Evaluation of CFOSAT Wave Height Data with In Situ Observations in the South China Sea
Abstract
:1. Introduction
2. Data and Methods
2.1. CFOSAT Wave Data
2.2. In Situ Observations
2.3. ERA5 Reanalysis Data
2.4. Matching Method of CFOSAT Data and In Situ Observations
2.5. The Separation Method of Wind Sea and Swells
3. Results and Discussion
3.1. General Statistics
3.2. Contamination of Rain and Land
3.3. Effects of Different Sea States
3.4. Seasonal Variations Associated with Topographical Influence
3.4.1. Sites in Relatively Open Areas
3.4.2. Sites in Nearshore Areas
3.5. Coastal Shallow Water Effects besides Land Shelter
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tison, C.; Hauser, D. SWIM Products Users Guide: Product Description and Algorithm Theoretical Baseline Description. 2018. Available online: https://www.aviso.altimetry.fr/fileadmin/documents/data/tools/SWIM_ProductUserGuide.pdf (accessed on 2 February 2023).
- Hauser, D.; Tourain, C.; Hermozo, L. Report on the SWIM cal/val at the End of the Verification Phase. 2019. Available online: https://www.aviso.altimetry.fr/fileadmin/user_upload/SWIM_CalvalReport_compressed.pdf (accessed on 2 February 2023).
- Hauser, D.; Tourain, C.; Hermozo, L.; Alraddawi, D.; Aouf, L.; Chapron, B.; Dalphinet, A.; Delaye, L.; Dalila, M.; Dormy, E.; et al. New observations from the SWIM radar on-board CFOSAT: Instrument validation and ocean wave measurement assessment. IEEE Trans. Geosci. Remote 2021, 59, 5–26. [Google Scholar] [CrossRef]
- Wang, J.K.; Aouf, L.; Dalphinet, A.; Li, B.X.; Xu, Y.; Liu, J.Q. Acquisition of the significant wave height from CFOSAT SWIM spectra through a deep neural network and its impact on wave model assimilation. J. Geophys. Res. Oceans 2021, 126, e2020JC016885. [Google Scholar] [CrossRef]
- Wang, J.K.; Aouf, L.; Dalphinet, A.; Zhang, Y.G.; Liu, J.Q. The wide swath significant wave height: An innovative reconstruction of significant wave heights from CFOSAT’s SWIM and scatterometer using deep learning. Geophys. Res. Lett. 2021, 48, e2020GL091276. [Google Scholar] [CrossRef]
- Jiang, H.; Song, Y.; Mironov, A.; Yang, Z.; Xu, Y.; Liu, J. Accurate mean wave period from SWIM instrument on-board CFOSAT. Remote Sens. Environ. 2022, 280, 113149. [Google Scholar] [CrossRef]
- Li, B.; Li, J.; Liu, J.; Tang, S.; Chen, W.; Shi, P.; Liu, Y. Calibration experiments of CFOSAT wavelength in the Southern South China Sea by artificial neural networks. Remote Sens. 2022, 14, 773. [Google Scholar] [CrossRef]
- Xu, Y.; Hauser, D.; Liu, J.; Jianyang, S.; Yan, C.; Chen, S.; Meng, J.; Fan, C.; Liu, M.; Chen, P. Statistical comparison of ocean wave directional spectra derived from SWIM/CFOSAT satellite observations and from buoy observations. IEEE Trans. Geosci. Remote 2022, 60, 5117520. [Google Scholar] [CrossRef]
- Jiang, H.; Mironov, A.; Ren, L.; Babanin, A.; Wang, J.; Mu, L. Validation of wave spectral partitions from SWIM instrument on-board CFOSAT against in situ data. IEEE Trans. Geosci. Remote 2022, 60, 4204013. [Google Scholar] [CrossRef]
- Hegermiller, C.A.; Antolinez, J.; Rueda, A.; Camus, P.; Perez, J.; Erikson, L.H.; Barnard, P.L.; Mendez, F.J. A multimodal wave spectrum-based approach for statistical downscaling of local wave climate. J. Phys. Oceanogr. 2017, 47, 375–386. [Google Scholar] [CrossRef]
- Jiang, H.; Mu, L. Wave climate from spectra and its connections with local and remote wind climate. J. Phys. Oceanogr. 2019, 49, 543–559. [Google Scholar] [CrossRef]
- Wyrtki, K. Physical Oceanography of the Southeast Asian Waters: Scientific Results of Marine Investigations of the South China Sea and the Gulf of Thailand, NAGA Rep; Scripps Institution of Oceanography: La Jolla, CA, USA, 1961; Volume 2, p. 195. [Google Scholar]
- Sun, Z.; Zhang, H.; Liu, X.; Ding, J.; Cai, Z. Wave energy assessment of the Xisha Group Islands zone for the period 2010–2019. Energy 2021, 220, 119721. [Google Scholar] [CrossRef]
- Su, H.; Wei, C.; Jiang, S.; Li, P.; Zhai, F. Revisiting the seasonal wave height variability in the South China Sea with merged satellite altimetry observations. Acta Oceanol. Sin. 2017, 36, 38–50. [Google Scholar] [CrossRef]
- Jiang, H.; Babanin, A.V.; Liu, Q.; Stopa, J.E.; Chapron, B.; Chen, G. Can contemporary satellites estimate swell dissipation rate? Remote Sens. Environ. 2017, 201, 24–33. [Google Scholar] [CrossRef]
- Jiang, H.; Chen, G. A Global View on the Swell and Wind Sea Climate by the Jason-1 Mission: A Revisit. J. Atmos. Oceanic Technol. 2013, 30, 1833–1841. [Google Scholar] [CrossRef]
- Qian, C.; Jiang, H.; Wang, X.; Chen, G. Climatology of wind-seas and swells in the China Seas from wave hindcast. J. Ocean Univ. China 2020, 19, 90–100. [Google Scholar] [CrossRef]
- Tolman, H. Treatment of unresolved islands and ice in wind wave models. Ocean Model. 2003, 5, 219–231. [Google Scholar] [CrossRef]
- Mao, K.; Chen, X.; Wang, L. Research progress of spectral wave mode of archipelago or reef ocean region. Acta Oceanol. Sin. 2014, 36, 161–169. (In Chinese) [Google Scholar] [CrossRef]
- Tang, S.; Chu, X.; Jia, Y.; Li, J.; Liu, Y.; Chen, Q.; Li, B.; Liu, J.; Chen, W. An appraisal of CFOSAT wave spectrometer products in the South China Sea. Earth Space Sci. 2022, 9, e2021EA002055. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, J.; Xie, L.; Sun, C.; Liu, J.; Li, J.; Xian, D. China-France Oceanography Satellite (CFOSAT) simultaneously observes the typhoon-induced wind and wave fields. Acta Oceanol. Sin. 2019, 38, 158–161. [Google Scholar] [CrossRef]
- Wang, X.; Ichikawa, K. Coastal waveform retracking for Jason-2 altimeter data based on along-track echograms around the Tsushima Islands in Japan. Remote Sens. 2017, 9, 762. [Google Scholar] [CrossRef]
- Liu, J.; Lin, W.; Dong, X.; Lang, S.; Yun, R.; Zhu, D.; Zhang, K.; Sun, C.; Mu, B.; Ma, J.; et al. First results from the rotating Fan Beam Scatterometer onboard CFOSAT. IEEE Trans. Geosci. Remote 2020, 58, 8793–8806. [Google Scholar] [CrossRef]
- Li, X.; Xu, Y.; Liu, B.; Lin, W.; He, Y.; Liu, J. Validation and calibration of nadir SWH products from CFOSAT and HY-2B with satellites and in situ observations. J. Geophys. Res. Oceans 2021, 126, e2020JC016689. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Hourly Data on Single Levels from 1959 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 2018. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview (accessed on 2 February 2023).
- Monaldo, F. Expected differences between buoy and radar altimeter estimates of wind speed and significant wave height and their implications on buoy-altimeter comparisons. J. Geophys. Res. Oceans 1988, 93, 2285–2302. [Google Scholar] [CrossRef]
- Queffeulou, P. Long-term validation of wave height measurements from altimeters. Mar. Geod. 2004, 27, 495–510. [Google Scholar] [CrossRef]
- Yaakob, O.; Hashim, F.E.; Mohd Omar, K.; Md Din, A.H.; Koh, K.K. Satellite-based wave data and wave energy resource assessment for South China Sea. Renew. Energ. 2016, 88, 359–371. [Google Scholar] [CrossRef]
- Ye, H.; Li, J.; Li, B.; Liu, J.; Tang, D.; Chen, W.; Yang, H.; Zhou, F.; Zhang, R.; Wang, S.; et al. Evaluation of CFOSAT scatterometer wind data in global oceans. Remote Sens. 2021, 13, 1926. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, J. Validation of sentinel-3A/3B satellite altimetry wave heights with buoy and Jason-3 data. Sensors 2019, 19, 2914. [Google Scholar] [CrossRef]
- Dobson, E.; Monaldo, F.; Goldhirsh, J.; Wilkerson, J. Validation of Geosat altimeter-derived wind speeds and significant wave heights using buoy data. J. Geophys. Res. Oceans 1987, 92, 10719–10731. [Google Scholar] [CrossRef]
- Chen, G.; Lin, H. Technical note: Impacts of collocation window on the accuracy of altimeter/buoy wind-speed comparison-a simulation study. Int. J. Remote Sens. 2001, 22, 35–44. [Google Scholar] [CrossRef]
- Shanas, P.R.; Kumar, V.S.; Hithin, N.K. Comparison of gridded multi-mission and along-track mono-mission satellite altimetry wave heights with in situ near-shore buoy data. Ocean Eng. 2014, 83, 24–35. [Google Scholar] [CrossRef]
- Hanson, J.L.; Phillips, O.M. Automated analysis of ocean surface directional wave spectra. J. Atmos. Oceanic Technol. 2001, 18, 277–293. [Google Scholar] [CrossRef]
- Ribal, A.; Young, I.R. 33 years of globally calibrated wave height and wind speed data based on altimeter observations. Sci. Data 2019, 6, 77. [Google Scholar] [CrossRef] [PubMed]
- Dodet, G.; Piolle, J.-F.; Quilfen, Y.; Abdalla, S.; Accensi, M.; Ardhuin, F.; Ash, E.; Bidlot, J.; Gommenginger, C.; Marechal, G.; et al. The Sea State CCI dataset v1: Towards a sea state climate data record based on satellite observations. Earth Syst. Sci. Data 2020, 12, 1929–1951. [Google Scholar] [CrossRef]
- Jiang, H.; Fu, G.; Ren, L. Evaluation of coastal altimeter wave height observations using dynamic collocation. IEEE Trans. Geosci. Remote 2022, 60, 1–8. [Google Scholar] [CrossRef]
- Nencioli, F.; Quartly, G. Evaluation of Sentinel-3A wave height observations near the coast of southwest England. Remote Sens. 2019, 11, 2998. [Google Scholar] [CrossRef]
- Gomez-Enri, J.; Vignudelli, S.; Quartly, G.; Gommenginger, C.; Cipollini, P.; Challenor, P.; Benveniste, J. Modeling Envisat RA-2 waveforms in the coastal zone: Case study of calm water contamination. IEEE Geosci. Remote S. 2010, 7, 474–478. [Google Scholar] [CrossRef]
- Liang, G.; Yang, J.; Wang, J. Accuracy evaluation of CFOSAT SWIM L2 products based on NDBC buoy and Jason-3 altimeter data. Remote Sens. 2021, 13, 887. [Google Scholar] [CrossRef]
- Roblou, L.; Lamouroux, J.; Bouffard, J.; Lyard, F.; Le Hénaff, M.; Lombard, A.; Marsaleix, P.; De Mey, P.; Birol, F. Post-Processing Altimeter Data towards Coastal Applications and Integration into Coastal Models. In Coastal Altimetry; Vignudelli, S., Kostianoy, A.G., Cipollini, P., Benveniste, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 217–246. [Google Scholar] [CrossRef]
- Andersen, O.B.; Knudsen, P. The role of satellite altimetry in gravity field modelling in coastal areas. Phys. Chem. Earth Part A Solid Earth Geod. 2000, 25, 17–24. [Google Scholar] [CrossRef]
- Labroue, S.; Gaspar, P.; Dorandeu, J.; Zanifé, O.Z.; Mertz, F.; Vincent, P.; Choquet, D. Nonparametric Estimates of the Sea State Bias for the Jason-1 Radar Altimeter. Mar. Geod. 2004, 27, 453–481. [Google Scholar] [CrossRef]
Site ID | Platform | Wave Sensor | Longitude/Latitude | Depth | Observing Period | Sample Interval |
---|---|---|---|---|---|---|
ST | Mooring | AWAC | 117°E, 23.42°N | 10 m | October 2020–April 2021, June 2021–October 2022 | 0.5 h |
WS | Buoy | Triaxys wave sensor | 113.73°E, 21.7°N | 37 m | March–October 2022 | 0.5 h |
DL | Mooring | AWAC | 109°E, 18.32°N | 17 m | January–September 2020, March 2021–June 2022 | 3 h |
NS1 | Buoy | Triaxys wave sensor | 115.5°E, 10°N | 1200 m | November 2018–June 2021 * | 1 h |
NS2 | Buoy | Triaxys wave sensor | 113°E, 9.5°N | 1240 m | October 2020–October 2021 | 1 h |
ST | WS | DL | NS1 | NS2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Rain Free | Rain | Rain Free | Rain | Rain Free | Rain | Rain Free | Rain | Rain Free | Rain | |
N | 384 | 14 | 196 | 11 | 96 | 5 | 466 | 17 | 221 | 16 |
r | 0.27 | 0.16 | 0.97 | 1.00 | 0.34 | / | 0.89 | 0.74 | 0.86 | 0.83 |
Bias (m) | 1.30 | 1.30 | 0.20 | 0.16 | 0.42 | / | 0.17 | 0.18 | 0.36 | 0.45 |
RMSE (m) | 1.54 | 1.51 | 0.39 | 0.18 | 0.62 | / | 0.36 | 0.38 | 0.50 | 0.53 |
SI | 1.29 | 1.32 | 0.26 | 0.06 | 0.62 | / | 0.32 | 0.28 | 0.35 | 0.21 |
ST | WS | DL | NS1 | NS2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Land Free | Land | Land Free | Land | Land Free | Land | Land Free | Land | Land Free | Land | |
N | 177 | 221 | 103 | 104 | 75 | 26 | 483 | 0 | 237 | 0 |
r | 0.29 | 0.25 | 0.97 | 0.97 | 0.32 | 0.42 | 0.89 | / | 0.86 | / |
Bias (m) | 1.33 | 1.28 | 0.18 | 0.21 | 0.43 | 0.44 | 0.17 | / | 0.35 | / |
RMSE (m) | 1.54 | 1.53 | 0.34 | 0.42 | 0.60 | 0.65 | 0.36 | / | 0.51 | / |
SI | 1.25 | 1.32 | 0.23 | 0.27 | 0.59 | 0.68 | 0.32 | / | 0.34 | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Li, J.; Tang, S.; Shi, P.; Chen, W.; Liu, J. Evaluation of CFOSAT Wave Height Data with In Situ Observations in the South China Sea. Remote Sens. 2023, 15, 898. https://doi.org/10.3390/rs15040898
Li B, Li J, Tang S, Shi P, Chen W, Liu J. Evaluation of CFOSAT Wave Height Data with In Situ Observations in the South China Sea. Remote Sensing. 2023; 15(4):898. https://doi.org/10.3390/rs15040898
Chicago/Turabian StyleLi, Bo, Junmin Li, Shilin Tang, Ping Shi, Wuyang Chen, and Junliang Liu. 2023. "Evaluation of CFOSAT Wave Height Data with In Situ Observations in the South China Sea" Remote Sensing 15, no. 4: 898. https://doi.org/10.3390/rs15040898
APA StyleLi, B., Li, J., Tang, S., Shi, P., Chen, W., & Liu, J. (2023). Evaluation of CFOSAT Wave Height Data with In Situ Observations in the South China Sea. Remote Sensing, 15(4), 898. https://doi.org/10.3390/rs15040898