The Supply–Demand Budgets of Ecosystem Service Response to Urbanization: Insights from Urban–Rural Gradient and Major Function-Oriented Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Processing
2.3. Quantification of Ecosystem Services Supply and Demand
2.3.1. Carbon Fixation
- (1)
- Supply
- (2)
- Demand
2.3.2. Water Provision
- (1)
- Supply
- (2)
- Demand
2.3.3. Food Provision
2.3.4. Soil Conservation
- (1)
- Supply
- (2)
- Demand
2.3.5. Ecosystem Service Supply–Demand Ratio (ESDR)
2.4. Urbanization Classification
2.5. Function Division
2.6. Statistical Analysis
3. Results
3.1. Spatiotemporal Dynamics of Mismatch of ES Supply and Demand
3.2. Relationships between Urbanization and ESDRs
3.3. Sensitivity of ESDR to Urbanization
4. Discussion
4.1. The Impact of Urbanization on ESDRs in Different Functional Areas
4.2. Suggestions for ES Management and Urban Planning
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Paruelo, J.M.; Burke, I.C.; Lauenroth, W.K. Land-use impact on ecosystem functioning in eastern Colorado, USA. Glob. Chang. Biol. 2001, 7, 631–639. [Google Scholar]
- Tollefson, J. Humans are driving one million species to extinction. Nature 2019, 569, 171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuang, W.; Zhang, S.; Du, G.; Yan, C.; Wu, S.; Li, R.; Lu, D.; Pan, T.; Ning, J.; Guo, C.; et al. Monitoring periodically national land use changes and analyzing their spatiotemporal patterns in China during 2015–2020. J. Geogr. Sci. 2022, 32, 1705–1723. [Google Scholar] [CrossRef]
- Bruckmeier, K. Social-Ecological Systems and Ecosystem Services. In Social Ecological Transformation; Palgrave Macmillan: London, UK, 2016. [Google Scholar]
- Costanza, R.; Arge, R.; De Groot, R.; Farber, S.; Hannon, B.; Limburg, K.; Suttonkk, P. The Value of the World’s Ecosystem Services and Natural Capital by. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Daily, G.C.; Polasky, S.; Goldstein, J.; Kareiva, P.M.; Mooney, H.A.; Pejchar, L.; Ricketts, T.H.; Salzman, J.; Shallenberger, R. Ecosystem services in decision making: Time to deliver. Front. Ecol. Environ. 2009, 7, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Rao, Y.; Zhou, M.; Ou, G.; Dai, D.; Zhang, L.; Zhang, Z.; Yang, C. Integrating ecosystem services value for sustainable land-use management in semi-arid region. J. Clean. Prod. 2018, 186, 662–672. [Google Scholar] [CrossRef]
- Burkhard, B.; Kroll, F.; Nedkov, S.; Müller, F. Mapping ecosystem service supply, demand and budgets. Ecol. Indic. 2012, 21, 17–29. [Google Scholar] [CrossRef]
- Schirpke, U.; Candiago, S.; Egarter Vigl, L.; Jäger, H.; Labadini, A.; Marsoner, T.; Meisch, C.; Tasser, E.; Tappeiner, U. Integrating supply, flow and demand to enhance the understanding of interactions among multiple ecosystem services. Sci. Total Environ. 2019, 651, 928–941. [Google Scholar] [CrossRef]
- Goldenberg, R.; Kalantari, Z.; Cvetkovic, V.; Mörtberg, U.; Deal, B.; Destouni, G. Distinction, quantification and mapping of potential and realized supply-demand of flow-dependent ecosystem services. Sci. Total Environ. 2017, 593–594, 599–609. [Google Scholar] [CrossRef]
- Bai, X.M.; Chen, J.; Shi, P.J. Landscape urbanization and economic growth in China: Positive feedbacks and sustainability dilemmas. Environ. Sci. Technol. 2012, 46, 132–139. [Google Scholar] [CrossRef]
- Zhang, D.; Huang, Q.; He, C.; Wu, J. Impacts of urban expansion on ecosystem services in the Beijing-Tianjin-Hebei urban agglomeration, China: A scenario analysis based on the Shared Socioeconomic Pathways. Resour. Conserv. Recycl. 2017, 125, 115–130. [Google Scholar] [CrossRef]
- Zhang, Z.; Peng, J.; Xu, Z.H.; Wang, X.Y.; Meersmans, J. Ecosystem services supply and demand response to urbanization: A case study of the Pearl River Delta, China. Ecosyst. Serv. 2021, 49, 101274. [Google Scholar] [CrossRef]
- Chen, G.; Li, X.; Liu, X.; Chen, Y.; Liang, X.; Leng, J.; Xu, X.; Liao, W.; Qiu, Y.; Wu, Q.; et al. Global projections of future urban land expansion under shared socioeconomic pathways. Nat. Commun. 2020, 11, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, L.; Lyu, Y.; Chen, C.; Choguill, C.L. Environmental deterioration in rapid urbanisation: Evidence from assessment of ecosystem service value in Wujiang, Suzhou. Environ. Dev. Sustain. 2021, 23, 331–349. [Google Scholar] [CrossRef] [Green Version]
- Kuang, W. 70 years of urban expansion across China: Trajectory, pattern, and national policies. Sci. Bull. 2020, 65, 1970–1974. [Google Scholar] [CrossRef]
- Yang, Y.; Zheng, H.; Kong, L.; Huang, B.; Xu, W.; Ouyang, Z. Mapping ecosystem services bundles to detect high- and low-value ecosystem services areas for land use management. J. Clean. Prod. 2019, 225, 11–17. [Google Scholar] [CrossRef]
- Wang, S.; Hu, M.; Wang, Y.; Xia, B. Dynamics of ecosystem services in response to urbanization across temporal and spatial scales in a mega metropolitan area. Sustain. Cities Soc. 2021, 77, 103561. [Google Scholar] [CrossRef]
- Kuang, W.; Du, G.; Lu, D.; Dou, Y.; Li, X.; Zhang, S.; Chi, W.; Dong, J.; Chen, G.; Yin, Z.; et al. Global observation of urban expansion and land-cover dynamics using satellite big-data. Sci. Bull. 2021, 66, 297–300. [Google Scholar] [CrossRef]
- Deng, C.; Liu, J.; Liu, Y.; Li, Z.; Nie, X.; Hu, X.; Wang, L.; Zhang, Y.; Zhang, G.; Zhu, D.; et al. Spatiotemporal dislocation of urbanization and ecological construction increased the ecosystem service supply and demand imbalance. J. Environ. Manag. 2021, 288, 112478. [Google Scholar] [CrossRef]
- Ren, Y.F.; Li, Z.Z. Unraveling the dynamics, heterogeneity, determinants of eco-efficiency in Beijing-Tianjin-Hebei urban agglomeration, China. J. Environ. Manag. 2022, 317, 115407. [Google Scholar] [CrossRef]
- Shen, J.; Li, S.; Liang, Z.; Liu, L.; Li, D.; Wu, S. Exploring the heterogeneity and nonlinearity of trade-offs and synergies among ecosystem services bundles in the Beijing-Tianjin-Hebei urban agglomeration. Ecosyst. Serv. 2020, 43, 101103. [Google Scholar] [CrossRef]
- National Bureau of Statistics. China Statistical Yearbook; China Statistics Press: Beijing, China, 2020.
- National Bureau of Statistics. China Statistical Yearbook; China Statistics Press: Tianjin, China, 2020.
- National Bureau of Statistics. China Statistical Yearbook; China Statistics Press: Hebei, China, 2020.
- Li, D.; Wu, S.; Liu, L.; Liang, Z.; Li, S. Evaluating regional water security through a freshwater ecosystem service flow model: A case study in Beijing-Tianjian-Hebei region, China. Ecol. Indic. 2017, 81, 159–170. [Google Scholar] [CrossRef]
- Ministry of Natural and Resources of R.P.C (MNRC). GB/T21010-2017, Current Land Use Classification. Available online: http://std.samr.gov.cn/ (accessed on 8 June 2021).
- Kang, P.; Chen, W.; Hou, Y.; Li, Y. Linking ecosystem services and ecosystem health to ecological risk assessment: A case study of the Beijing-Tianjin-Hebei urban agglomeration. Sci. Total Environ. 2018, 636, 1442–1454. [Google Scholar] [CrossRef] [PubMed]
- Onaindia, M.; de Manuel, B.F.; Madariaga, I.; Rodríguez-Loinaz, G. Co-benefits and trade-offs between biodiversity, carbon storage and water flow regulation. For. Ecol. Manag. 2013, 289, 1–9. [Google Scholar] [CrossRef]
- Tallis, H.; Polasky, S. Mapping and valuing ecosystem services as an approach for conservation and natural-resource management. Ann. N. Y. Acad. Sci. 2009, 1162, 265–283. [Google Scholar] [CrossRef] [PubMed]
- Bateman, I.J.; Harwood, A.R.; Mace, G.M.; Watson, R.T.; Abson, D.J.; Andrews, B.; Binner, A.; Crowe, A.; Day, B.H.; Dugdale, S.; et al. Bringing ecosystem services into economic decision-making: Land use in the United Kingdom. Science 2013, 341, 45–50. [Google Scholar] [CrossRef] [PubMed]
- González-García, A.; Palomo, I.; González, J.A.; López, C.A.; Montes, C. Quantifying spatial supply-demand mismatches in ecosystem services provides insights for land-use planning. Land Use Policy 2020, 94, 104493. [Google Scholar] [CrossRef]
- Boithias, L.; Acuña, V.; Vergoñós, L.; Ziv, G.; Marcé, R.; Sabater, S. Assessment of the water supply: Demand ratios in a Mediterranean basin under different global change scenarios and mitigation alternatives. Sci. Total Environ. 2014, 470, 567–577. [Google Scholar] [CrossRef]
- Sharp, R.; Tallis, H.T.; Ricketts, T.; Guerry, A.D.; Wood, S.A.; Chaplin-Kramer, R.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N.; et al. InVEST 3.8.0 User’s Guide; The Natural Capital Project: Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund. 2020; Available online: http://releases.naturalcapitalproject.org/invest-userguide/latest/#supporting-tools (accessed on 6 May 2022).
- Fu, B.P. On the calculation of the evaporation from land surface (in Chinese). Chin. J. Atmos. Sci. 1981, 5, 23 31. [Google Scholar]
- Zhang, L.; Hickel, K.; Dawes, W.R.; Chiew, F.H.S.; Western, A.W.; Briggs, P.R. A rational function approach for estimating mean annual evapotranspiration. Water Resour. Res. 2004, 40, 2. [Google Scholar] [CrossRef]
- Chen, J.Y.; Jiang, B.; Bai, Y.; Xu, X.B.; Alatalo, J.M. Quantifying ecosystem services supply and demand shortfalls and mismatches for management optimisation. Sci. Total Environ. 2019, 650, 1426–1439. [Google Scholar] [CrossRef] [PubMed]
- Burkhard, B.; Crossman, N.; Nedkov, S.; Petz, K.; Alkemade, R. Mapping and modelling ecosystem services for science, policy and practice. Ecosyst. Serv. 2013, 4, 1–3. [Google Scholar] [CrossRef]
- Tang, H.J.; Li, Z.M. Study on Per Capita Grain Demand Based on Chinese Reasonable Dietary Pattern. Sci. Agric. Sin. 2012, 45, 2315–2327. [Google Scholar]
- Kareiva, P.; Tallis, H.; Ricketts, T.H.; Daily, G.C.; Polasky, S. Natural Capital: Theory and Practice of Mapping Ecosystem Services, 1st ed.; Oxford University: Oxford, UK, 2011; pp. 3–128. [Google Scholar]
- Ouyang, Z.; Fan, P.; Chen, J. Urban built-up areas in transitional economies of southeast Asia: Spatial extent and dynamics. Remote Sens. 2016, 8, 819. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Liu, C.; Wang, C.; Li, P. Supply and demand matching of ecosystem services in loess hilly region: A case study of Lanzhou. Acta Geogr. Sin. 2019, 74, 1921–1937. (In Chinese) [Google Scholar]
- Xia, S.; Yang, Y. Spatio-temporal differentiation of carbon budget and carbon compensation zoning in Beijing-Tianjin-Hebei Urban Agglomeration based on the Plan for Major Function-oriented Zones. Acta Geogr. Sin. 2022, 77, 679–696. (In Chinese) [Google Scholar]
- Biau, G.; Scornet, E. A random forest guided tour. TEST 2016, 25, 197–227. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, T.P.; Soares, F.; Vita, R.; Francisco, R.D.; Basto, J.P.; Alcalá, S.G. A systematic literature review of machine learning methods applied to predictive maintenance. Comput. Ind. Eng. 2019, 137, 106024. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Tian, G.; Qiao, Z. Assessing the impact of the urbanization process on net primary productivity in China in 1989–2000. Environ. Pollut. 2014, 184, 320–326. [Google Scholar] [CrossRef] [PubMed]
- Yun, G.; Zhao, S. The imprint of urbanization on PM2.5 concentrations in China: The urban-rural gradient study. Sustain. Cities Soc. 2022, 86, 104103. [Google Scholar] [CrossRef]
- Yuan, Z.; Chen, M.; Tang, Z.; Mei, Z. Urbanization, land use change, and carbon emissions: Quantitative assessments for city-level carbon emissions in Beijing-Tianjin-Hebei region. Sustain. Cities Soc. 2021, 66, 102701. [Google Scholar]
- Xu, K.; Wang, J.; Wang, J.; Wang, X.; Chi, Y.; Zhang, X. Environmental function zoning for spatially differentiated environmental policies in China. J. Environ. Manag. 2020, 1, 255, 109485. [Google Scholar] [CrossRef]
- Qu, Y.; Jiang, G.; Li, Z.; Shang, R.; Zhou, D. Understanding the multidimensional morphological characteristics of urban idle land: Stage, subject, and spatial heterogeneity. Cities 2020, 97, 102492. [Google Scholar] [CrossRef]
- Yuan, M.; Li, Z.; Li, X.; Li, L.; Zhang, S.; Luo, X. How to promote the sustainable development of prefabricated residential buildings in China: A tripartite evolutionary game analysis. J. Clean. Prod. 2022, 349, 131423. [Google Scholar] [CrossRef]
- Liu, X.; Li, X.; Yang, J.; Fan, H.; Zhang, J.; Zhang, Y. How to resolve the conflicts of urban functional space in planning: A perspective of urban moderate boundary. Ecol. Indic. 2022, 144, 109495. [Google Scholar] [CrossRef]
- Wang, Y.; Niu, Y.; Li, M.; Yu, Q.; Chen, W. Spatial structure and carbon emission of urban agglomerations: Spatiotemporal characteristics and driving forces. Sustain. Cities Soc. 2022, 78, 103600. [Google Scholar] [CrossRef]
- Xing, L.; Hu, M.; Xue, M. The effect of urban–rural construction land transition on ecosystem services: A theoretical framework and empirical evidence for China. Habitat Int. 2022, 124, 102576. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Y.; Yang, H.; Yang, F. Horizontal ecological compensation as a tool for sustainable development of urban agglomerations: Exploration of the realization mechanism of Guanzhong Plain urban agglomeration in China. Environ. Sci. Policy 2022, 137, 301–313. [Google Scholar] [CrossRef]
- Wang, Y.; Yao, Y.; Chen, S.; Ni, Z.; Xia, B. Spatiotemporal evolution of urban development and surface urban heat island in Guangdong-Hong Kong-Macau greater bay area of China from 2013 to 2019. Resour. Conserv. Recycl. 2022, 179, 106063. [Google Scholar] [CrossRef]
- Wang, W.; Jiao, L.; Jia, Q.; Liu, J.; Mao, W.; Xu, Z.; Li, W. Land use optimization modelling with ecological priority perspective for large-scale spatial planning. Sustain. Cities Soc. 2021, 65, 102575. [Google Scholar] [CrossRef]
- Li, Z.; Cheng, X.; Han, H. Future impacts of land use change on ecosystem services under different scenarios in the ecological conservation area, Beijing, China. Forests 2020, 11, 584. [Google Scholar] [CrossRef]
- Kuang, W.; Liu, J.; Tian, H.; Shi, H.; Dong, J.; Song, C.; Li, X.; Du, G.; Hou, Y.; Lu, D.; et al. Cropland redistribution to marginal lands undermines environmental sustainability. Natl. Sci. Rev. 2022, 9, 66–78. [Google Scholar] [CrossRef] [PubMed]
Data Types | Data Sources | Sources and Descriptions |
---|---|---|
Land use | CASEarth (https://data.casearth.cn/, accessed on 2 March 2022) | Raster (30 × 30 m). Land use types in 2000, 2010, and 2020 were divided into six categories: grassland, water body, cultivated land, artificial surface, unused land, forest land, and shrub land [27]. |
Socioeconomic data | WordPop (https://www.worldpop.org/, accessed on 4 March 2022) | Raster (1000 × 1000 m). Including population density (PD) and gross domestic product (GDP). |
Digital Elevation Model data (DEM) | Geospatial Data Cloud (http://www.gscloud.cn/, accessed on 6 March 2022) | Raster (30 × 30 m). A value of elevation for each grid cell. |
Meteorological data | NCAR (https://climatedataguide.ucar.edu/, accessed on 8 March 2022) | Raster (1000 × 1000 m). Including annual average precipitation and evapotranspiration. |
Statistical data | Economic Yearbook of Beijing, Hebei, and Tianjin, and the China Energy Statistical Yearbook | Excel format. Per capita annual energy consumption and water use data. |
Soil properties | Harmonized World Soil Database (HWSD; https://www.fao.org/soils-portal/data-hub/soil-properties/en/, accessed on 8 March 2022) | Raster (1000 × 1000 m). Including root restricting layer depth, plant available water content (PAWC) range, etc. |
Watersheds | HydroSHEDS (https://hydrosheds.org/, accessed on 8 March 2022) | Vector format. A number is assigned for each watershed. |
Net Primary Productivity (NPP) | USGS (https://www.usgs.gov/, accessed on 8 March 2022) | Raster (500 × 500 m). The amount of organic matter accumulated by plants in unit area and time. |
Ecosystem Services | Selection Reasons |
---|---|
Carbon storage (CS) | The absorption of CO2 by vegetation is of great significance to regional climate change and directly affects human health. |
Water provision (WP) | Water resources are recharged by terrestrial and aquatic ecosystems, affecting the growth of vegetation. |
Food provision (FP) | Food production is mainly provided by cultivated land and is the basic material for human survival. |
Soil conservation (SC) | Reduction in soil erosion caused by storm runoff and topography is important in the BTHUA. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Hu, B.; Ren, Y. The Supply–Demand Budgets of Ecosystem Service Response to Urbanization: Insights from Urban–Rural Gradient and Major Function-Oriented Areas. Remote Sens. 2022, 14, 5670. https://doi.org/10.3390/rs14225670
Li Z, Hu B, Ren Y. The Supply–Demand Budgets of Ecosystem Service Response to Urbanization: Insights from Urban–Rural Gradient and Major Function-Oriented Areas. Remote Sensing. 2022; 14(22):5670. https://doi.org/10.3390/rs14225670
Chicago/Turabian StyleLi, Zuzheng, Baoan Hu, and Yufei Ren. 2022. "The Supply–Demand Budgets of Ecosystem Service Response to Urbanization: Insights from Urban–Rural Gradient and Major Function-Oriented Areas" Remote Sensing 14, no. 22: 5670. https://doi.org/10.3390/rs14225670
APA StyleLi, Z., Hu, B., & Ren, Y. (2022). The Supply–Demand Budgets of Ecosystem Service Response to Urbanization: Insights from Urban–Rural Gradient and Major Function-Oriented Areas. Remote Sensing, 14(22), 5670. https://doi.org/10.3390/rs14225670