 ± 2.83 | 11.89 ± 2.87 | 15.13 ± 3.66 |
RH100 (m) | 9.39 ± 3.21 | 15.49 ± 3.90 | 17.11 ± 5.91 | 13.16 ± 3.10 | 17.52 ± 3.08 | 21.28 ± 3.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Sanchez-Azofeifa, A.; Bax, C. Studying Tropical Dry Forests Secondary Succession (2005–2021) Using Two Different LiDAR Systems. Remote Sens. 2023, 15, 4677. https://doi.org/10.3390/rs15194677
Liu C, Sanchez-Azofeifa A, Bax C. Studying Tropical Dry Forests Secondary Succession (2005–2021) Using Two Different LiDAR Systems. Remote Sensing. 2023; 15(19):4677. https://doi.org/10.3390/rs15194677
Chicago/Turabian StyleLiu, Chenzherui, Arturo Sanchez-Azofeifa, and Connor Bax. 2023. "Studying Tropical Dry Forests Secondary Succession (2005–2021) Using Two Different LiDAR Systems" Remote Sensing 15, no. 19: 4677. https://doi.org/10.3390/rs15194677
APA StyleLiu, C., Sanchez-Azofeifa, A., & Bax, C. (2023). Studying Tropical Dry Forests Secondary Succession (2005–2021) Using Two Different LiDAR Systems. Remote Sensing, 15(19), 4677. https://doi.org/10.3390/rs15194677