Sudden Track Turning of Typhoon Prapiroon (2012) Enhanced the Upper Ocean Response
Abstract
:1. Introduction
2. Materials and Methods
2.1. Typhoon Prapiroon (2012)
2.2. Observations
2.2.1. Sea Surface Temperature
2.2.2. Sea Surface Height Anomaly
2.2.3. Chlorophyll-a
2.2.4. Argo Profiles
2.3. Models
2.3.1. 3DPWP Model
2.3.2. Wind Field Construction
2.4. The Wind Energy Input to the Upper Ocean
3. Observed Oceanic Responses
3.1. Sea Surface Temperature Response
3.2. Response of the Sea Surface Height Anomaly
3.3. Response of the Chlorophyll-a Concentration
3.4. Maximum Sea Surface Responses by Prapiroon
3.5. Subsurface Response
4. 3DPWP Experiments
4.1. Model Verification
4.2. Sensitivity Experiments
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Emanuel, K.A. Tropical cyclones. Annu. Rev. Earth Planet. Sci. 2003, 31, 75–104. [Google Scholar] [CrossRef]
- Guan, S.D.; Li, S.Q.; Hou, Y.J.; Hu, P.; Liu, Z.; Feng, J.Q. Increasing threat of landfalling typhoons in the western North Pacific between 1974 and 2013. Int. J. Appl. Earth Obs. 2018, 68, 279–286. [Google Scholar] [CrossRef]
- Lin, I.I.; Liu, W.T.; Wu, C.C.; Wong, G.T.F.; Hu, C.; Chen, Z.; Liang, W.D.; Yang, Y.; Liu, K.K. New evidence for enhanced ocean primary production triggered by tropical cyclone. Geophys. Res. Lett. 2003, 30, 1718. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Yang, Y.J.; Xian, T.; Lu, Z.M.; Fu, Y.F. Strong enhancement of chlorophyll a concentration by a weak typhoon. Mar. Ecol. Prog. Ser. 2010, 404, 39–50. [Google Scholar] [CrossRef] [Green Version]
- Emanuel, K.A. Thermodynamic control of hurricane intensity. Nature 1999, 401, 665–669. [Google Scholar] [CrossRef]
- Lin, I.I.; Black, P.G.; Price, J.F.; Yang, C.Y.; Chen, S.S.; Lien, C.C.; Harr, P.; Chi, N.H.; Wu, C.C.; D’Asaro, E.A. An ocean coupling potential intensity index for tropical cyclones. Geophys. Res. Lett. 2013, 40, 1878–1882. [Google Scholar] [CrossRef]
- Price, J.F. Upper ocean response to a hurricane. J. Phys. Oceanogr. 1981, 11, 153–175. [Google Scholar] [CrossRef]
- Pun, I.F.; Chang, Y.T.; Lin, I.I.; Tang, T.Y.; Lien, R.C. Typhoon-ocean interaction in the Western North Pacific: Part 2. Oceanography 2011, 24, 32–41. [Google Scholar] [CrossRef]
- D’Asaro, E.A.; Black, P.G.; Centurioni, L.R.; Chang, Y.T.; Chen, S.S.; Foster, R.C.; Graber, H.C.; Harr, P.; Hormann, V.; Lien, R.C.; et al. Impact of typhoons on the ocean in the Pacific. Bull. Amer. Meteor. Soc. 2014, 95, 1405–1418. [Google Scholar] [CrossRef]
- Price, J.F.; Sanford, T.B.; Forristall, G.Z. Forced stage response to a moving hurricane. J. Phys. Oceanogr. 1994, 24, 233–260. [Google Scholar] [CrossRef]
- D’Asaro, E.A. The ocean boundary layer below Hurricane Dennis. J. Phys. Oceanogr. 2003, 33, 561–579. [Google Scholar] [CrossRef]
- D’Asaro, E.A.; Sanford, T.B.; Niiler, P.P.; Terrill, E.J. Cold wake of hurricane Frances. Geophys. Res. Lett. 2007, 34, L15609. [Google Scholar] [CrossRef]
- Guan, S.D.; Zhao, W.; Sun, L.; Zhou, C.; Liu, Z.; Hong, X.; Zhang, Y.H.; Tian, J.W.; Hou, Y.J. Tropical cyclone-induced sea surface cooling over the Yellow Sea and Bohai Sea in the 2019 Pacific typhoon season. J. Marine Syst. 2021, 217, 103509. [Google Scholar] [CrossRef]
- Jacob, S.D.; Shay, L.K.; Mariano, A.J.; Black, P.G. The 3D oceanic mixed layer response to Hurricane Gilbert. J. Phys. Oceanogr. 2000, 30, 1407–1429. [Google Scholar] [CrossRef]
- Huang, P.S.; Sanford, T.B.; Imberger, J. Heat and turbulent kinetic energy budgets for surface layer cooling induced by the passage of Hurricane Frances (2004). J. Geophys. Res. Oceans 2009, 114, C12023. [Google Scholar] [CrossRef]
- Chiang, T.L.; Wu, C.R.; Oey, L.Y. Typhoon Kai-Tak: An ocean’s perfect storm. J. Phys. Oceanogr. 2011, 41, 221–233. [Google Scholar] [CrossRef]
- Guan, S.D.; Zhao, W.; Huthnance, J.; Tian, J.W.; Wang, J.H. Observed upper ocean response to typhoon Megi (2010) in the Northern South China Sea. J. Geophys. Res. Oceans 2014, 119, 3134–3157. [Google Scholar] [CrossRef] [Green Version]
- Cione, J.J.; Uhlhorn, E.W. Sea surface temperature variability in hurricanes: Implications with respect to intensity change. Mon. Wea. Rev. 2003, 131, 1783–1796. [Google Scholar] [CrossRef] [Green Version]
- Jacob, S.D.; Shay, L.K. The role of oceanic mesoscale features on the tropical cyclone-induced mixed layer response: A case study. J. Phys. Oceanogr. 2003, 33, 649–676. [Google Scholar] [CrossRef]
- Lloyd, I.D.; Vecchi, G.A. Observational evidence for oceanic controls on hurricane intensity. J. Climate 2011, 24, 1138–1153. [Google Scholar] [CrossRef]
- Emanuel, K.A. Contribution of tropical cyclones to meridional heat transport by the oceans. J. Geophys. Res. 2001, 106, 14771–14781. [Google Scholar] [CrossRef]
- Sriver, R.L.; Huber, M. Observational evidence for an ocean heat pump induced by tropical cyclones. Nature 2007, 447, 577–580. [Google Scholar] [CrossRef] [PubMed]
- Jansen, M.; Ferrari, R. Impact of the latitudinal distribution of tropical cyclones on ocean heat transport. Geophys. Res. Lett. 2009, 36, L06604. [Google Scholar] [CrossRef] [Green Version]
- Mei, W.; Pasquero, C. Spatial and temporal characterization of sea surface temperature response to tropical cyclones. J. Clim. 2013, 26, 3745–3765. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Xu, F.H.; Zhang, J.S.; Lin, Y.L. Decrease of annually accumulated tropical cyclone-induced sea surface cooling and diapycnal mixing in recent decades. Geophys. Res. Lett. 2022, 49, e2022GL099290. [Google Scholar] [CrossRef]
- Chai, F.; Wang, Y.; Xing, X.; Yan, Y.; Xue, H.; Wells, M.; Boss, E. A limited effect of sub-tropical typhoons on phytoplankton dynamics. Biogeosciences 2021, 18, 849–859. [Google Scholar] [CrossRef]
- Sun, L.; Li, Y.X.; Yang, Y.J.; Wu, Q.; Chen, X.T.; Li, Q.Y.; Li, Y.B.; Xian, T. Effects of super typhoons on cyclonic ocean eddies in the western North Pacific: A satellite data-based evaluation between 2000 and 2008. J. Geophys. Res. Oceans 2014, 119, 5585–5598. [Google Scholar] [CrossRef]
- Guan, S.D.; Liu, Z.; Song, J.B.; Hou, Y.J.; Feng, L.Q. Upper ocean response to Super Typhoon Tembin (2012) explored using multiplatform satellites and Argo float observations. Int. J. Remote Sens. 2017, 38, 5150–5167. [Google Scholar] [CrossRef]
- Lin, I.I.; Wu, C.C.; Pun, I.F.; Ko, D.S. Upper-ocean thermal structure and the Western North Pacific category 5 typhoons. Part I: Ocean features and the category 5 typhoons’ intensification. Mon. Wea. Rev. 2008, 136, 3288–3306. [Google Scholar] [CrossRef] [Green Version]
- Lin, I.I.; Pun, I.F.; Wu, C.C. Upper-ocean thermal structure and the Western North Pacific category 5 typhoons. Part II: Dependence on translation speed. Mon. Wea. Rev. 2009, 137, 3744–3757. [Google Scholar] [CrossRef]
- Dare, R.A.; McBride, J.L. Sea surface temperature response to tropical cyclones. Mon. Wea. Rev. 2011, 139, 3798–3808. [Google Scholar] [CrossRef]
- Mei, W.; Pasquero, C.; Primeau, F. The effect of translation speed upon the intensity of tropical cyclones over the tropical ocean. Geophys. Res. Lett. 2012, 39, L07801. [Google Scholar] [CrossRef] [Green Version]
- Vincent, E.M.; Lengaigne, M.; Madec, G.; Vialard, J.; Masson, S.; Jourdain, N.C.; Menkes, C.E.; Jullien, S. Processes setting the characteristics of sea surface cooling induced by tropical cyclones. J. Geophys. Res. Oceans 2012, 117, C02020. [Google Scholar] [CrossRef] [Green Version]
- Pun, I.F.; Lin, I.I.; Lien, C.C.; Wu, C.C. Influence of the size of supertyphoon Megi (2010) on SST cooling. Mon. Wea. Rev. 2018, 146, 661–677. [Google Scholar] [CrossRef]
- Vincent, E.M.; Lengaigne, M.; Vialard, J.; Madec, G.; Jourdain, N.C.; Masson, S. Assessing the oceanic control on the amplitude of sea surface cooling induced by tropical cyclones. J. Geophys. Res. 2012, 117, C05023. [Google Scholar] [CrossRef] [Green Version]
- Shay, L.K.; Goni, G.J.; Black, P.G. Effects of a warm oceanic feature on Hurricane Opal. Mon. Wea. Rev. 2000, 128, 1366–1383. [Google Scholar] [CrossRef]
- Lin, I.I.; Wu, C.C.; Emanuel, K.A.; Lee, I.H.; Wu, C.R.; Pun, I.F. The interaction of Supertyphoon Maemi with a warm ocean eddy. Mon. Wea. Rev. 2005, 133, 2635–2649. [Google Scholar] [CrossRef]
- Balaguru, K.; Chang, P.; Saravanan, R.; Leung, L.R.; Xu, Z.; Li, M.; Hsieh, J.S. Ocean barrier layers’ effect on tropical cyclone intensification. Proc. Natl. Acad. Sci. USA 2012, 109, 14343–14347. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Tang, D.L.; Wang, Y.Q. Comparison of phytoplankton blooms triggered by two typhoons with different intensities and translation speeds in the South China Sea. Mar. Ecol. Prog. Ser. 2008, 365, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Jin, W.F.; Liang, C.J.; Hu, J.Y.; Meng, Q.C.; Lu, H.B.; Wang, Y.T.; Lin, F.L.; Chen, X.Y.; Liu, X.H. Modulation effect of mesoscale eddies on sequential typhoon-induced oceanic responses in the South China Sea. Remote Sens. 2020, 12, 3059. [Google Scholar] [CrossRef]
- George, J.E.; Gray, W.M. Tropical cyclone recurvature and nonrecurvature as related to surrounding wind-height fields. J. Appl. Meteorol. 1977, 16, 34–42. [Google Scholar] [CrossRef]
- Chan, J.C.L.; Gray, W.M.; Kidder, S.Q. Forecasting tropical cyclone turning motion from surrounding wind and temperature fields. Mon. Wea. Rev. 1980, 108, 778–792. [Google Scholar] [CrossRef]
- Holland, G.J.; Wang, Y.Q. Baroclinic dynamics of simulated tropical cyclone recurvature. J. Atmos. Sci. 1995, 52, 410–426. [Google Scholar] [CrossRef]
- Sun, Y.; Zhong, Z.; Dong, H.; Shi, J.; Hu, Y. Sensitivity of tropical cyclone track simulation over the western North Pacific to different heating/drying rates in the Betts-Miller-Janjić scheme. Mon. Weather Rev. 2015, 143, 3478–3494. [Google Scholar] [CrossRef]
- Zhang, S.J.; Chen, L.S.; Xu, X.D. The diagnoses and numerical simulation on the unusual track of Helen (9505). Chin. J. Atmos. Sci. 2005, 29, 937–946. [Google Scholar] [CrossRef]
- Grell, G.A.; Dudhia, J.; Stauffer, D. A Description of the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5) (No. NCAR/TN-398+STR); NCAR Technical Note; University Corporation for Atmospheric Research: Boulder, Co, USA, 1994; 138p. [Google Scholar] [CrossRef]
- Sun, Y.; Zhong, Z.; Lu, W.; Hu, Y.J. Why are tropical cyclone tracks over the Western North Pacific sensitive to the cumulus parameterization scheme in regional climate modeling? A case study for Megi (2010). Mon. Wea. Rev. 2014, 142, 1240–1249. [Google Scholar] [CrossRef]
- Li, J.G.; Yang, Y.J.; Wang, G.H.; Cheng, H.; Sun, L. Enhanced oceanic environmental responses and feedbacks to super typhoon Nida (2009) during the sudden-turning stage. Remote Sens. 2021, 13, 2648. [Google Scholar] [CrossRef]
- Webster, P.J.; Holland, G.J.; Curry, J.A.; Chang, H.R. Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 2005, 309, 1844–1846. [Google Scholar] [CrossRef] [Green Version]
- Wentz, F.J.; Gentemann, C.; Smith, D.; Chelton, D. Satellite measurements of sea surface temperature through clouds. Science 2000, 288, 847–850. [Google Scholar] [CrossRef]
- Pun, I.F.; Knaff, J.A.; Sampson, C.R. Uncertainty of tropical cyclone wind radii on sea surface temperature cooling. J. Geophys. Res. Atmos. 2021, 126, e2021JD034857. [Google Scholar] [CrossRef]
- Holland, G.J. An analytic model of the wind and pressure profiles in hurricanes. Mon. Wea. Rev. 1980, 108, 1212–1218. [Google Scholar] [CrossRef]
- Jelesnianski, C.P. A numerical calculation of storm tides induced by a tropical storm impinging on a continental shelf. Mon. Wea. Rev. 1965, 93, 343–358. [Google Scholar] [CrossRef]
- Emanuel, K.A. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 2005, 436, 686. [Google Scholar] [CrossRef] [PubMed]
- Reul, N.; Quilfen, Y.; Chapron, B.; Fournier, S.; Kudryavtsev, V.; Sabia, R. Multisensor observations of the Amazon-Orinoco river plume interactions with hurricanes. J. Geophys. Res. Oceans 2014, 119, 8271–8295. [Google Scholar] [CrossRef] [Green Version]
- Powell, M.D.; Vickery, P.J.; Relnhold, T.A. Reduced drag coefficient for high wind speeds in tropical cyclones. Nature 2003, 422, 279–283. [Google Scholar] [CrossRef]
- Chelton, D.B.; Schlax, M.G.; Samelson, R.M. Global observations of nonlinear mesoscale eddies. Prog. Oceanogr. 2011, 91, 167–216. [Google Scholar] [CrossRef]
Experiments | Sudden Turning (ST) | Average Uh (m s−1) |
---|---|---|
A1_Ctrl | With ST | 2.0 |
A1_NoSTs | No ST | 2.0 |
A1_NoSTf | No ST | 5.0 |
A2_Ctrl | With ST | 1.8 |
A2_NoSTs | No ST | 1.8 |
A2_NoSTf | No ST | 5.0 |
Experiments | Maximum SST Cooling (°C) | Maximum SSS Salinification (psu) | Turning Contribution (%) |
---|---|---|---|
A1_Ctrl | 5.29 | 0.46 | 38.4 (SST) 23.5 (SSS) |
A1_NoSTs | 3.98 (24.8% *) | 0.42 (8.7%) | |
A1_NoSTf | 1.88 (64.5%) | 0.29 (37.0%) | |
A2_Ctrl | 4.94 | 0.46 | 46.8 (SST) 28.0 (SSS) |
A2_NoSTs | 3.17 (35.8%) | 0.39 (15.2%) | |
A2_NoSTf | 1.16 (76.5%) | 0.21 (54.3%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Liu, Y.; Guan, S.; Wang, Q.; Zhao, W.; Tian, J. Sudden Track Turning of Typhoon Prapiroon (2012) Enhanced the Upper Ocean Response. Remote Sens. 2023, 15, 302. https://doi.org/10.3390/rs15020302
Zhang Y, Liu Y, Guan S, Wang Q, Zhao W, Tian J. Sudden Track Turning of Typhoon Prapiroon (2012) Enhanced the Upper Ocean Response. Remote Sensing. 2023; 15(2):302. https://doi.org/10.3390/rs15020302
Chicago/Turabian StyleZhang, Yihan, Yuhao Liu, Shoude Guan, Qian Wang, Wei Zhao, and Jiwei Tian. 2023. "Sudden Track Turning of Typhoon Prapiroon (2012) Enhanced the Upper Ocean Response" Remote Sensing 15, no. 2: 302. https://doi.org/10.3390/rs15020302
APA StyleZhang, Y., Liu, Y., Guan, S., Wang, Q., Zhao, W., & Tian, J. (2023). Sudden Track Turning of Typhoon Prapiroon (2012) Enhanced the Upper Ocean Response. Remote Sensing, 15(2), 302. https://doi.org/10.3390/rs15020302