Comparison and Assessment of Different Land Cover Datasets on the Cropland in Northeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.2.1. Global/Regional Land Cover Datasets
- (1)
- The Global Land Cover 2000 (GLC2000) dataset was developed by the European Commission’s Joint Research Center with a spatial resolution of 1 km. The GLC2000 legend is classified into 22 classes using unsupervised clustering, and its overall accuracy is 68.6% [39].
- (2)
- FAO-GLCshare (the Global Land Cover-share created by FAO (Food and Agriculture Organization)), produced by the United Nations’ (UN) FAO in 2014 [40]. It uses the data fusion method to integrate the available national, regional, and global datasets with a resolution of 1 km. The product encompasses 11 classes and has an accuracy of 80%.
- (3)
- The Finer Resolution Observation and Monitoring of Global Land Cover (FROM-GLC) was produced using the data of the Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) [10]. These data represent the land cover around 2017 with a spatial resolution of 30 m and encompasses ten land-cover classes.
- (4)
- Another global land cover map, which we named Esri in this paper, is 10 m resolution imagery derived from ESA Sentinel-2. It was generated using a deep learning model that used more than 5 billion Sentinel-2 pixels and was sampled from more than 20,000 sites. These sites are found in all major biomes in the world [41,42].
- (5)
- The Global Land Surface Satellite-Global Land Cover (GLASS-GLC) is an annual dynamic record of global land cover products from 1982 to 2015. It was generated on the Google Earth Engine (GEE) platform with the latest version of GLASS (the Global Land Surface Satellite) CDRs (Climate Data Records) [43]. It has a resolution of 5 km and an average overall accuracy of 82.81%.
- (6)
- (7)
- The Land Cover (LC) project of the Climate Change Initiative (CCI) by the European Space Agency (ESA) provides a series of annual datasets with 300 m resolution from 1992 to 2015, termed the CCI-LC dataset [47]. The product uses unsupervised spatio-temporal clustering and machine learning classification methods, with a total of 22 land cover classes.
- (8)
- (9)
- The Copernicus Global Land Service Land Cover at the 100 m resolution (CGLS-LC100)-collection 3 was released by the Copernicus Global Land Service. It was derived from high-quality land cover training sites based on PROBA-V satellite observations and multiple auxiliary datasets [50]. This global LULC map contains 23 classes.
- (10)
- (11)
- The global 30 m land cover dataset with a fine classification system (GLC_FCS30) in 2015 was produced using a time series image of Landsat and high-quality training data from the Global Spatial Temporal Spectra Library (GSPECLib) on the GEE platform. Then the GLC_FCS30-2020 was generated with the prior knowledge of experts and the multi-source auxiliary datasets. Both of them contain 30 land-cover classes [21].
- (12)
- China’s land-use/cover datasets (CLUDs) were provided by the Resource and Environment Science and Data Center. Its resolution is 1 km, and it documented in detail China’s land cover in the 1980s, 1990, 1995, 2000, 2005, 2010, 2015, and 2020. It includes 6 level-1 classes, which are cropland, grassland, forest, built-up area, water, and barren, and 25 level-2 classes [53,54].
- (13)
- The annual China Land Cover Dataset (CLCD) was derived from Landsat imagery on the GEE platform by Yang et al. [55], which contains annual land cover data layers at 30 m spatial resolution in China from 1990 to 2019. Including 9 land cover types: cropland, forests, shrubs, grasslands, water, snow/ice, barren, impervious, and wetlands, its overall accuracy is reported at 79.31%.
2.2.2. Other Auxiliary Dataset
2.3. Data Processing Procedures
2.4. Methodology
2.4.1. Accuracy Assessment Metrics
2.4.2. Inter-Comparison Method
2.4.3. Pairwise Data and Prefecture-Level City Cropland Area Validation
3. Results
3.1. Accuracy Evaluation of the Thirteen Datasets in the Four Phases
3.2. Commission and Omission Error Analysis on Cropland in Northeast China
3.3. Spatial Agreement and Discrepancies
3.4. Comparative Analysis by Referring to the Statistical Data
3.5. Potential Influencing Factors in Data Accuracy
4. Discussion
4.1. Other Possible Influencing Factors of Dataset Performance
4.2. Uncertainties Existing in Our Evaluation Work
4.3. Comparison with the Prior Assessment Work
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Pinstrup-Andersen, P. Perspectives in World Food and Agriculture 2004; John Wiley & Sons: Hoboken, NJ, USA, 2008; pp. 87–97. [Google Scholar]
- Gibbs, H.K.; Ruesch, A.S.; Achard, F.; Clayton, M.K.; Holmgren, P.; Ramankutty, N.; Foley, J.A. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc. Natl. Acad. Sci. USA 2010, 107, 16732–16737. [Google Scholar] [CrossRef] [PubMed]
- Grekousis, G.; Mountrakis, G.; Kavouras, M. An overview of 21 global and 43 regional land-cover mapping products. Int. J. Remote Sens. 2015, 36, 5309–5335. [Google Scholar] [CrossRef]
- Loveland, T.R.; Reed, B.C.; Brown, J.F.; Ohlen, D.O.; Zhu, Z.; Yang, L.; Merchant, J.W. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int. J. Remote Sens. 2010, 21, 1303–1330. [Google Scholar] [CrossRef]
- Hansen, M.C.; Defries, R.S.; Townshend, J.R.G.; Sohlberg, R. Global land cover classification at 1 km spatial resolution using a classification tree approach. Int. J. Remote Sens. 2010, 21, 1331–1364. [Google Scholar] [CrossRef]
- Bartholomé, E.; Belward, A. GLC2000: A new approach to global land cover mapping from Earth observation data. Int. J. Remote Sens. 2005, 26, 1959–1977. [Google Scholar] [CrossRef]
- Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- Bicheron, P.; Leroy, M.; Brockmann, C.; Krämer, U.; Miras, B.; Huc, M.; Niño, F.; Defourny, P.; Vancutsem, C.; Arino, O.; et al. Globcover: A 300 m global land cover product for 2005 using ENVISAT MERIS time series. In Proceedings of the Second International Symposium on Recent Advances in Quantitative Remote Sensing, Enschede, The Netherlands, 8–11 May 2006; pp. 538–542. [Google Scholar]
- Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M.; et al. Global land cover mapping at 30 m resolution: A POK-based operational approach. ISPRS J. Photogramm. Remote Sens. 2015, 103, 7–27. [Google Scholar] [CrossRef]
- Gong, P.; Wang, J.; Yu, L.; Zhao, Y.; Zhao, Y.; Liang, L.; Niu, Z.; Huang, X.; Fu, H.; Liu, S.; et al. Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM + data. Int. J. Remote Sens. 2012, 34, 2607–2654. [Google Scholar] [CrossRef]
- Herold, M.; Mayaux, P.; Woodcock, C.E.; Baccini, A.; Schmullius, C. Some challenges in global land cover mapping: An assessment of agreement and accuracy in existing 1 km datasets. Remote Sens. Environ. 2008, 112, 2538–2556. [Google Scholar] [CrossRef]
- Kaptué Tchuenté, A.T.; Roujean, J.-L.; De Jong, S.M. Comparison and relative quality assessment of the GLC2000, GLOBCOVER, MODIS and ECOCLIMAP land cover data sets at the African continental scale. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 207–219. [Google Scholar] [CrossRef]
- Wu, W.; Shibasaki, R.; Yang, P.; Zhou, Q.; Tang, H. Remotely sensed estimation of cropland in China: A comparison of the maps derived from four global land cover datasets. Can. J. Remote Sens. 2014, 34, 467–479. [Google Scholar] [CrossRef]
- Congalton, R.; Gu, J.; Yadav, K.; Thenkabail, P.; Ozdogan, M. Global Land Cover Mapping: A Review and Uncertainty Analysis. Remote Sens. 2014, 6, 12070–12093. [Google Scholar] [CrossRef]
- Lu, M.; Wu, W.; Zhang, L.; Liao, A.; Peng, S.; Tang, H. A comparative analysis of five global cropland datasets in China. Sci. China Earth Sci. 2016, 59, 2307–2317. [Google Scholar] [CrossRef]
- Deines, J.M.; Patel, R.; Liang, S.-Z.; Dado, W.; Lobell, D.B. A million kernels of truth: Insights into scalable satellite maize yield mapping and yield gap analysis from an extensive ground dataset in the US Corn Belt. Remote Sens. Environ. 2021, 253, 112174. [Google Scholar] [CrossRef]
- You, N.; Dong, J. Examining earliest identifiable timing of crops using all available Sentinel 1/2 imagery and Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2020, 161, 109–123. [Google Scholar] [CrossRef]
- Giri, C.; Zhu, Z.; Reed, B. A comparative analysis of the Global Land Cover 2000 and MODIS land cover data sets. Remote Sens. Environ. 2005, 94, 123–132. [Google Scholar] [CrossRef]
- McCallum, I.; Obersteiner, M.; Nilsson, S.; Shvidenko, A. A spatial comparison of four satellite derived 1 km global land cover datasets. Int. J. Appl. Earth Obs. Geoinf. 2006, 8, 246–255. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, X.; Gao, Y.; Chen, X.; Shuai, X.; Mi, J. Finer-Resolution Mapping of Global Land Cover: Recent Developments, Consistency Analysis, and Prospects. J. Remote Sens. 2021, 2021, 1–38. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Chen, X.; Gao, Y.; Xie, S.; Mi, J. GLC_FCS30: Global land-cover product with fine classification system at 30 m using time-series Landsat imagery. Earth Syst. Sci. Data 2021, 13, 2753–2776. [Google Scholar] [CrossRef]
- Hansen, M.C.; Reed, B. A comparison of the IGBP DISCover and University of Maryland 1 km global land cover products. Int. J. Remote Sens. 2010, 21, 1365–1373. [Google Scholar] [CrossRef]
- Tsendbazar, N.-E.; de Bruin, S.; Fritz, S.; Herold, M. Spatial Accuracy Assessment and Integration of Global Land Cover Datasets. Remote Sens. 2015, 7, 15804–15821. [Google Scholar] [CrossRef]
- Bai, Y.; Feng, M.; Jiang, H.; Wang, J.; Zhu, Y.; Liu, Y. Assessing Consistency of Five Global Land Cover Data Sets in China. Remote Sens. 2014, 6, 8739–8759. [Google Scholar] [CrossRef]
- Ning, J.; Zhang, S.; Cai, H.; Bu, K. A Comparative Analysis of the MODIS Land Cover Data Sets and Globcover Land Cover Data Sets in Heilongjiang Basin. J. Geo-Inf. Sci. 2012, 14, 240–249. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, M. Comparative Analysis on Three Land Cover Datasets based on IGBP Classification System over Hanjiang River Basin. Remote Sens. Technol. Appl. 2017, 32, 575–584. [Google Scholar]
- Yang, Y.; Xiao, P.; Feng, X.; Li, H.; Chang, X.; Feng, W. Comparison and assessment of large-scale land cover datasets in China and adjacent regions. Natl. Remote Sens. Bull. 2014, 18, 453–475. [Google Scholar] [CrossRef]
- Yang, Y.; Xiao, P.; Feng, X.; Li, H. Accuracy assessment of seven global land cover datasets over China. ISPRS J. Photogramm. Remote Sens. 2017, 125, 156–173. [Google Scholar] [CrossRef]
- Hua, T.; Zhao, W.; Liu, Y.; Wang, S.; Yang, S. Spatial Consistency Assessments for Global Land-Cover Datasets: A Comparison among GLC2000, CCI LC, MCD12, GLOBCOVER and GLCNMO. Remote Sens. 2018, 10, 1486. [Google Scholar] [CrossRef]
- Pérez-Hoyos, A.; Rembold, F.; Kerdiles, H.; Gallego, J. Comparison of Global Land Cover Datasets for Cropland Monitoring. Remote Sens. 2017, 9, 1118. [Google Scholar] [CrossRef]
- Gao, Y.; Guo, Y.; Wang, W.; Li, F.; Huang, P. Accuracy evaluation of different land use or land cover data in grassland of northern China. Chin. J. Ecol. 2019, 38, 283–293. [Google Scholar] [CrossRef]
- Niu, G.Z.; Shan, Y.; Zhang, H. Accuracy Assessment of Wetland Categories from the GlobCover2009 Data over China. Wetl. Sci. 2012, 10, 389–395. [Google Scholar] [CrossRef]
- Meng, W. Accuracy Assessment for Regional Land Cover Remote Sensing Mapping Product Based on Spatial Sampling: A Case Study of Shaanxi Province, China. J. Geo-Inf. Sci. 2015, 17, 742G749. [Google Scholar]
- Ma, J.; Qun, S.; Qiang, X.; Bowei, W. Accuracy Assessment and Comparative Analysis of GlobeLand30 Dataset in Henan Province. J. Geogr.-Inf. Sci. 2016, 18, 1563–1572. [Google Scholar]
- Wang, Y.; Zhang, J.; Liu, D.; Yang, W.; Zhang, W. Accuracy Assessment of GlobeLand30 2010 Land Cover over China Based on Geographically and Categorically Stratified Validation Sample Data. Remote Sens. 2018, 10, 1213. [Google Scholar] [CrossRef]
- Kussul, N.; Shelestov, A.; Basarab, R.; Skakun, S.; Kussul, O.; Lavreniuk, M. Geospatial intelligence and data fusion techniques for sustainable development problems. ICTERI 2015, 1356, 196–203. [Google Scholar]
- Jokar Arsanjani, J.; Tayyebi, A.; Vaz, E. GlobeLand30 as an alternative fine-scale global land cover map: Challenges, possibilities, and implications for developing countries. Habitat Int. 2016, 55, 25–31. [Google Scholar] [CrossRef]
- Manakos, I.; Karakizi, C.; Gkinis, I.; Karantzalos, K. Validation and Inter-Comparison of Spaceborne Derived Global and Continental Land Cover Products for the Mediterranean Region: The Case of Thessaly. Land 2017, 6, 34. [Google Scholar] [CrossRef]
- Mayaux, P.; Eva, H.; Gallego, J.; Strahler, A.H.; Herold, M.; Agrawal, S.; Naumov, S.; De Miranda, E.E.; Di Bella, C.M.; Ordoyne, C.; et al. Validation of the global land cover 2000 map. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1728–1739. [Google Scholar] [CrossRef]
- John, L.; Renato, C.; Ilaria, R.; Mario, B. Global Land Cover-Share of Year 2014-Beta-Release 1.0 FAO Global Land Cover Network (GLCN). Available online: https://www.fao.org/uploads/media/glc-share-doc.pdf (accessed on 1 January 2021).
- Karra, K.; Kontgis, C.; Statman-Weil, Z.; Mazzariello, J.; Mathis, M.; Brumby, S. Global Land Use/Land Cover with Sentinel 2 and Deep Learning; IEEE: Piscataway, NJ, USA, 2021; pp. 4704–4707. [Google Scholar]
- Brown, C.F.; Brumby, S.P.; Guzder-Williams, B.; Birch, T.; Hyde, S.B.; Mazzariello, J.; Czerwinski, W.; Pasquarella, V.J.; Haertel, R.; Ilyushchenko, S.; et al. Dynamic World, Near real-time global 10 m land use land cover mapping. Sci. Data 2022, 9, 251. [Google Scholar] [CrossRef]
- Liu, H.; Gong, P.; Wang, J.; Clinton, N.; Bai, Y.; Liang, S. Annual dynamics of global land cover and its long-term changes from 1982 to 2015. Earth Syst. Sci. Data 2020, 12, 1217–1243. [Google Scholar] [CrossRef]
- Tateishi, R.; Hoan, N.T.; Kobayashi, T.; Alsaaideh, B.; Tana, G.; Phong, D.X. Production of Global Land Cover Data—GLCNMO2008. J. Geogr. Geol. 2014, 6, 1–15. [Google Scholar] [CrossRef]
- Kobayashi, T.; Tateishi, R.; Alsaaideh, B.; Sharma, R.C.; Wakaizumi, T.; Miyamoto, D.; Bai, X.; Long, B.D.; Gegentana, G.; Maitiniyazi, A.; et al. Production of Global Land Cover Data—GLCNMO2013. J. Geogr. Geol. 2017, 9, 1–15. [Google Scholar] [CrossRef]
- Tateishi, R.; Uriyangqai, B.; Al-Bilbisi, H.; Ghar, M.A.; Tsend-Ayush, J.; Kobayashi, T.; Kasimu, A.; Hoan, N.T.; Shalaby, A.; Alsaaideh, B.; et al. Production of global land cover data—GLCNMO. Int. J. Digit. Earth 2011, 4, 22–49. [Google Scholar] [CrossRef]
- Defourny, P.; Kirches, G.; Brockmann, C.; Boettcher, M.; Peters, M.; Bontemps, S.; Lamarche, C.; Schlerf, M.; Santoro, M. Land Cover CCI: Product User Guide Version 2. Available online: http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-PUG-v2.5.pdf (accessed on 1 January 2021).
- Bicheron, P.; Defourny, P.; Brockmann, C.; Schouten, L.; Vancutsem, C.; Huc, M.; Bontemps, S.; Leroy, M.; Frédéric, A.; Herold, M.; et al. GLOBCOVER: Products Description and Validation Report; ResearchGate: Berlin, Germany, 2008. [Google Scholar]
- Defourny, P.; Bontemps, S.; Bogaert, E. GLOBCORINE 2009. In Product Description Manual; ResearchGate: Berlin, Germany, 2010. [Google Scholar]
- Buchhorn, M.; Smets, B.; Bertels, L.; Roo, B.D.; Lesiv, M.; Tsendbazar, N.-E.; Li, L.; Tarko, A.J. Copernicus Global Land Service: Land Cover 100 m: Version 3 Globe 2015–2019: Product User Manual; Zenodo: Geneve, Switzerland, 2020. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; Peng, S.; Han, G.; Zhang, H.; He, C.; et al. Concepts and Key Techniques for 30 m Global Land Cover Mapping. Acta Geod. Et Cartogr. Sin. 2014, 43, 551–557. [Google Scholar] [CrossRef]
- Chen, J.; Chen, L.; Chen, F.; Ban, Y.; Li, S.; Han, G.; Tong, X.; Liu, C.; Stamenova, V.; Stamenov, S. Collaborative validation of GlobeLand30: Methodology and practices. Geo-Spat. Inf. Sci. 2021, 24, 134–144. [Google Scholar] [CrossRef]
- Liu, J.; Liu, M.; Zhuang, D.; Zhang, Z.; Deng, X. Study on Spatial Pattern of Land-use Change in China During 1995–2000. Sci. China Ser. D Earth Sci. 2003, 46, 373–384. [Google Scholar] [CrossRef]
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W. Spatiotemporal characteristics, patterns and causes of land use changes in China since the late 1980s. J. Geogr. Sci. 2014, 69, 3–14. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Yu, Z.; Jin, X.; Miao, L.; Yang, X. A historical reconstruction of cropland in China from 1900 to 2016. Earth Syst. Sci. Data 2021, 13, 3203–3218. [Google Scholar] [CrossRef]
- Olofsson, P.; Stehman, S.; Woodcock, C.; Sulla-Menashe, D.; Sibley, A.; Newell, J.; Friedl, M.; Herold, M. A global land-cover validation data set, part I: Fundamental design principles. Int. J. Remote Sens. 2012, 33, 5768–5788. [Google Scholar] [CrossRef]
- Fung, T.; LeDrew, E. The Determination of Optimal Threshold Levels for Change Detection Using Various Accuracy Indices. Photogramm. Eng. Remote Sens. 1988, 54, 1449–1454. [Google Scholar]
- Janssen, L.L.F.; Wel, F.V.D. Accuracy assessment of satellite derived land—Cover data: A review. Photogramm. Eng. Remote Sens. 1994, 60, 419–426. [Google Scholar]
- Chicco, D.; Jurman, G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genom. 2020, 21, 6. [Google Scholar] [CrossRef] [PubMed]
- Clark, M.L.; Aide, T.M.; Grau, H.R.; Riner, G. A scalable approach to mapping annual land cover at 250 m using MODIS time series data: A case study in the Dry Chaco ecoregion of South America. Remote Sens. Environ. 2010, 114, 2816–2832. [Google Scholar] [CrossRef]
- Ran, Y.; Li, X.; Lu, L. Accuracy Evaluation of the Four Remote Sensing Based Land Cover Products over China. J. Glaciol. Geocryol. 2009, 31, 490–500. [Google Scholar]
- Foody, G. Status of Land Cover Classification Accuracy Assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Lambin, E.; Geist, H. Land-Use and Land-Cover Change: Local Processes and Global Impacts; Science & Business Media: Berlin, Germany, 2006; Volume 18. [Google Scholar]
- Zhang, C.; Dong, J.; Ge, Q. Quantifying the accuracies of six 30-m cropland datasets over China: A comparison and evaluation analysis. Comput. Electron. Agric. 2022, 197, 106946. [Google Scholar] [CrossRef]
Datasets | Satellites or Sensor | Time | Spatial Resolution | Classification Technique | Classification Scheme |
---|---|---|---|---|---|
GLASS-GLC | AVHRR GLASS CDR | 1982–2015 | 5 km | Random forest and LandTrendr | 7 classes |
GLC2000 | SPOT VGT | 2000 | 1 km | Generally unsupervised classification | 22 classes |
FAO-GLCshare | ---- | 2014 | 1 km | Data fusion | 11 classes |
CLUDs | Landsat | 1980 1990 1995 2000 2005 2010 2015 2020 | 1 km | Extraction of remote sensing information | 6 classes * |
GLCNMO | Terra MODIS | 2003 | 1 km | Supervised classification | 20 classes |
Terra and Aqua MODIS | 2008 2013 | 500 m | Supervised classification | 20 classes | |
CCI-LC | ENVISAT MERIS SPOT VGT | 1992–2015 | 300 m | Unsupervised spatio-temporal clustering and Machine learning classification | 22 classes |
GlobCover | MERIS | 2005 2009 | 300 m | Generally unsupervised classification | 22 classes |
CGLS-LC100 | PROBA-V | 2015–2019 | 100 m | Supervised classification and Random forest | 23 classes |
GlobeLand30 | Landsat TM/ETM+ HJ-1 | 2000 2010 2020 | 30 m | Pixel-Object-Knowledge classification approach | 10 classes |
CLCD | Landsat | 1990–2019 | 30 m | Random forest | 9 classes |
GLC_FCS30 | Landsat TM/ETM+/OLI | 2015 2020 | 30 m | Operational SPECLib-based approach and Random forest | 30 classes |
FROM-GLC | Landsat TM/ETM+/OLI Sentinel-2 | 2017 | 30 m | Random forest | 10 classes |
Esri | Sentinel-2 | 2020 | 10 m | Deep learning model | 10 classes |
Phase-2000 | Phase-2010 | Phase-2015 | Phase-2020 |
---|---|---|---|
GLASS-GLC | GLASS-GLC | GLASS-GLC | |
GLC2000 | FAO-GLCshare-2014 | ||
CLUDs | CLUDs | CLUDs | CLUDs |
GLCNMO-2003 | GLCNMO-2008 | GLCNMO-2013 | |
CCI-LC | CCI-LC | CCI-LC | |
CGLS-LC100 | CGLS-LC100-2019 | ||
GlobeLand30 | GlobeLand30 | GlobeLand30 | |
CLCD | CLCD | CLCD | CLCD-2019 |
GlobCover-2009 | GLC_FCS30 | GLC_FCS30 | |
GlobCover-2005 | GlobCover-2005 | FROM-GLC-2017 | Esri |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, P.; Chen, T.; Li, Y.; Liu, K.; Zhang, D.; Song, C. Comparison and Assessment of Different Land Cover Datasets on the Cropland in Northeast China. Remote Sens. 2023, 15, 5134. https://doi.org/10.3390/rs15215134
Cui P, Chen T, Li Y, Liu K, Zhang D, Song C. Comparison and Assessment of Different Land Cover Datasets on the Cropland in Northeast China. Remote Sensing. 2023; 15(21):5134. https://doi.org/10.3390/rs15215134
Chicago/Turabian StyleCui, Peipei, Tan Chen, Yingjie Li, Kai Liu, Dapeng Zhang, and Chunqiao Song. 2023. "Comparison and Assessment of Different Land Cover Datasets on the Cropland in Northeast China" Remote Sensing 15, no. 21: 5134. https://doi.org/10.3390/rs15215134
APA StyleCui, P., Chen, T., Li, Y., Liu, K., Zhang, D., & Song, C. (2023). Comparison and Assessment of Different Land Cover Datasets on the Cropland in Northeast China. Remote Sensing, 15(21), 5134. https://doi.org/10.3390/rs15215134