Multi-Scale Ground Deformation Analysis and Investigation of Driver Factors Based on Remote Sensing Data: A Case Study of Zhuhai City
Abstract
:1. Introduction
2. Study Area and Data
2.1. Overview of the Study Area
2.2. Data
2.2.1. Sentinel-1 Data
2.2.2. Impact Factor Data
3. Research Method
3.1. SBAS-InSAR Technology and Data Processing
3.2. Spatial Autocorrelation
3.3. MGWR Model
3.3.1. Model
3.3.2. Bandwidth Selection
3.4. Model Evaluation Metrics
4. Results
4.1. Spatial Distribution Characteristics of Ground Deformation in Zhuhai
4.2. Model Results and Comparison
4.3. Spatial Heterogeneity in the Influencing Factors
4.3.1. Geotectonic Conditions
4.3.2. Human Activities
4.3.3. Geographical Environment
5. Discussion
5.1. Results of Ground Deformation in Zhuhai
5.2. Validity and Applicability of the Methodology
5.3. Analysis of Factors Influencing Ground Deformation
5.4. Comparison of Research Results with Previous Studies
5.5. Strengths and Weaknesses
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ma, T.; Du, Y.; Ma, R.; Xiao, C.; Liu, Y. Review: Water–rock interactions and related eco-environmental effects in typical land subsidence zones of China. Hydrogeol. J. 2018, 26, 1339–1349. [Google Scholar] [CrossRef]
- Milliman, J.D.; Haq, B.U. Sea-Level Rise and Coastal Subsidence: Towards Meaningful Strategies. In Sea-Level Rise and Coastal Subsidence: Causes, Consequences, and Strategies; Milliman, J.D., Haq, B.U., Eds.; Springer: Dordrecht, The Netherlands, 1996; pp. 1–9. [Google Scholar]
- GuangYao, D.; HuiLi, G.; Huanhuan, L.; Youquan, Z.; BeiBei, C.; KunChao, L. Monitoring and Analysis of Land Subsidence Along Beijing-Tianjin Inter-City Railway. J. Indian Soc. Remote Sens. 2016, 44, 915–931. [Google Scholar] [CrossRef]
- Gambolati, G.; Teatini, P. Geomechanics of subsurface water withdrawal and injection. Water Resour. Res. 2015, 51, 3922–3955. [Google Scholar] [CrossRef]
- Wu, Z.; Ma, P.; Zheng, Y.; Gu, F.; Liu, L.; Lin, H. Automatic detection and classification of land subsidence in deltaic metropolitan areas using distributed scatterer InSAR and Oriented R-CNN. Remote Sens. Environ. 2023, 290, 113545. [Google Scholar] [CrossRef]
- Huang, B.; Shu, L.; Yang, Y.S. Groundwater Overexploitation Causing Land Subsidence: Hazard Risk Assessment Using Field Observation and Spatial Modelling. Water Resour. Manag. 2012, 26, 4225–4239. [Google Scholar] [CrossRef]
- Schmidt, C. Alarm over a sinking delta. Science 2015, 348, 845–846. [Google Scholar] [CrossRef]
- Andreas, H.; Abidin, H.Z.; Sarsito, D.A.; Pradipta, D. Remotes sensing capabilities on land subsidence and coastal water hazard and disaster studies. Iop Conf. Series. Earth Environ. Sci. 2020, 500, 12036. [Google Scholar] [CrossRef]
- Syvitski, J.P.M.; Kettner, A.J.; Overeem, I.; Hutton, E.W.H.; Hannon, M.T.; Brakenridge, G.R.; Day, J.; Vorosmarty, C.J.; Saito, Y.; Giosan, L.; et al. Sinking deltas due to human activities. Nat. Geosci. 2009, 2, 681–686. [Google Scholar] [CrossRef]
- Ma, P.; Wang, W.; Zhang, B.; Wang, J.; Shi, G.; Huang, G.; Cheng, F.; Jiang, L.; Lin, H. Remotely sensing large- and small-scale ground subsidence: A case study of the Guangdong–Hong Kong–Macao Greater Bay Area of China. Remote Sens. Environ. 2019, 232, 111282. [Google Scholar] [CrossRef]
- Du, Y.; Feng, G.; Liu, L.; Fu, H.; Peng, X.; Wen, D. Understanding Land Subsidence Along the Coastal Areas of Guangdong, China, by Analyzing Multi-Track MTInSAR Data. Remote Sens. 2020, 12, 299. [Google Scholar] [CrossRef]
- Figueroa-Miranda, S.; Tuxpan-Vargas, J.; Ramos-Leal, J.A.; Hernández-Madrigal, V.M.; Villaseñor-Reyes, C.I. Land subsidence by groundwater over-exploitation from aquifers in tectonic valleys of Central Mexico: A review. Eng. Geol. 2018, 246, 91–106. [Google Scholar] [CrossRef]
- Galloway, D.L.; Erkens, G.; Kuniansky, E.L.; Rowland, J.C. Preface: Land subsidence processes. Hydrogeol. J. 2016, 24, 547–550. [Google Scholar] [CrossRef]
- Guo, H.; Bai, J.; Zhang, Y.; Wang, L.; Shi, J.; Li, W.; Zhang, Z.; Wang, Y.; Zhu, J.; Wang, H. The evolution characteristics and mechanism of the land subsidence in typical areas of the North China Plain. Geol. China 2017, 44, 1115–1127. [Google Scholar]
- Zhou, C.; Gong, H.; Chen, B.; Li, X.; Li, J.; Wang, X.; Gao, M.; Si, Y.; Guo, L.; Shi, M.; et al. Quantifying the contribution of multiple factors to land subsidence in the Beijing Plain, China with machine learning technology. Geomorphology. 2019, 335, 48–61. [Google Scholar] [CrossRef]
- Zhou, C.; Gong, H.; Chen, B.; Gao, M.; Cao, Q.; Cao, J.; Duan, L.; Zuo, J.; Shi, M. Land Subsidence Response to Different Land Use Types and Water Resource Utilization in Beijing-Tianjin-Hebei, China. Remote Sens. 2020, 12, 457. [Google Scholar] [CrossRef]
- Shi, X.; Zhang, S.; Jiang, M.; Pei, Y.; Qu, T.; Xu, J.; Yang, C. Spatial and temporal subsidence characteristics in Wuhan (China), during 2015–2019, inferred from Sentinel-1 synthetic aperture radar (SAR) interferometry. Nat. Hazards Earth Syst. Sci. 2021, 21, 2285–2297. [Google Scholar] [CrossRef]
- Han, Y.; Zou, J.; Lu, Z.; Qu, F.; Kang, Y.; Li, J. Ground Deformation of Wuhan, China, Revealed by Multi-Temporal InSAR Analysis. Remote Sens. 2020, 12, 3788. [Google Scholar] [CrossRef]
- Nie, L.; Zhang, M.; Jian, H. Analysis of surface subsidence mechanism and regularity under the influence of seism and fault. Nat. Hazards 2013, 66, 773–780. [Google Scholar] [CrossRef]
- Cigna, F.; Tapete, D. Satellite InSAR survey of structurally-controlled land subsidence due to groundwater exploitation in the Aguascalientes Valley, Mexico. Remote Sens. Environ. 2021, 254, 112254. [Google Scholar] [CrossRef]
- Khan, R.; Li, H.; Afzal, Z.; Basir, M.; Arif, M.; Hassan, W. Monitoring Subsidence in Urban Area by PSInSAR: A Case Study of Abbottabad City, Northern Pakistan. Remote Sens. 2021, 13, 1651. [Google Scholar] [CrossRef]
- Hu, J.; Motagh, M.; Guo, J.; Haghighi, M.H.; Li, T.; Qin, F.; Wu, W. Inferring subsidence characteristics in Wuhan (China) through multitemporal InSAR and hydrogeological analysis. Eng. Geol. 2022, 297, 106530. [Google Scholar] [CrossRef]
- Chaussard, E.; Amelung, F.; Abidin, H.; Hong, S. Land subsidence in central Mexico detected by ALOS InSAR time-series. Remote Sens. Environ. 2013, 140, 94–106. [Google Scholar] [CrossRef]
- Amelung, F.; Galloway, D.L.; Bell, J.W.; Zebker, H.A.; Laczniak, R.J. Sensing the ups and downs of Las Vegas: InSAR reveals structural control of land subsidence and aquifer-system deformation. Geology 1999, 27, 483–486. [Google Scholar] [CrossRef]
- Pepe, A.; Calò, F. A Review of Interferometric Synthetic Aperture RADAR (InSAR) Multi-Track Approaches for the Retrieval of Earth’s Surface Displacements. Appl. Sci. 2017, 7, 1264. [Google Scholar] [CrossRef]
- Sonnessa, A.; di Lernia, A.; Oscar Nitti, D.; Nutricato, R.; Tarantino, E.; Cotecchia, F. Integration of multi-sensor MTInSAR and ground-based geomatic data for the analysis of non-linear displacements affecting the urban area of Chieuti, Italy. Int. J. Appl. Earth Obs. Geoinf. 2023, 117, 103194. [Google Scholar] [CrossRef]
- Schmidt, D.A.; Bürgmann, R. Time-dependent land uplift and subsidence in the Santa Clara valley, California, from a large interferometric synthetic aperture radar data set. J. Geophys. Res. Solid Earth 2003, 108, 2416. [Google Scholar] [CrossRef]
- Tomás, R.; Herrera, G.; Delgado, J.; Lopez-Sanchez, J.M.; Mallorquí, J.J.; Mulas, J. A ground subsidence study based on DInSAR data: Calibration of soil parameters and subsidence prediction in Murcia City (Spain). Eng. Geol. 2010, 111, 19–30. [Google Scholar] [CrossRef]
- Tang, W.; Zhao, X.; Bi, G.; Chen, M.; Cheng, S.; Liao, M.; Yu, W. Quantifying seasonal ground deformation in Taiyuan basin, China, by Sentinel-1 InSAR time series analysis. J. Hydrol. 2023, 622, 129654. [Google Scholar] [CrossRef]
- Vetrivel, A.; Gerke, M.; Kerle, N.; Vosselman, G. Identification of damage in buildings based on gaps in 3D point clouds from very high resolution oblique airborne images. ISPRS-J. Photogramm. Remote Sens. 2015, 105, 61–78. [Google Scholar] [CrossRef]
- Ezquerro, P.; Del Soldato, M.; Solari, L.; Tomás, R.; Raspini, F.; Ceccatelli, M.; Fernández-Merodo, J.; Casagli, N.; Herrera, G. Vulnerability Assessment of Buildings due to Land Subsidence Using InSAR Data in the Ancient Historical City of Pistoia (Italy). Sensors 2020, 20, 2749. [Google Scholar] [CrossRef]
- Umarhadi, D.A.; Widyatmanti, W.; Kumar, P.; Yunus, A.P.; Khedher, K.M.; Kharrazi, A.; Avtar, R. Tropical peat subsidence rates are related to decadal LULC changes: Insights from InSAR analysis. Sci. Total Environ. 2022, 816, 151561. [Google Scholar] [CrossRef]
- Rateb, A.; Abotalib, A.Z. Inferencing the land subsidence in the Nile Delta using Sentinel-1 satellites and GPS between 2015 and 2019. Sci. Total Environ. 2020, 729, 138868. [Google Scholar] [CrossRef]
- Yi, Z.; Liu, M.; Liu, X.; Wang, Y.; Wu, L.; Wang, Z.; Zhu, L. Long-term Landsat monitoring of mining subsidence based on spatiotemporal variations in soil moisture: A case study of Shanxi Province, China. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102447. [Google Scholar] [CrossRef]
- Li, F.; Gong, H.; Chen, B.; Zhou, C.; Guo, L. Analysis of the Contribution Rate of the Influencing Factors to Land Subsidence in the Eastern Beijing Plain, China Based on Extremely Randomized Trees (ERT) Method. Remote Sens. 2020, 12, 2963. [Google Scholar] [CrossRef]
- Tzampoglou, P.; Loupasakis, C. Numerical simulation of the factors causing land subsidence due to overexploitation of the aquifer in the Amyntaio open coal mine, Greece. Hydroresearch 2019, 1, 8–24. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Quantitative Geography: Perspectives on Spatial Data Analysis; Sage Publications: London, UK, 2000. [Google Scholar]
- Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships; John Wiley & Sons: Hoboken, NJ, USA, 2002. [Google Scholar]
- Wang, C.; Zhang, J.; Yan, X. The Use of Geographically Weighted Regression for the Relationship among Extreme Climate Indices in China. Math. Probl. Eng. 2012, 2012, 369539. [Google Scholar] [CrossRef]
- Cahalan, M.D.; Milewski, A.M. Sinkhole formation mechanisms and geostatistical-based prediction analysis in a mantled karst terrain. Catena 2018, 165, 333–344. [Google Scholar] [CrossRef]
- Yu, H.; Gong, H.; Chen, B.; Liu, K.; Gao, M. Analysis of the influence of groundwater on land subsidence in Beijing based on the geographical weighted regression (GWR) model. Sci. Total Environ. 2020, 738, 139405. [Google Scholar] [CrossRef]
- Xu, G.; Jiang, Y.; Wang, S.; Qin, K.; Ding, J.; Liu, Y.; Lu, B. Spatial disparities of self-reported COVID-19 cases and influencing factors in Wuhan, China. Sust. Cities Soc. 2022, 76, 103485. [Google Scholar] [CrossRef]
- Song, J.; Yu, H.; Lu, Y. Spatial-scale dependent risk factors of heat-related mortality: A multiscale geographically weighted regression analysis. Sust. Cities Soc. 2021, 74, 103159. [Google Scholar] [CrossRef]
- Cao, Z.; Wu, Z.; Li, S.; Guo, G.; Song, S.; Deng, Y.; Ma, W.; Sun, H.; Guan, W. Explicit Spatializing Heat-Exposure Risk and Local Associated Factors by coupling social media data and automatic meteorological station data. Environ. Res. 2020, 188, 109813. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, X.; Zhou, M.; He, S.; Gan, M.; Yang, L.; Wang, K. Impacts of urbanization and landscape pattern on habitat quality using OLS and GWR models in Hangzhou, China. Ecol. Indic. 2020, 117, 106654. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Yang, W.; Kang, W. Multiscale Geographically Weighted Regression (MGWR). Ann. Am. Assoc. Geogr. 2017, 107, 1247–1265. [Google Scholar] [CrossRef]
- Shabrina, Z.; Buyuklieva, B.; Ng, M.K.M. Short-Term Rental Platform in the Urban Tourism Context: A Geographically Weighted Regression (GWR) and a Multiscale GWR (MGWR) Approaches. Geogr. Anal. 2020, 53, 686–707. [Google Scholar] [CrossRef]
- Sun, H.; Peng, H.; Zeng, M.; Wang, S.; Pan, Y.; Pi, P.; Xue, Z.; Zhao, X.; Zhang, A.; Liu, F. Land Subsidence in a Coastal City Based on SBAS-InSAR Monitoring: A Case Study of Zhuhai, China. Remote Sens. 2023, 15, 2424. [Google Scholar] [CrossRef]
- Liu, Z.; Ng, A.H.; Wang, H.; Chen, J.; Du, Z.; Ge, L. Land subsidence modeling and assessment in the West Pearl River Delta from combined InSAR time series, land use and geological data. Int. J. Appl. Earth Obs. Geoinf. 2023, 118, 103228. [Google Scholar] [CrossRef]
- Sheng, N.; Tang, U.W. Zhuhai. Cities 2013, 32, 70–79. [Google Scholar] [CrossRef]
- Jinjin, J.; Jia, L.; Shutian, W.; Shan, J.; Bo, L.; Junsheng, L. Distribution Characteristics of Soft Soil and Risk Assessment of Soft Soil Subsidence in Zhuhai. J. Geol. Hazards Environ. Preserv. 2020, 31, 68–74. [Google Scholar]
- Shuang, W.; Xuexin, Y.; Jiang, J.; Tianliang, Y.; Jianzhong, W.; Hongshan, W. Analysis on factors affecting ground settlement in plain area of Pearl River Delta. Chin. J. Geol. Hazard Control. 2019, 30, 98–104. [Google Scholar]
- Zhibin, L.; Xinghai, D.; Mingxiang, C.; Jianyun, Z.; Lin, Y.; Xianyi, L.; Abdollahi, S. Subsidence monitoring and analysis of Zhuhai based on PS InSAR technology. J. Nat. Disasters 2021, 30, 38–46. [Google Scholar]
- Bo, L.; Jinjin, J.; Jia, L.; Abdollahi, S. Analysis of Ground Subsidence Monitoring in Zhuhai City Based on PS-InSAR Technology. Resour. Environ. Eng. 2021, 35, 241. [Google Scholar]
- Tizzani, P.; Berardino, P.; Casu, F.; Euillades, P.; Manzo, M.; Ricciardi, G.; Zeni, G.; Lanari, R. Surface deformation of Long Valley caldera and Mono Basin, California, investigated with the SBAS-InSAR approach. Remote Sens. Environ. 2007, 108, 277–289. [Google Scholar] [CrossRef]
- Tobler, W.R. Cellular Geography. In Philosophy in Geography; Gale, S., Olsson, G., Eds.; Springer: Dordrecht, The Netherlands, 1979; pp. 379–386. [Google Scholar]
- Anselin, L. Spatial Econometrics: Methods and Models; Springer Science and Business Media: Dordrecht, The Netherlands, 1988. [Google Scholar]
- Cliff, A.D.; Ord, J.K. Spatial Processes: Models and Applications; Pion Limited: London, UK, 1981; ISBN 08-85086-081-4. [Google Scholar]
- Hutcheson, G. The Multivariate Social Scientist; SAGE Publications: Thousand Oaks, CA, USA, 1999. [Google Scholar]
- Oshan, T.; Li, Z.; Kang, W.; Wolf, L.; Fotheringham, A. mgwr: A Python Implementation of Multiscale Geographically Weighted Regression for Investigating Process Spatial Heterogeneity and Scale. Isprs Int. J. Geo. Inf. 2019, 8, 269. [Google Scholar] [CrossRef]
- Yu, H.; Fotheringham, A.S.; Li, Z.; Oshan, T.; Wolf, L.J. On the measurement of bias in geographically weighted regression models. Spat. Stat. 2020, 38, 100453. [Google Scholar] [CrossRef]
- Yang, Q.; Ke, Y.; Zhang, D.; Chen, B.; Gong, H.; Lv, M.; Zhu, L.; Li, X. Multi-Scale Analysis of the Relationship between Land Subsidence and Buildings: A Case Study in an Eastern Beijing Urban Area Using the PS-InSAR Technique. Remote Sens. 2018, 10, 1006. [Google Scholar] [CrossRef]
- Li, G.; Feng, G.; Xiong, Z.; Liu, Q.; Xie, R.; Zhu, X.; Luo, S.; Du, Y. Surface deformation evolution in the Pearl River Delta between 2006 and 2011 derived from the ALOS1/PALSAR images. Earth Planets Space 2020, 72, 179. [Google Scholar] [CrossRef]
- Jingcai, L. Analysis on the Causes of Land Subsidence in the Pearl River Delta Plain. Geomat. Spat. Inf. Technol. 2022, 45, 162–165. [Google Scholar]
- Li, X.; Damen, M.C.J. Coastline change detection with satellite remote sensing for environmental management of the Pearl River Estuary, China. J. Mar. Syst. 2010, 82, S54–S61. [Google Scholar] [CrossRef]
- Blachowski, J. Application of GIS spatial regression methods in assessment of land subsidence in complicated mining conditions: Case study of the Walbrzych coal mine (SW Poland). Nat. Hazards 2016, 84, 997–1014. [Google Scholar] [CrossRef]
- Bayramov, E.; Buchroithner, M.; Kada, M.; Bayramov, R. Quantitative assessment of ground deformation risks, controlling factors and movement trends for onshore petroleum and gas industry using satellite Radar remote sensing and spatial statistics. Georisk 2022, 16, 283–300. [Google Scholar] [CrossRef]
- Palmisano, D.; Satalino, G.; Balenzano, A.; Mattia, F. Coherent and Incoherent Change Detection for Soil Moisture Retrieval From Sentinel-1 Data. IEEE Geosci. Remote Sens. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Bai, Z.; Fang, S.; Gao, J.; Zhang, Y.; Jin, G.; Wang, S.; Zhu, Y.; Xu, J. Could Vegetation Index be Derive from Synthetic Aperture Radar? – The Linear Relationship between Interferometric Coherence and NDVI. Sci. Rep. 2020, 10. [Google Scholar] [CrossRef]
- Andra Baduge, A.W.; Henschel, M.D.; Hobbs, S.; Buehler, S.A.; Ekman, J.; Lehrbass, B. Seasonal variation of coherence in SAR interferograms in Kiruna, Northern Sweden. Int. J. Remote Sens. 2016, 37, 370–387. [Google Scholar] [CrossRef]
SAR Sensors | Orbit | Band | Number of Images |
---|---|---|---|
Sentinel-1A IW SLC | 11 | C-band | 48 |
Timespan | Track Direction | Polarization Mode | Resolution |
8 January 2020 to 28 December 2021 | Ascending orbit | VV-polarization | 5 m × 20 m |
Conditioning Factor | Timespan | Source | Scale | |
---|---|---|---|---|
Geotectonic conditions | Elevation | 2020–2021 | Drone orthophotography | 2 m |
Slope | 2020–2021 | Drone orthophotography | 2 m | |
Aspect | 2020–2021 | Drone orthophotography | 2 m | |
Lithology | 2020–2021 | Guangdong Zhuhai Engineering Survey Institute | - | |
Soft soil thickness | 2019 | Wang Shuang [52] | - | |
Proximity to faults | 2020–2021 | Calculation based on the Euclidean distance through the Zhuhai fault | - | |
Human Activities | Land use types | 2020–2021 | Landsat8 | 30 m |
Building density | 2020–2021 | Obtained by calculating drone images | 200 m | |
Road network density | 2020–2021 | Obtained by calculating drone images | 200 m | |
Groundwater exploitation intensity | 2019 | Wang Shuang [52] | - | |
Geographical Environment | NDVI | 2020–2021 | Sentinel-2 | 10 m |
Soil moisture | 2020–2021 | Landsat8 | 30 m | |
Precipitation | 2020–2021 | CHIRPS Daily | 5400 m |
Ground Deformation (mm/y) | Low −10~10 | Relatively Low −30~−10 and >10 | Medium −50~−30 | Relatively High −80~−50 | High <−80 | Total |
---|---|---|---|---|---|---|
Number of monitoring points | 1,154,432 | 179,464 | 29,457 | 2959 | 278 | 1,366,590 |
Percentage | 84.48% | 13.13% | 2.16% | 0.22% | 0.02% | 100% |
Road | Average Deformation Rate (mm/y) | Maximum Subsidence Rate (mm/y) | Maximum Uplift Rate (mm/y) |
---|---|---|---|
Zhuhai Avenue | −6.6 | −37.9 | 9.1 |
Gaolan Port Expressway | −2.9 | −21.9 | 7.5 |
Western Coastal Highway | −1.1 | −32.5 | 7.4 |
Zhuhai Airport Expressway | −0.8 | −30.6 | 5.8 |
Guangzhou–Macao Expressway | −4.1 | −46.0 | 5.4 |
Guangzhou Foshan Jiangmen Zhuhai Expressway | −4.9 | −29.7 | 6.1 |
Variable | VIF | Variable | VIF |
---|---|---|---|
Intercept | Proximity to faults | 1.444 | |
Slope | 4.349 | Lithology | 1.271 |
Aspect | 1.355 | Road network density | 1.914 |
Elevation | 4.147 | Building density | 2.273 |
Soft soil thickness | 1.749 | Land use types | 1.853 |
Groundwater exploitation intensity | 1.597 | NDVI | 2.207 |
Precipitation | 1.256 | Soil moisture | 1.043 |
Diagnostic Information | OLS | GWR | MGWR |
---|---|---|---|
Log-likelihood | −172.220 | −151.405 | −47.033 |
AICc | 376.782 | 368.412 | 291.755 |
RSS | 61.488 | 50.931 | 19.805 |
R-sq | 0.722 | 0.770 | 0.910 |
Adj. R-sq | 0.704 | 0.737 | 0.871 |
Variable | Bandwidth (MGWR) | Variable | Bandwidth (MGWR) |
---|---|---|---|
Intercept | 46.000 | Building density | 44.000 |
Slope | 60.000 | Soft soil thickness | 46.000 |
Aspect | 100.000 | Groundwater exploitation intensity | 44.000 |
Elevation | 219.000 | Land use types | 219.000 |
Proximity to faults | 181.000 | NDVI | 44.000 |
Lithology | 211.000 | Precipitation | 110.000 |
Road network density | 46.000 | Soil moisture | 219.000 |
Variable | Mean | STD | Min | Median | Max | Adj. t-Val (95%) |
---|---|---|---|---|---|---|
Intercept | 0.031 | 0.116 | −0.190 | 0.022 | 0.296 | 2.748 |
Slope | 0.043 | 0.148 | −0.247 | 0.052 | 0.349 | 2.684 |
Aspect | 0.011 | 0.054 | −0.091 | 0.004 | 0.122 | 2.404 |
Elevation | 0.104 | 0.010 | 0.082 | 0.109 | 0.118 | 2.078 |
Proximity to faults | −0.016 | 0.058 | −0.110 | −0.016 | 0.091 | 2.341 |
Lithology | −0.065 | 0.019 | −0.092 | −0.068 | −0.030 | 2.138 |
Road network density | 0.177 | 0.098 | −0.115 | 0.106 | 0.372 | 2.778 |
Building density | 0.155 | 0.136 | −0.072 | 0.135 | 0.484 | 2.787 |
Soft soil thickness | −0.182 | 0.115 | −0.435 | −0.199 | 0.113 | 2.749 |
Groundwater exploitation intensity | −0.207 | 0.214 | −0.620 | −0.266 | 0.257 | 2.638 |
Land use types | −0.017 | 0.005 | −0.024 | −0.018 | −0.005 | 2.090 |
NDVI | 0.240 | 0.176 | −0.109 | 0.275 | 0.568 | 2.792 |
Precipitation | 0.068 | 0.039 | −0.034 | 0.074 | 0.139 | 2.427 |
Soil moisture | 0.006 | 0.002 | 0.002 | 0.005 | 0.011 | 2.007 |
Area | Previous Studies | This Study |
---|---|---|
Baijiao Town (A) | Groundwater exploitation [52]; soft soil thickness [49,54] | NDVI > groundwater exploitation intensity > soft soil thickness |
Hongqi Town (B) | Upper loads [52]; groundwater exploitation [49,52] | NDVI > groundwater exploitation intensity > building density |
Gaolan Port Economic Zone (C) | Soft soil thickness [49,54]; upper loads [64] | Building density > soft soil thickness > road network density |
Hengqin Town (D) | Upper loads [64] | The soft soil thickness > Building density > Road network density |
Zhuhai | Upper loads [49,52,64]; soft soil thickness [49,54,64]; groundwater exploitation [49,52,65] | NDVI > groundwater exploitation intensity > soft soil thickness > building density > Road network density |
Study Area | Dataset(s) | Factor(s) | Method | Area Size | R-sq | Refs |
---|---|---|---|---|---|---|
Beijing | Measured data | Groundwater level | GWR | Big | 0.765 | [41] |
SW Poland | Measured data | Thickness, inclination, and depth of coal levels and surface slope | GWR | Small | 0.690 | [66] |
Absheron | Remote sensing image datasets | Eight factors, both natural and human-made | GWR | Big | 0.10~0.33 | [67] |
This study | Remote sensing image datasets | Thirteen factors of geotectonic conditions, geographic environment, and human activities | MGWR | Big | 0.910 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Y.; Wang, Z.; Xiao, B. Multi-Scale Ground Deformation Analysis and Investigation of Driver Factors Based on Remote Sensing Data: A Case Study of Zhuhai City. Remote Sens. 2023, 15, 5155. https://doi.org/10.3390/rs15215155
Tian Y, Wang Z, Xiao B. Multi-Scale Ground Deformation Analysis and Investigation of Driver Factors Based on Remote Sensing Data: A Case Study of Zhuhai City. Remote Sensing. 2023; 15(21):5155. https://doi.org/10.3390/rs15215155
Chicago/Turabian StyleTian, Yuxin, Zhenghai Wang, and Bei Xiao. 2023. "Multi-Scale Ground Deformation Analysis and Investigation of Driver Factors Based on Remote Sensing Data: A Case Study of Zhuhai City" Remote Sensing 15, no. 21: 5155. https://doi.org/10.3390/rs15215155
APA StyleTian, Y., Wang, Z., & Xiao, B. (2023). Multi-Scale Ground Deformation Analysis and Investigation of Driver Factors Based on Remote Sensing Data: A Case Study of Zhuhai City. Remote Sensing, 15(21), 5155. https://doi.org/10.3390/rs15215155