R-Unet: A Deep Learning Model for Rice Extraction in Rio Grande do Sul, Brazil
Abstract
:1. Introduction
- The MFF module was introduced into the model decoder, where dilated convolution was used to increase the model receptive field;
- in order to prevent the encoder from overfitting and gradient disappearance, a residual network structure was introduced to deepen the depth of the network model;
- the channel attention mechanism was introduced into the attention-residual module to focus on the temporal features of rice;
- the use of open-source RS images (Sentinel-1 and Sentinel-2) is low in cost, easy to obtain, high in timeliness, and can integrate optical and time-series SAR features of rice.
2. Materials and Methods
2.1. Study Area
2.2. Data Preparation
2.2.1. Sentinel-1 Data
2.2.2. Sentinel-2 Data
2.2.3. The Ground Truth Data
2.2.4. Training, Validation and Test Samples
2.3. Research Technical Route
2.4. Models and Principles
2.4.1. R-Unet
2.4.2. MFF Module
2.4.3. Attention-Residual Module
2.4.4. Performance Evaluation
3. Results
3.1. Rice Extraction Model Results for Different Datasets
3.2. Rice Extraction Model Results of Different DL Models
4. Discussion
4.1. Optimal Dataset for Rice Extraction
4.2. Optimal Model for Rice Extraction
4.2.1. Discussion of Results from Rice Extraction Baseline Models
4.2.2. Discussion of Results from Rice Extraction Classic Models
4.3. Limitations and Prospects
5. Conclusions
- The model accuracy of the single-polarization SAR dataset was the worst, while the model accuracy of the dual-polarization SAR dataset was better. The precision of R-Unet on Dataset 03 and Dataset 07 was 0.939 and 0.948, respectively, while the precision on Dataset 01 and Dataset 02 was only 0.829 and 0.772.
- The combined dataset of SAR features and optical indices (Dataset 07) had higher accuracy than single SAR features (Dataset 03) or single optical indices (Dataset 04), and the model performance was better. In Dataset 07, the precision, F1-score, and MCC of R-Unet in the test sample were 0.948, 0.921, and 0.888, respectively.
- Compared with classic models such as FCN-8s, SegNet, U-Net, etc., R-Unet had the highest test result accuracy on the best dataset, and the rice extraction effect was the best. The precision, IOU, MCC, and F1-score of R-Unet rice extraction increased by 5.2%, 14.6%, 11.8%, and 9.3%, respectively.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Laborte, A.; Gutierrez, M.; Balanza, J.; Saito, K.; Zwart, S.J.; Boschetti, M.; Murty, M.V.R.; Villano, L.; Aunario, J.; Reinke, R.; et al. RiceAtlas, A Spatial Database of Global Rice Calendars and Production. Sci. Data 2017, 4, 170074. [Google Scholar] [CrossRef]
- Van der Velde, M.; Baruth, B.; Bussay, A.; Ceglar, A.; Garcia Condado, S.; Karetsos, S.; Lecerf, R.; Lopez, R.; Maiorano, A.; Nisini, L.; et al. In-season Performance of European Union Wheat Forecasts during Extreme Impacts. Sci. Rep. 2018, 8, 15420. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; Zhang, H.; Ge, J.; Sun, C.; Xu, L.; Wang, C. Cropland Data Extraction in Mekong Delta Based on Time Series Sentinel-1 Dual-Polarized Data. Remote Sens. 2023, 15, 3050. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, H.; Wang, C.; Zhang, B.; Liu, M. Crop Classification Based on Temporal Information Using Sentinel-1 SAR Time-Series Data. Remote Sens. 2019, 11, 53. [Google Scholar] [CrossRef] [Green Version]
- Arumugam, P.; Chemura, A.; Schauberger, B.; Gornott, C. Remote Sensing Based Yield Estimation of Rice (Oryza sativa L.) Using Gradient Boosted Regression in India. Remote Sens. 2021, 13, 2379. [Google Scholar] [CrossRef]
- Islam, M.D.; Di, L.; Qamer, F.M.; Shrestha, S.; Guo, L.; Lin, L.; Mayer, T.J.; Phalke, A.R. Rapid Rice Yield Estimation Using Integrated Remote Sensing and Meteorological Data and Machine Learning. Remote Sens. 2023, 15, 2374. [Google Scholar] [CrossRef]
- Fu, T.; Tian, S.; Zhan, Q. Phenological Analysis and Yield Estimation of Rice Based on Multi-spectral and SAR Data in Maha Sarakham, Thailand. J. Spat. Sci. 2023, 68, 2184428. [Google Scholar] [CrossRef]
- Xia, L.; Zhao, F.; Chen, J.; Yu, L. A Full Resolution Deep Learning Network for Paddy Rice Mapping Using Landsat Data. ISPRS J. Photogramm. Remote Sens. 2022, 194, 91–107. [Google Scholar] [CrossRef]
- Wayan Nuarsa, I.; Nishio, F.; Hongo, C. Spectral Characteristics and Mapping of Rice Plants Using Multi-Temporal Landsat Data. J. Agric. Sci. 2011, 3, 54–67. [Google Scholar] [CrossRef] [Green Version]
- Onojeghuo, A.O.; Miao, Y.; Blackburn, G.A. Deep ResU-Net Convolutional Neural Networks Segmentation for Smallholder Paddy Rice Mapping Using Sentinel 1 SAR and Sentinel 2 Optical Imagery. Remote Sens. 2023, 15, 1517. [Google Scholar] [CrossRef]
- Thorp, K.R.; Drajat, D. Deep Machine Learning with Sentinel Satellite Data to Map Paddy Rice Production Stages across West Java, Indonesia. Remote Sens. Environ. 2021, 265, 112679. [Google Scholar] [CrossRef]
- Du, M.; Huang, J.; Wei, P.; Yang, L.; Chai, D.; Peng, D.; Sha, J.; Sun, W.; Huang, R. Dynamic Mapping of Paddy Rice Using Multi-Temporal Landsat Data Based on a Deep Semantic Segmentation Model. Agronomy 2022, 12, 1583. [Google Scholar] [CrossRef]
- Shan, J.; Qiu, L.; Tian, M.; Wang, J.; Wang, Z.; Huang, X. Study on Extraction Methods of Paddy Rice Area Based on GF-6 Satellite Image. In Proceedings of the 2021 9th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Shenzhen, China, 26–29 July 2021. [Google Scholar] [CrossRef]
- Nazir, A.; Ullah, S.; Ahmad Saqib, Z.; Abbas, A.; Ali, A.; Shahid Iqbal, M.; Hussain, K.; Shakir, M.; Shah, M.; Usman Butt, M. Estimation and Forecasting of Rice Yield Using Phenology-Based Algorithm and Linear Regression Model on Sentinel-II Satellite Data. Agriculture 2021, 11, 1026. [Google Scholar] [CrossRef]
- Liaqat, M.U.; Cheema, M.J.M.; Huang, W.; Mahmood, T.; Zaman, M.; Khan, M.M. Evaluation of MODIS and Landsat Multiband Vegetation Indices Used for Wheat Yield Estimation in Irrigated Indus Basin. Comput. Electron. Agric. 2017, 138, 39–47. [Google Scholar] [CrossRef]
- Chen, N.; Yu, L.; Zhang, X.; Shen, Y.; Zeng, L.; Hu, Q.; Niyogi, D. Mapping Paddy Rice Fields by Combining Multi-Temporal Vegetation Index and Synthetic Aperture Radar Remote Sensing Data Using Google Earth Engine Machine Learning Platform. Remote Sens. 2020, 12, 2992. [Google Scholar] [CrossRef]
- Teluguntla, P.; Ryu, D.; George, B.; Walker, J.P.; Malano, H.M. Mapping Flooded Rice Paddies Using Time Series of MODIS Imagery in the Krishna River Basin, India. Remote Sens. 2015, 7, 8858–8882. [Google Scholar] [CrossRef] [Green Version]
- Zhong, L.; Hu, L.; Zhou, H. Deep Learning Based Multi-temporal Crop Classification. Remote Sens. Environ. 2019, 221, 430–443. [Google Scholar] [CrossRef]
- Jiang, T.; Liu, X.N.; Wu, L. Method for Mapping Rice Fields in Complex Landscape Areas Based on Pre-trained Convolutional Neural Network from HJ-1 A/b Data. ISPRS Int. J. Geo-Inf. 2018, 7, 418. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Huang, R.; Zhang, J.; Huang, J.; Wang, L.; Dong, J.; Shao, J. Inter-Continental Transfer of Pre-Trained Deep Learning Rice Mapping Model and Its Generalization Ability. Remote Sens. 2023, 15, 2443. [Google Scholar] [CrossRef]
- Lin, Z.; Zhong, R.; Xiong, X.; Guo, C.; Xu, J.; Zhu, Y.; Xu, J.; Ying, Y.; Ting, K.C.; Huang, J.; et al. Large-Scale Rice Mapping Using Multi-Task Spatiotemporal Deep Learning and Sentinel-1 SAR Time Series. Remote Sens. 2022, 14, 699. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, H.; Wang, C.; Wei, S.; Zhang, B.; Wu, F.; Tang, Y. Paddy Rice Mapping in Thailand Using Time-Series Sentinel-1 Data and Deep Learning Model. Remote Sens. 2021, 13, 3994. [Google Scholar] [CrossRef]
- Yang, H.; Pan, B.; Li, N.; Wang, W.; Zhang, J.; Zhang, X. A Systematic Method for Spatio-temporal Phenology Estimation of Paddy Rice Using Time Series Sentinel-1 Images. Remote Sens. Environ. 2021, 259, 112394. [Google Scholar] [CrossRef]
- Inoue, S.; Ito, A.; Yonezawa, C. Mapping Paddy Fields in Japan by Using a Sentinel-1 SAR Time Series Supplemented by Sentinel-2 Images on Google Earth Engine. Remote Sens. 2020, 12, 1622. [Google Scholar] [CrossRef]
- Clauss, K.; Ottinger, M.; Leinenkugel, P.; Kuenzer, C. Estimating Rice Production in the Mekong Delta, Vietnam, Utilizing Time Series of Sentinel-1 SAR Data. Int. J. Appl. Earth Obs. 2018, 73, 574–585. [Google Scholar] [CrossRef]
- Phung, H.; Nguyen, L. Crop Monitoring in the Mekong Delta, Vietnam Using Multi-Temporal Sentinel-1 Data with C-Band. Lect. Notes Civ. Eng. 2020, 80, 979–986. [Google Scholar] [CrossRef]
- Singha, M.; Dong, J.; Zhang, G.; Xiao, X. High Resolution Paddy Rice Maps in Cloud-prone Bangladesh and Northeast India Using Sentinel-1 Data. Sci. Data 2019, 6, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lasko, K.; Vadrevu, K.P.; Tran, V.T.; Justice, C. Mapping Double and Single Crop Paddy Rice with Sentinel-1A at Varying Spatial Scales and Polarizations in Hanoi, Vietnam. IEEE J. Select. Top. Appl. Earth Observat. Remote Sens. 2018, 11, 498–512. [Google Scholar] [CrossRef] [PubMed]
- Mansaray, L.R.; Yang, L.; Kabba, V.T.S.; Kanu, A.S.; Huang, J.; Wang, F. Optimising Rice Mapping in Cloud-prone Environments by Combining Quad-source Optical with Sentinel-1A Microwave Satellite Imagery. GIScience Remote Sens. 2019, 56, 1333–1354. [Google Scholar] [CrossRef]
- Dai, X.; Chen, S.; Jia, K.; Jiang, H.; Sun, Y.; Li, D.; Zheng, Q.; Huang, J. A Decision-Tree Approach to Identifying Paddy Rice Lodging with Multiple Pieces of Polarization Information Derived from Sentinel-1. Remote Sens. 2023, 15, 240. [Google Scholar] [CrossRef]
- He, Z.; Li, S.; Deng, Y.; Zhai, P.; Hu, Y. Rice Paddy Fields Identification Based on Backscatter Features of Quad-Pol RADARSAT-2 Data and Simple Decision Tree Method. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 6765–6768. [Google Scholar] [CrossRef]
- Peng, W.; Li, S.; He, Z.; Ning, S.; Liu, Y.; Su, Z. Random Forest Classification of Rice Planting Area Using Multi-Temporal Polarimetric Radarsat-2 Data. In Proceedings of the 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 2411–2414. [Google Scholar] [CrossRef]
- Ma, L.; Liu, Y.; Zhang, X.; Ye, Y.; Yin, G.; Johnson, B.A. Deep Learning in Remote Sensing Applications: A Meta-analysis and Review. ISPRS J. Photogramm. Remote Sens. 2019, 152, 166–177. [Google Scholar] [CrossRef]
- Parelius, E.J. A Review of Deep-Learning Methods for Change Detection in Multispectral Remote Sensing Images. Remote Sens. 2023, 15, 2092. [Google Scholar] [CrossRef]
- Miller, J.; Nair, U.; Ramachandran, R.; Maskey, M. Detection of Transverse Cirrus Bands in Satellite Imagery Using Deep Learning. Comput. Geosci. 2018, 118, 79–85. [Google Scholar] [CrossRef]
- Palafox, L.F.; Hamilton, C.W.; Scheidt, S.P.; Alvarez, A.M. Automated Detection of Geological Landforms on Mars Using Convolutional Neural Networks. Comput. Geosci. 2017, 101, 48–56. [Google Scholar] [CrossRef]
- Zhang, C.; Sargent, I.; Pan, X.; Li, H.; Gardiner, A.; Hare, J.; Atkinson, P.M. An Object-based Convolutional Neural Network (OCNN) for Urban Land Use Classification. Remote Sens. Environ. 2018, 216, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Ning, S.; Li, S.; He, Z.; Zhai, P. Extraction of Rice-planted Area Based on MobileUnet Model and Radarsat-2 Data. In Proceedings of the 2019 SAR in Big Data Era (BIGSARDATA), Beijing, China, 5–6 August 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Wei, P.; Chai, D.; Huang, R.; Peng, D.; Lin, T.; Sha, J.; Sun, W.; Huang, J. Rice Mapping Based on Sentinel-1 Images Using the Coupling of Prior Knowledge and Deep Semantic Segmentation Network: A case Study in Northeast China from 2019 to 2021. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102948. [Google Scholar] [CrossRef]
- De Bem, P.P.; De Carvalho Júnior, O.; De Carvalho, O.; Gomes, R.; Guimarāes, R.; Pimentel, C. Irrigated Rice Crop Identification in Southern Brazil Using Convolutional Neural Networks and Sentinel-1 Time Series. Remote Sens. Appl. Soc. Environ. 2021, 24, 100627. [Google Scholar] [CrossRef]
- Zhao, F.; Xia, L.; Kylling, A.; Li, R.Q.; Shang, H.; Xu, M. Detection Flying Aircraft from Landsat 8 OLI Data. ISPRS-J. Photogramm. Remote Sens. 2018, 1, 176–184. [Google Scholar] [CrossRef]
- Wei, P.; Huang, R.; Lin, T.; Huang, J. Rice Mapping in Training Sample Shortage Regions Using a Deep Semantic Segmentation Model Trained on Pseudo-Labels. Remote Sens. 2022, 14, 328. [Google Scholar] [CrossRef]
- Sun, Z.; Di, L.; Fang, H.; Burgess, A. Deep Learning Classification for Crop Types in North Dakota. IEEE J. Select. Top. Appl. Earth Observat. Remote Sens. 2020, 14, 2200–2213. [Google Scholar] [CrossRef]
- Zhu, S.; Li, S.; Yang, Z. Research on the Distribution Map of Weeds in Rice Field Based on SegNet. 3D Imaging—Multidimensional Signal Processing and Deep Learning. Smart Innov. Syst. Technol. 2022, 298, 91–99. [Google Scholar] [CrossRef]
- Wang, M.; Wang, J.; Cui, Y.; Liu, J.; Chen, L. Agricultural Field Boundary Delineation with Satellite Image Segmentation for High-Resolution Crop Mapping: A Case Study of Rice Paddy. Agronomy 2022, 12, 2342. [Google Scholar] [CrossRef]
- Zhu, X.X.; Tuia, D.; Mou, L.; Xia, G.-S.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–36. [Google Scholar] [CrossRef] [Green Version]
- Dong, Z.; An, S.; Zhang, J.; Yu, J.; Li, J.; Xu, D. L-Unet: A Landslide Extraction Model Using Multi-Scale Feature Fusion and Attention Mechanism. Remote Sens. 2022, 14, 2552. [Google Scholar] [CrossRef]
- Cai, B.; Wang, M.; Chen, Y.; Hu, Y.; Liu, M. MFF-Net: A Multi-feature Fusion Network for Community Detection in Complex Network. Knowl.-Based Syst. 2022, 252, 109408. [Google Scholar] [CrossRef]
Datasets | Input Bands | Channels | Description |
---|---|---|---|
Dataset 01 | VH | 10 | VH: vertical–horizontal polarization VV: vertical–vertical polarization Indices: NDVI + EVI + LSWI NDVI: normalized difference vegetation index EVI: enhanced vegetation index LSWI: land surface water index |
Dataset 02 | VV | 10 | |
Dataset 03 | VH + VV | 20 | |
Dataset 04 | Indices | 3 | |
Dataset 05 | VH + indices | 13 | |
Dataset 06 | VV + indices | 13 | |
Dataset 07 | VH + VV + indices | 23 |
Predictions | ||||
---|---|---|---|---|
Rice | Non-Rice | Producer Accuracy | ||
Truth | Rice | 516,645 | 17,602 | 0.967 |
Non-rice | 38,516 | 934,565 | 0.960 | |
User accuracy | 0.931 | 0.982 | ||
OA | 0.963 | |||
F1-score | 0.949 | MCC | 0.920 | |
IOU | 0.902 | Recall | 0.967 |
Model | Precision | IOU | Recall | F1-Score | MCC | OA | Time (ms) |
---|---|---|---|---|---|---|---|
R-Unet | 0.948 | 0.853 | 0.895 | 0.921 | 0.888 | 0.952 | 27.22 |
MFF-Unet | 0.939 | 0.789 | 0.832 | 0.882 | 0.837 | 0.931 | 30.93 |
Attention-ResUnet | 0.936 | 0.806 | 0.854 | 0.893 | 0.850 | 0.937 | 37.75 |
U-Net | 0.927 | 0.825 | 0.882 | 0.904 | 0.863 | 0.942 | 29.16 |
L-Unet | 0.926 | 0.731 | 0.777 | 0.845 | 0.792 | 0.914 | 28.41 |
Model | Precision | IOU | Recall | F1-Score | MCC | OA | Time (ms) |
---|---|---|---|---|---|---|---|
R-Unet | 0.948 | 0.853 | 0.895 | 0.921 | 0.888 | 0.952 | 27.22 |
SegNet | 0.928 | 0.755 | 0.802 | 0.861 | 0.809 | 0.920 | 27.58 |
L-Unet | 0.926 | 0.731 | 0.777 | 0.845 | 0.792 | 0.914 | 28.41 |
FCN-8s | 0.923 | 0.707 | 0.751 | 0.828 | 0.770 | 0.903 | 40.32 |
DeepLab | 0.896 | 0.719 | 0.784 | 0.836 | 0.773 | 0.905 | 26.25 |
Predictions | ||||
---|---|---|---|---|
Rice | Non-Rice | Producer Accuracy | ||
Truth | Rice | 2,717,954 | 318,268 | 0.900 |
Non-rice | 149,257 | 6,644,921 | 0.978 | |
User accuracy | 0.948 | 0.954 |
Model | Precision | IOU | Recall | F1-Score | MCC | OA |
---|---|---|---|---|---|---|
MFF-Unet | 0.9 | 6.4 | 6.3 | 3.9 | 5.1 | 2.1 |
Attention-ResUnet | 1.2 | 4.7 | 4.1 | 2.8 | 3.8 | 1.5 |
U-Net | 2.1 | 2.8 | 1.3 | 1.7 | 2.5 | 1.0 |
L-Unet | 2.2 | 12.2 | 11.8 | 7.6 | 9.6 | 3.8 |
Model | Precision | IOU | Recall | F1-Score | MCC | OA |
---|---|---|---|---|---|---|
SegNet | 2.0 | 9.8 | 9.3 | 6.0 | 7.9 | 3.2 |
U-Net | 2.1 | 2.8 | 1.3 | 1.7 | 2.4 | 1.0 |
L-Unet | 2.2 | 12.2 | 11.8 | 7.6 | 9.6 | 3.8 |
FCN-8s | 2.5 | 14.6 | 14.4 | 9.3 | 11.8 | 4.9 |
DeepLab | 5.2 | 13.4 | 11.1 | 8.5 | 11.5 | 4.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, T.; Tian, S.; Ge, J. R-Unet: A Deep Learning Model for Rice Extraction in Rio Grande do Sul, Brazil. Remote Sens. 2023, 15, 4021. https://doi.org/10.3390/rs15164021
Fu T, Tian S, Ge J. R-Unet: A Deep Learning Model for Rice Extraction in Rio Grande do Sul, Brazil. Remote Sensing. 2023; 15(16):4021. https://doi.org/10.3390/rs15164021
Chicago/Turabian StyleFu, Tingyan, Shufang Tian, and Jia Ge. 2023. "R-Unet: A Deep Learning Model for Rice Extraction in Rio Grande do Sul, Brazil" Remote Sensing 15, no. 16: 4021. https://doi.org/10.3390/rs15164021
APA StyleFu, T., Tian, S., & Ge, J. (2023). R-Unet: A Deep Learning Model for Rice Extraction in Rio Grande do Sul, Brazil. Remote Sensing, 15(16), 4021. https://doi.org/10.3390/rs15164021