Early Warning of the Carbon-Neutral Pressure Caused by Urban Agglomeration Growth: Evidence from an Urban Network-Based Cellular Automata Model in the Greater Bay Area
Abstract
:1. Introduction
2. Study Area and Data Sources
2.1. Guangdong–Hong Kong–Macao Greater Bay Area
2.2. Data Materials
2.2.1. Urban Land in 2000, 2010, and 2020
2.2.2. Ecological Conserved area Forbidden for Urban Growth
3. Methodology
3.1. Modeling Framework
3.2. UAG Simulation Model
3.2.1. Quantity Module: Network Automata
3.2.2. Spatial Module: Cellular Automata
3.3. Carbon Emissions Caused by UAG
4. Results and Analysis
4.1. Predicted Urban Land Quantity
4.2. Predicted Land-Use Patterns in 2050
4.3. Early Warning of the Carbon-Neutral Pressure
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Solecki, W.D.; Oliveri, C. Downscaling Climate Change Scenarios in an Urban Land Use Change Model. J. Environ. Manag. 2004, 72, 105–115. [Google Scholar] [CrossRef]
- Höök, M.; Tang, X. Depletion of Fossil Fuels and Anthropogenic Climate Change—A Review. Energy Policy 2013, 52, 797–809. [Google Scholar] [CrossRef] [Green Version]
- Crowley, T.J. Causes of Climate Change Over the Past 1000 Years. Science 2000, 289, 270–277. [Google Scholar] [CrossRef] [Green Version]
- Malhi, G.S.; Kaur, M.; Kaushik, P. Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review. Sustainability 2021, 13, 1318. [Google Scholar] [CrossRef]
- Lal, R. Potential of Desertification Control to Sequester Carbon and Mitigate the Greenhouse Effect. Clim. Chang. 2001, 51, 35–72. [Google Scholar] [CrossRef]
- Lal, R. Global Potential of Soil Carbon Sequestration to Mitigate the Greenhouse Effect. Crit. Rev. Plant Sci. 2003, 22, 151–184. [Google Scholar] [CrossRef]
- Batjes, N.H. Total Carbon and Nitrogen in the Soils of the World. Eur. J. Soil Sci. 2014, 65, 10–21. [Google Scholar] [CrossRef]
- Faubert, P.; Bouchard, S.; Morin Chassé, R.; Côté, H.; Dessureault, P.-L.; Villeneuve, C. Achieving Carbon Neutrality for A Future Large Greenhouse Gas Emitter in Quebec, Canada: A Case Study. Atmosphere 2020, 11, 810. [Google Scholar] [CrossRef]
- Nieuwenhuijsen, M.J. Urban and Transport Planning Pathways to Carbon Neutral, Liveable and Healthy Cities; A Review of the Current Evidence. Environ. Int. 2020, 140, 105661. [Google Scholar] [CrossRef]
- Hepburn, C.; Qi, Y.; Stern, N.; Ward, B.; Xie, C.; Zenghelis, D. Towards Carbon Neutrality and China’s 14th Five-Year Plan: Clean Energy Transition, Sustainable Urban Development, and Investment Priorities. Environ. Sci. Ecotechnology 2021, 8, 100130. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Liu, L.; Liang, X.; Chen, S.; Yuan, J. Evaluating Fuel Consumption Factor for Energy Conservation and Carbon Neutral on an Industrial Thermal Power Unit. Energy 2021, 232, 120887. [Google Scholar] [CrossRef]
- Xu, T.; Kang, C.; Zhang, H. China’s Efforts towards Carbon Neutrality: Does Energy-Saving and Emission-Reduction Policy Mitigate Carbon Emissions? J. Environ. Manag. 2022, 316, 115286. [Google Scholar] [CrossRef]
- Wang, K.; Li, X.; Lyu, X.; Dang, D.; Dou, H.; Li, M.; Liu, S.; Cao, W. Optimizing the Land Use and Land Cover Pattern to Increase Its Contribution to Carbon Neutrality. Remote Sens. 2022, 14, 4751. [Google Scholar] [CrossRef]
- Don, A.; Osborne, B.; Hastings, A.; Skiba, U.; Carter, M.S.; Drewer, J.; Flessa, H.; Freibauer, A.; Hyvönen, N.; Jones, M.B.; et al. Land-Use Change to Bioenergy Production in Europe: Implications for the Greenhouse Gas Balance and Soil Carbon. GCB Bioenergy 2012, 4, 372–391. [Google Scholar] [CrossRef] [Green Version]
- Houghton, R.A.; Nassikas, A.A. Global and Regional Fluxes of Carbon from Land Use and Land Cover Change 1850–2015: Carbon Emissions From Land Use. Glob. Biogeochem. Cycles 2017, 31, 456–472. [Google Scholar] [CrossRef]
- Wang, Z.; Li, X.; Mao, Y.; Li, L.; Wang, X.; Lin, Q. Dynamic Simulation of Land Use Change and Assessment of Carbon Storage Based on Climate Change Scenarios at the City Level: A Case Study of Bortala, China. Ecol. Indic. 2022, 134, 108499. [Google Scholar] [CrossRef]
- Liu, L.; Tang, Y.; Chen, Y.; Zhou, X.; Bedra, K.B. Urban Sprawl and Carbon Emissions Effects in City Areas Based on System Dynamics: A Case Study of Changsha City. Appl. Sci. 2022, 12, 3244. [Google Scholar] [CrossRef]
- Yang, X.; Shang, G.; Deng, X. Estimation, Decomposition and Reduction Potential Calculation of Carbon Emissions from Urban Construction Land: Evidence from 30 Provinces in China during 2000–2018. Environ. Dev. Sustain. 2022, 24, 7958–7975. [Google Scholar] [CrossRef]
- Verburg, P.H.; Soepboer, W.; Veldkamp, A.; Limpiada, R.; Espaldon, V.; Mastura, S.S.A. Modeling the Spatial Dynamics of Regional Land Use: The CLUE-S Model. Environ. Manag. 2002, 30, 391–405. [Google Scholar] [CrossRef]
- Parker, D.C.; Manson, S.M.; Janssen, M.A.; Hoffmann, M.J.; Deadman, P. Multi-Agent Systems for the Simulation of Land-Use and Land-Cover Change: A Review. Ann. Assoc. Am. Geogr. 2003, 93, 314–337. [Google Scholar] [CrossRef]
- Li, X.; Yang, Q.; Liu, X. Discovering and Evaluating Urban Signatures for Simulating Compact Development Using Cellular Automata. Landsc. Urban Plan. 2008, 86, 177–186. [Google Scholar] [CrossRef]
- Van Vliet, J.; White, R.; Dragicevic, S. Modeling Urban Growth Using a Variable Grid Cellular Automaton. Comput. Environ. Urban Syst. 2009, 33, 35–43. [Google Scholar] [CrossRef]
- Verburg, P.H.; Overmars, K.P. Combining Top-down and Bottom-up Dynamics in Land Use Modeling: Exploring the Future of Abandoned Farmlands in Europe with the Dyna-CLUE Model. Landsc. Ecol. 2009, 24, 1167–1181. [Google Scholar] [CrossRef]
- Guan, Q.; Clarke, K.C. A General-Purpose Parallel Raster Processing Programming Library Test Application Using a Geographic Cellular Automata Model. Int. J. Geogr. Inf. Sci. 2010, 24, 695–722. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A Future Land Use Simulation Model (FLUS) for Simulating Multiple Land Use Scenarios by Coupling Human and Natural Effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the Drivers of Sustainable Land Expansion Using a Patch-Generating Land Use Simulation (PLUS) Model: A Case Study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Santé, I.; García, A.M.; Miranda, D.; Crecente, R. Cellular Automata Models for the Simulation of Real-World Urban Processes: A Review and Analysis. Landsc. Urban Plan. 2010, 96, 108–122. [Google Scholar] [CrossRef]
- Aburas, M.M.; Ho, Y.M.; Ramli, M.F.; Ash’aari, Z.H. The Simulation and Prediction of Spatio-Temporal Urban Growth Trends Using Cellular Automata Models: A Review. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 380–389. [Google Scholar] [CrossRef]
- Moreno, N.; Wang, F.; Marceau, D.J. Implementation of a Dynamic Neighborhood in a Land-Use Vector-Based Cellular Automata Model. Comput. Environ. Urban Syst. 2009, 33, 44–54. [Google Scholar] [CrossRef]
- Liao, J.; Tang, L.; Shao, G.; Su, X.; Chen, D.; Xu, T. Incorporation of Extended Neighborhood Mechanisms and Its Impact on Urban Land-Use Cellular Automata Simulations. Environ. Model. Softw. 2016, 75, 163–175. [Google Scholar] [CrossRef]
- Ke, X.; Qi, L.; Zeng, C. A Partitioned and Asynchronous Cellular Automata Model for Urban Growth Simulation. Int. J. Geogr. Inf. Sci. 2016, 30, 637–659. [Google Scholar] [CrossRef]
- Roodposhti, M.S.; Aryal, J.; Bryan, B.A. A Novel Algorithm for Calculating Transition Potential in Cellular Automata Models of Land-Use/Cover Change. Environ. Model. Softw. 2019, 112, 70–81. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, H. Exploring the Advantages of the Maximum Entropy Model in Calibrating Cellular Automata for Urban Growth Simulation: A Comparative Study of Four Methods. GIScience Remote Sens. 2022, 59, 71–95. [Google Scholar] [CrossRef]
- Zhang, B.; Hu, S.; Wang, H.; Zeng, H. A Size-Adaptive Strategy to Characterize Spatially Heterogeneous Neighborhood Effects in Cellular Automata Simulation of Urban Growth. Landsc. Urban Plan. 2023, 229, 104604. [Google Scholar] [CrossRef]
- White, R.; Uljee, I.; Engelen, G. Integrated Modelling of Population, Employment and Land-Use Change with a Multiple Activity-Based Variable Grid Cellular Automaton. Int. J. Geogr. Inf. Sci. 2012, 26, 1251–1280. [Google Scholar] [CrossRef]
- Feng, Y.; Tong, X. Incorporation of Spatial Heterogeneity-Weighted Neighborhood into Cellular Automata for Dynamic Urban Growth Simulation. GIScience Remote Sens. 2019, 56, 1024–1045. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, H. A New Type of Dual-Scale Neighborhood Based on Vectorization for Cellular Automata Models. GIScience Remote Sens. 2021, 58, 386–404. [Google Scholar] [CrossRef]
- Wang, H.; He, S.; Liu, X.; Dai, L.; Pan, P.; Hong, S.; Zhang, W. Simulating Urban Expansion Using a Cloud-Based Cellular Automata Model: A Case Study of Jiangxia, Wuhan, China. Landsc. Urban Plan. 2013, 110, 99–112. [Google Scholar] [CrossRef]
- Li, X.; Gar-On Yeh, A. Data Mining of Cellular Automata’s Transition Rules. Int. J. Geogr. Inf. Sci. 2004, 18, 723–744. [Google Scholar] [CrossRef]
- Kamusoko, C.; Gamba, J. Simulating Urban Growth Using a Random Forest-Cellular Automata (RF-CA) Model. ISPRS Int. J. Geo-Inf. 2015, 4, 447–470. [Google Scholar] [CrossRef]
- Xu, T.; Gao, J.; Coco, G. Simulation of Urban Expansion via Integrating Artificial Neural Network with Markov Chain–Cellular Automata. Int. J. Geogr. Inf. Sci. 2019, 33, 1960–1983. [Google Scholar] [CrossRef]
- Saganeiti, L.; Mustafa, A.; Teller, J.; Murgante, B. Modeling Urban Sprinkling with Cellular Automata. Sustain. Cities Soc. 2021, 65, 102586. [Google Scholar] [CrossRef]
- Zhang, B.; Xia, C. The Effects of Sample Size and Sample Prevalence on Cellular Automata Simulation of Urban Growth. Int. J. Geogr. Inf. Sci. 2022, 36, 158–187. [Google Scholar] [CrossRef]
- Ravetz, J.; Neuvonen, A.; Mantysalo, R. The New Normative: Synergistic Scenario Planning for Carbon-Neutral Cities and Regions. Reg. Stud. 2021, 55, 150–163. [Google Scholar] [CrossRef]
- Ma, M.; Feng, W.; Huo, J.; Xiang, X. Operational Carbon Transition in the Megalopolises’ Commercial Buildings. Build. Environ. 2022, 226, 109705. [Google Scholar] [CrossRef]
- Groeneveld, J.; Müller, B.; Buchmann, C.M.; Dressler, G.; Guo, C.; Hase, N.; Hoffmann, F.; John, F.; Klassert, C.; Lauf, T.; et al. Theoretical Foundations of Human Decision-Making in Agent-Based Land Use Models—A Review. Environ. Model. Softw. 2017, 87, 39–48. [Google Scholar] [CrossRef] [Green Version]
- Xia, C.; Zhang, A.; Wang, H.; Zhang, B. Modeling Urban Growth in a Metropolitan Area Based on Bidirectional Flows, an Improved Gravitational Field Model, and Partitioned Cellular Automata. Int. J. Geogr. Inf. Sci. 2019, 33, 877–899. [Google Scholar] [CrossRef]
- Lin, J.; Li, X. Simulating Urban Growth in a Metropolitan Area Based on Weighted Urban Flows by Using Web Search Engine. Int. J. Geogr. Inf. Sci. 2015, 29, 1721–1736. [Google Scholar] [CrossRef]
- Xia, F.; Yang, Y.; Zhang, S.; Yang, Y.; Li, D.; Sun, W.; Xie, Y. Influencing Factors of the Supply-Demand Relationships of Carbon Sequestration and Grain Provision in China: Does Land Use Matter the Most? Sci. Total Environ. 2022, 832, 154979. [Google Scholar] [CrossRef]
- Fang, C.; Yu, X.; Zhang, X.; Fang, J.; Liu, H. Big Data Analysis on the Spatial Networks of Urban Agglomeration. Cities 2020, 102, 102735. [Google Scholar] [CrossRef]
- Tu, M.; Liu, Z.; He, C.; Fang, Z.; Lu, W. The Relationships between Urban Landscape Patterns and Fine Particulate Pollution in China: A Multiscale Investigation Using a Geographically Weighted Regression Model. J. Clean. Prod. 2019, 237, 117744. [Google Scholar] [CrossRef]
- Xue, Q.; Yang, X.; Wu, F. A Three-Stage Hybrid Model for the Regional Assessment, Spatial Pattern Analysis and Source Apportionment of the Land Resources Comprehensive Supporting Capacity in the Yangtze River Delta Urban Agglomeration. Sci. Total Environ. 2020, 711, 134428. [Google Scholar] [CrossRef]
- Horner, M.W. Exploring Metropolitan Accessibility and Urban Structure. Urban Geogr. 2004, 25, 264–284. [Google Scholar] [CrossRef]
- Xia, C.; Zhang, A.; Wang, H.; Zhang, B.; Zhang, Y. Bidirectional Urban Flows in Rapidly Urbanizing Metropolitan Areas and Their Macro and Micro Impacts on Urban Growth: A Case Study of the Yangtze River Middle Reaches Megalopolis, China. Land Use Policy 2019, 82, 158–168. [Google Scholar] [CrossRef]
- Yang, J.; Zeng, C.; Cheng, Y. Spatial Influence of Ecological Networks on Land Use Intensity. Sci. Total Environ. 2020, 717, 137151. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.; Wang, Y.; Liang, X.; Yao, Y.; Ma, T.; Guan, Q. Simulating Urban Expansion by Incorporating an Integrated Gravitational Field Model into a Demand-Driven Random Forest-Cellular Automata Model. Cities 2021, 109, 103044. [Google Scholar] [CrossRef]
- Feng, Y.; Tong, X. Dynamic Land Use Change Simulation Using Cellular Automata with Spatially Nonstationary Transition Rules. GIScience Remote Sens. 2018, 55, 678–698. [Google Scholar] [CrossRef]
- Hagenauer, J.; Helbich, M. Local Modelling of Land Consumption in Germany with RegioClust. Int. J. Appl. Earth Obs. Geoinf. 2018, 65, 46–56. [Google Scholar] [CrossRef]
- Mustafa, A.; Ebaid, A.; Teller, J. Benefits of a Multiple-solution Approach in Land Change Models. Trans. GIS 2018, 22, 1484–1497. [Google Scholar] [CrossRef]
- Wang, J.; Mountrakis, G. Developing a Multi-network Urbanization Model: A Case Study of Urban Growth in Denver, Colorado. Int. J. Geogr. Inf. Sci. 2011, 25, 229–253. [Google Scholar] [CrossRef]
- Xia, C.; Zhang, B. Exploring the Effects of Partitioned Transition Rules upon Urban Growth Simulation in a Megacity Region: A Comparative Study of Cellular Automata-Based Models in the Greater Wuhan Area. GIScience Remote Sens. 2021, 58, 693–716. [Google Scholar] [CrossRef]
- Goggins, W.B.; Chan, E.Y.Y.; Ng, E.; Ren, C.; Chen, L. Effect Modification of the Association between Short-Term Meteorological Factors and Mortality by Urban Heat Islands in Hong Kong. PLoS ONE 2012, 7, e38551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guerrero, M.; Cunningham, J.A.; Urbano, D. Economic Impact of Entrepreneurial Universities’ Activities: An Exploratory Study of the United Kingdom. Res. Policy 2015, 44, 748–764. [Google Scholar] [CrossRef]
- Chen, J.; Chen, F.; Wu, H.; Chen, L.; Han, G. Internet + Land Cover Validation:Methodology and Practice. Wuhan Daxue Xuebao Xinxi Kexue BanGeomatics Inf. Sci. Wuhan Univ. 2018, 43, 2225–2232. [Google Scholar] [CrossRef]
- Chen, J.; Chen, L.; Chen, F.; Ban, Y.; Li, S.; Han, G.; Tong, X.; Liu, C.; Stamenova, V.; Stamenov, S. Collaborative Validation of GlobeLand30: Methodology and Practices. Geo-Spat. Inf. Sci. 2021, 24, 134–144. [Google Scholar] [CrossRef]
- Eppink, F.V.; van den Bergh, J.C.J.M.; Rietveld, P. Modelling Biodiversity and Land Use: Urban Growth, Agriculture and Nature in a Wetland Area. Ecol. Econ. 2004, 51, 201–216. [Google Scholar] [CrossRef]
- Wu, X.; Wang, S.; Fu, B.; Liu, Y.; Zhu, Y. Land Use Optimization Based on Ecosystem Service Assessment: A Case Study in the Yanhe Watershed. Land Use Policy 2018, 72, 303–312. [Google Scholar] [CrossRef]
- Zhou, X.; Yu, J.; Li, J.; Li, S.; Zhang, D.; Wu, D.; Pan, S.; Chen, W. Spatial Correlation among Cultivated Land Intensive Use and Carbon Emission Efficiency: A Case Study in the Yellow River Basin, China. Environ. Sci. Pollut. Res. 2022, 29, 43341–43360. [Google Scholar] [CrossRef]
- Guan, D.; Li, H.; Inohae, T.; Su, W.; Nagaie, T.; Hokao, K. Modeling Urban Land Use Change by the Integration of Cellular Automaton and Markov Model. Ecol. Model. 2011, 222, 3761–3772. [Google Scholar] [CrossRef]
- Halmy, M.W.A.; Gessler, P.E.; Hicke, J.A.; Salem, B.B. Land Use/Land Cover Change Detection and Prediction in the North-Western Coastal Desert of Egypt Using Markov-CA. Appl. Geogr. 2015, 63, 101–112. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, J.; Zhang, Y. An Analysis of the Implications of China’s Urbanization Policy for Economic Growth and Energy Consumption. J. Clean. Prod. 2017, 161, 1251–1262. [Google Scholar] [CrossRef]
- Zhao, Y.; Ma, S.; Fan, J.; Cai, Y. Examining the Effects of Land Use on Carbon Emissions: Evidence from Pearl River Delta. Int. J. Environ. Res. Public Health 2021, 18, 3623. [Google Scholar] [CrossRef] [PubMed]
- Pontius, R.G.; Millones, M. Death to Kappa: Birth of Quantity Disagreement and Allocation Disagreement for Accuracy Assessment. Int. J. Remote Sens. 2011, 32, 4407–4429. [Google Scholar] [CrossRef]
- Pontius, R.G.; Boersma, W.; Castella, J.-C.; Clarke, K.; de Nijs, T.; Dietzel, C.; Duan, Z.; Fotsing, E.; Goldstein, N.; Kok, K.; et al. Comparing the Input, Output, and Validation Maps for Several Models of Land Change. Ann. Reg. Sci. 2008, 42, 11–37. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.-J.; Liu, Z.; Zhang, H.; Tan, T.-D. The Impact of Economic Growth, Industrial Structure and Urbanization on Carbon Emission Intensity in China. Nat. Hazards 2014, 73, 579–595. [Google Scholar] [CrossRef]
- Vleeshouwers, L.M.; Verhagen, A. Carbon Emission and Sequestration by Agricultural Land Use: A Model Study for Europe: Carbon Sequestration by European Agriculture. Glob. Chang. Biol. 2002, 8, 519–530. [Google Scholar] [CrossRef]
- Zeng, C.; Song, Y.; Cai, D.; Hu, P.; Cui, H.; Yang, J.; Zhang, H. Exploration on the Spatial Spillover Effect of Infrastructure Network on Urbanization: A Case Study in Wuhan Urban Agglomeration. Sustain. Cities Soc. 2019, 47, 101476. [Google Scholar] [CrossRef]
- Yin, H.; Kong, F.; Yang, X.; James, P.; Dronova, I. Exploring Zoning Scenario Impacts upon Urban Growth Simulations Using a Dynamic Spatial Model. Cities 2018, 81, 214–229. [Google Scholar] [CrossRef] [Green Version]
- Kamau, J.; Ashby, E.; Shields, L.; Yu, J.; Murray, S.; Vodzak, M.; Kwallah, A.O.; Ambala, P.; Zimmerman, D. The Intersection of Land Use and Human Behavior as Risk Factors for Zoonotic Pathogen Exposure in Laikipia County, Kenya. PLoS Negl. Trop. Dis. 2021, 15, e0009143. [Google Scholar] [CrossRef]
- Liu, D.; Zheng, X.; Wang, H. Land-Use Simulation and Decision-Support System (LandSDS): Seamlessly Integrating System Dynamics, Agent-Based Model, and Cellular Automata. Ecol. Model. 2020, 417, 108924. [Google Scholar] [CrossRef]
ID | Sub-Region | Q2030 | Q2040 | Q2050 | ID | Sub-Region | Q2030 | Q2040 | Q2050 |
---|---|---|---|---|---|---|---|---|---|
1 | GZ-1 | 512.13 | 545.92 | 563.01 | 19 | HZ-3 | 339.55 | 395.58 | 428.36 |
2 | GZ-2 | 390.54 | 414.92 | 419.16 | 20 | HZ-4 | 365.26 | 424.27 | 462.13 |
3 | GZ-3 | 445.5 | 474.98 | 489.91 | 21 | HZ-5 | 96.57 | 126.73 | 143.86 |
4 | GZ-4 | 227.84 | 261.28 | 277.29 | 22 | JM-1 | 209.98 | 228.38 | 238.05 |
5 | GZ-5 | 407.01 | 447.05 | 466.74 | 23 | JM-2 | 313.36 | 357.79 | 381.08 |
6 | GZ-6 | 437.93 | 492.96 | 521.11 | 24 | JM-3 | 198.74 | 227.4 | 242.85 |
7 | GZ-7 | 193.11 | 229.04 | 248.81 | 25 | JM-4 | 378.17 | 438.71 | 478.2 |
8 | SZ | 1278.72 | 1278.72 | 1278.72 | 26 | JM-5 | 227.32 | 267.78 | 291.12 |
9 | ZH-1 | 226.46 | 242.04 | 245.71 | 27 | JM-6 | 155.52 | 180.48 | 197.85 |
10 | ZH-2 | 391.22 | 436.13 | 453.29 | 28 | ZQ-1 | 116.93 | 129.24 | 136.54 |
11 | FS-1 | 929.31 | 988.28 | 1018.69 | 29 | ZQ-2 | 200.68 | 229.45 | 245.55 |
12 | FS-2 | 576.59 | 617.08 | 637.86 | 30 | ZQ-3 | 218.59 | 254.41 | 276.76 |
13 | FS-3 | 301.17 | 337.79 | 356.48 | 31 | ZQ-4 | 59.16 | 69.04 | 75.17 |
14 | FS-4 | 173.73 | 197.56 | 210.64 | 32 | ZQ-5 | 64.18 | 76.15 | 83.39 |
15 | DG | 1821.86 | 1920.35 | 1920.35 | 33 | ZQ-6 | 101.41 | 119.98 | 131.77 |
16 | ZS | 858.94 | 941.9 | 980.3 | 34 | ZQ-7 | 50.87 | 58.88 | 65.2 |
17 | HZ-1 | 368.02 | 410.36 | 434.26 | 35 | HK | 380.82 | 404.98 | 410.72 |
18 | HZ-2 | 389.66 | 426.21 | 440.19 | 36 | MO | 25.83 | 26.02 | 26.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, S.; Ma, S.; Zhang, B.; Li, G.; Yang, Z. Early Warning of the Carbon-Neutral Pressure Caused by Urban Agglomeration Growth: Evidence from an Urban Network-Based Cellular Automata Model in the Greater Bay Area. Remote Sens. 2023, 15, 338. https://doi.org/10.3390/rs15020338
He S, Ma S, Zhang B, Li G, Yang Z. Early Warning of the Carbon-Neutral Pressure Caused by Urban Agglomeration Growth: Evidence from an Urban Network-Based Cellular Automata Model in the Greater Bay Area. Remote Sensing. 2023; 15(2):338. https://doi.org/10.3390/rs15020338
Chicago/Turabian StyleHe, Sanwei, Shifa Ma, Bin Zhang, Guangdong Li, and Zhenjie Yang. 2023. "Early Warning of the Carbon-Neutral Pressure Caused by Urban Agglomeration Growth: Evidence from an Urban Network-Based Cellular Automata Model in the Greater Bay Area" Remote Sensing 15, no. 2: 338. https://doi.org/10.3390/rs15020338
APA StyleHe, S., Ma, S., Zhang, B., Li, G., & Yang, Z. (2023). Early Warning of the Carbon-Neutral Pressure Caused by Urban Agglomeration Growth: Evidence from an Urban Network-Based Cellular Automata Model in the Greater Bay Area. Remote Sensing, 15(2), 338. https://doi.org/10.3390/rs15020338